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Abstract. The main goal of this paper is to show that the inductive dimension

of a σ-compact metric space X can be characterized in terms of algebraical sums

of connectivity (or Darboux) functions X → R. As an intermediate step we show,

using a result of Hayashi [9], that for any dense Gδ set G ∈ R2k+1 the union of G and

some k homeomorphic images of G is universal for k-dimensional separable metric

spaces. We will also discuss how our definition works with respect to other classes

of Darboux-like functions. In particular, we show that for the class of peripherally

continuous functions on an arbitrary separable metric space X our parameter is

equal to either indX or indX − 1. Whether the later is at all possible, is an open

probem.

1. Introduction

Our terminology and notation is standard and follows [1]. Let X be a non-empty

set and F be a family of functions from X into R. If m is a nonnegative integer, then

let

mF = {f1 + · · ·+ fm : f1, . . . , fm ∈ F} ,

and let RX be the family consisting of all functions from X into R. Let DIMF X be

defined by

DIMF X = min
({

m ∈ Z : m ≥ 0 and (m + 1)F = RX
}
∪ {∞}

)
.
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Given a metric space X, a function f : X → R is a connectivity function (Darboux

function) if for every connected subset C of X the graph of the restriction f |C is a

connected subset of X×R (the image f [C] is connected in R). The following theorem

holds.

Theorem 1. If n is a positive integer and F is the family of connectivity functions

or the family of Darboux functions on Rn, then

DIMF Rn = n.

The proof of Theorem 1 is given by Ciesielski and Wojciechowski [4], except for the

case n = 1 that has been proved by Ciesielski and Rec law [2], and the inequality ≥
in the case of Darboux functions that has been demonstrated by Jordan [11, 12].

Theorem 1 motivates the notation DIMF X and shows that (with suitably chosen

family F) DIMF X can be considered as a sort of dimension of X (dimension relative

to F). In this paper we are going to show that the dimension relative to the family

of connectivity (Darboux) functions coincides with the inductive dimension ind on

every σ-compact metric space.

Let X be a separable metric space. Given A, B ⊆ X, the boundary of A ∩ B in

A will be denoted by bdA B. The inductive dimension ind A of a subset A ⊆ X is

defined inductively as follows. (See for example Engelking [5].)

(i) ind A = −1 if and only if A = ∅.

(ii) ind A ≤ m if for any p ∈ A and any open neighborhood W of p there exists

an open neighborhood U ⊆ W of p such that ind bdA U ≤ m− 1.

(iii) ind A = m if ind A ≤ m and it is not true that ind A ≤ m− 1.

Let C be the family of connectivity functions on X and D be the family of Darboux

functions on X. Our main result is the following theorem.

Theorem 2. If X is a σ-compact metric space, then

DIMC X = DIMD X = ind X.

Clearly

(1) DIMF X ≥ DIMG X for any F ⊆ G ⊆ RX
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Since C ⊆ D for any space X, we have DIMC X ≥ DIMD X, and so Theorem 2 follows

immediately from the following two results.

Theorem 3. If X is a separable metric space, then

DIMC X ≤ ind X.

Theorem 4. If X is a σ-compact metric space, then

DIMD X ≥ ind X.

A natural question is whether Theorem 4 can be extended to all separable metric

spaces or perhaps all that are complete. The answer is ‘no’ in both cases since

Mazurkiewicz [13] has shown that for each positive integer n there exists a complete

separable metric space X of inductive dimension n which is totally disconnected, that

is, single points are its only connected subspaces. (See also [10, Example II 16].) Since

for every totally disconnected space X we have

DIMC X = DIMD X = 0

(any function f : X → R is a connectivity and Darboux), we get

(2) DIMC X = DIMD X = 0 < n = ind X,

for every space of Mazurkiewicz of inductive dimension n > 0. It might be interesting

to answer the question whether the equation

(3) DIMC X = DIMD X

holds for all separable metric spaces X or at least all that are complete.

To prove Theorem 3 we will prove the following result which seems to be of indepen-

dent interest. We say that a separable metric space X is m-dimensional if ind X = m.

If Y is a metric space such that for every m-dimensional separable metric space X

there is a subspace of Y homeomorphic to X, then we say that Y is universal for

m-dimensional separable metric spaces.
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Theorem 5. If G is a dense Gδ set in R2k+1, then there are homeomorphisms

hj : R2k+1 → R2k+1, for j = 1, . . . , k, such that G ∪
⋃k

j=1 hj[G] is universal for

k-dimensional separable metric spaces.

Theorem 5 will be used to prove the following fact, that easily implies Theorem 3.

Proposition 6. For every positive integer k there exists a dense Gδ-set H in R2k+1

such that

(i) H is universal for k-dimensional separable metric spaces, and

(ii) for every ϕ : R2k+1 → R there are connectivity functions g0, . . . , gk : R2k+1 → R
such that (g0 + · · ·+ gk)(x) = ϕ(x) for every x ∈ H.

The proof of Theorem 5 will be based on Lemma 9 and Theorem 11, that are proved

in [4], and on Theorem 7, which is proved by Hayashi [9]. Theorem 5 is proved in

Section 2, the proof of Theorem 3 is presented in Section 3, while Theorem 4 is proved

in Section 4. The authors would like to thank Roman Pol for directing their attention

to the results of Hayashi [9] and Mazurkiewicz [13].

2. A k-dimensional universal set

In this section we are going to present a proof of Theorem 5.

Let a countable dense grid in Rn be a product B1×· · ·×Bn ⊆ Rn where B1, . . . , Bn

are countable dense subsets of R. If B = B1 × · · · × Bn is a countable dense grid in

Rn and i ≤ n, then let B(i) consist of those points in Rn that differ from a point in

B at at most i coordinates, that is,

B(i) = {〈x1, . . . , xn〉 ∈ Rn : |{j : xj /∈ Bj}| ≤ i} .

Note that in particular B(0) = B. Let Q be the set of rational numbers and I be the

closed interval [0, 1].

Our proof of Theorem 5 uses the following result of Hayashi [9]. (See also [7] for

similar results.)

Theorem 7. If G is a Gδ-set in I2k+1 containing
(
Q2k+1

)(k) ∩ I2k+1, then G is

universal for k-dimensional separable metric spaces.
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First notice that Theorem 7 implies immediately the following corollary.

Corollary 8. If B is a countable dense grid in R2k+1 and G is a Gδ-set in R2k+1

containing B(k), then G is universal for k-dimensional separable metric spaces.

Proof. Let B = B1×· · ·×B2k+1. Let g1, . . . , g2k+1 : R → R be increasing homeomor-

phisms such that Bi = gi[Q] and

g = g1 × · · · × g2k+1 : R2k+1 → R2k+1.

Then (
Q2k+1

)(k) ∩ I2k+1 ⊆ g−1[G] ∩ I2k+1.

Let X be a k-dimensional separable metric space. It follows from Theorem 7 that

there is a subspace Y of g−1[G] ∩ I2k+1 that is homeomorphic to X. Then g[Y ] is a

subspace of G that is homeomorphic to X.

To prove Theorem 5 we will also need a result proved implicitly in [4]. We will first

introduce the notation used there. If 〈Bi : i ∈ n〉 is a family of subsets of R and f is

a function from {1, . . . , n} into {0, 1}, then let

n∏
i=1

(Bi ∨f R) = B′
1 × · · · ×B′

n,

where

B′
i =

{
Bi if f(i) = 0,

R if f(i) = 1.

The following lemma is stated implicitly and proved in [4] (the inductive condition

(8) in the proof of Proposition 2.4, page 419).

Lemma 9. If G is a dense Gδ-set in Rn, then there are countable dense sets Bi ⊆ R
and homeomorphisms hi : Rn → Rn, for i = 1, . . . , n, such that

n∏
i=1

(Bi ∨f R) ⊆ G ∪
k⋃

i=1

hi[G]

for every k ∈ {0, 1, . . . , n} and every function f : {1, . . . , n} → {0, 1} such that

|f−1(1)| = k.

Lemma 9 implies immediately the following result.



6 KRZYSZTOF CIESIELSKI AND JERZY WOJCIECHOWSKI

Theorem 10. If G is a dense Gδ-set in Rn and k ≤ n, then there is a countable

dense grid B in Rn and homeomorphisms h1, . . . , hk : Rn → Rn such that

B(k) ⊆ G ∪
k⋃

j=1

hj[G].

Proof. Let G be a dense Gδ-set in Rn. For i = 1, . . . , n, let Bi ⊆ R be countable

dense sets and hi : Rn → Rn be homeomorphisms as in Lemma 9. Then

B = B1 × · · · ×Bn

is a countable dense grid in Rn and

B(k) =
⋃ {

n∏
i=1

(Bi ∨f R) :
∣∣f−1(1)

∣∣ = k

}
.

It follows from Lemma 9 that

B(k) ⊆ G ∪
k⋃

j=1

hj[G].

Proof of Theorem 5. Let G be a dense Gδ-set in R2k+1. By Theorem 10, there is

a countable dense grid B in R2k+1 and homeomorphisms h1, . . . , hk : R2k+1 → R2k+1

such that B(k) ⊆ G ∪
⋃k

j=1 hj[G]. By Corollary 8, G ∪
⋃k

j=1 hj[G] is universal for

k-dimensional separable metric spaces. �

3. Inductive dimension as the upper bound

Now we shall prove Theorem 3. Beside Theorem 5 we will need the following result.

(See [4, Proposition 2.3]).

Theorem 11. For every n > 1, there exists a function f : Rn → R and a dense Gδ

subset G of Rn such that any function g : Rn → R with g(x) = f(x) for x /∈ G is a

connectivity function.
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Let us now introduce some notation. If f, g : Rn → R and A ⊆ Rn, then we will

write g ≡A f if and only if g(x) = f(x) for every x ∈ Rn \ A. Notice that if g ≡A f

and A ⊆ A′, then g ≡A′ f . Also g ≡∅ f if and only if g = f , and g ≡Rn f for any

f, g : Rn → R. The following two lemmas are easy observations.

Lemma 12. Let f, g : Rn → R and A ⊆ Rn. If h : Rn → Rn is a bijection, then

g ≡h[A] (f ◦ h−1) if and only if (g ◦ h) ≡A f .

Proof. Assume g ≡h[A] (f ◦ h−1). Then g(x) = f(h−1(x)) for every x ∈ Rn \ h[A]. If

y ∈ Rn \ A, then h(y) ∈ Rn \ h[A] so

(g ◦ h) (y) = g(h(y)) = f(h−1(h(y))) = f(y),

implying that (g ◦ h) ≡A f .

The opposite implication is proved similarly.

Lemma 13. Let g′0, . . . , g
′
k : Rn → R. If A ⊆ Rn, and {A0, . . . , Ak} is a partition of

A, then for any ϕ : A → R there are g0, . . . , gk : Rn → R such that

gi ≡Ai
g′i, i = 0, . . . , k,

and the restriction of g0 + · · ·+ gk to A is equal to ϕ.

Proof. Define gi : Rn → R by

gi(x) =

{
ϕ(x)−

∑
j 6=i g

′
j(x) if x ∈ Ai,

g′i(x) if x /∈ Ai.

Then ϕ(x) = g0(x) + · · ·+ gk(x) for every x ∈ A.

Proof of Proposition 6. Let n = 2k + 1. By Theorem 11 there exists a function

f : Rn → R and a dense Gδ-subset G of Rn such that any function g : Rn → R
with g ≡G f is a connectivity function. By Theorem 5, there are homeomorphisms

hi : Rn → Rn, for i = 1, . . . , k, such that the Gδ set H = G ∪
⋃k

j=1 hj[G] is universal

for k-dimensional separable metric spaces. Let {A0, . . . , Ak} be the partition of H

defined inductively by

A0 = G, Aj = hj[G] \ (A0 ∪ · · · ∪ Aj−1) , j = 1, . . . , k.
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Let ϕ : Rn → R be an arbitrary function, and h0 : Rn → Rn be the identity

function. It follows from Lemma 13, that there are functions g0, . . . , gk : Rn → R
such that

gi ≡Ai

(
f ◦ h−1

i

)
, i = 0, . . . , k,

and the restriction of g0 + · · · + gk to H is equal to ϕ � H. It remains to prove that

gi’s are connectivity functions.

Let i ∈ {0, . . . , k}. Since Ai ⊆ hi[G], we have

gi ≡hi[G]

(
f ◦ h−1

i

)
,

and so Lemma 12 implies that

gi ◦ hi ≡G f.

Thus gi ◦ hi (and hence gi) is a connectivity function on Rn. �

Proof of Theorem 3. Let X be a k-dimensional separable metric space. If k = 0,

then any function X → R is a connectivity function, so we can assume that k ≥ 1. Let

H be a Gδ-set from Proposition 6. Then there is a subspace A of H homeomorphic

to X. Take an arbitrary ϕ0 : A → R. We have to show that ϕ0 is a sum of k + 1

connectivity functions on A.

Let ϕ : Rn → R be an arbitrary extension of ϕ0 and let g0, . . . , gk : Rn → R be

connectivity functions such that (g0 + · · · + gk)(x) = ϕ(x) for all x ∈ H. Then the

functions gi � A are connectivity and (g0 � A) + · · ·+ (gk � A) = ϕ0. �

4. Inductive dimension as the lower bound

In this section we are going to prove Theorem 4. In the proof that follows we

will need some additional definitions and results from dimension theory. (See for

example [10]).

Lemma 14. If X is a separable metric space and

X =
∞⋃
i=1

Xi,

where Xi is closed in X and ind Xi ≤ m, for i = 1, 2, . . . , then ind X ≤ m.
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Given X ⊆ Rn and an integer m ≥ 1, we say that X is an m-dimensional Cantor-

manifold if X is compact, ind X = m, and for every Y ⊆ X with ind Y ≤ m− 2, the

set X \ Y is connected.

The following lemma is proved in [10].

Lemma 15. For any compact Y ⊆ Rn with ind Y ≥ m there exists an m-dimensional

Cantor manifold X ⊆ Y .

We will also need the following result of Francis Jordan. (See [11, Lemma 3.3.8] or

[12, Lemma 3.8].) A perfect set is a non-empty closed set without isolated points.

Lemma 16. Let n > 1 and M be an n-dimensional Cantor manifold. If n ≥ k ≥ 1

and f ∈ kD, where D is the family of Darboux functions M → R, then there is a

connected perfect set P ⊆ M such that the restriction of f to P is Darboux.

A Bernstein set, is a set B ⊆ Rn such that B ∩ P 6= ∅ and B \ P 6= ∅ for every

perfect set P ⊆ Rn. Note that the characteristic function of a Bernstein set is not

Darboux on any perfect set.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose, by way of contradiction, that there exists a

k-dimensional σ-compact metric space X such that

DIMD X < ind X = k,

where D is the family of Darboux functions on X. We can assume that X ⊆ Rm for

some positive integer m. Then

X =
∞⋃
i=1

Xi,

with Xi compact, i = 1, 2 . . . and it follows from Lemma 14 that there is a positive

integer j with ind Xj ≥ k. By Lemma 15 there is a k-dimensional Cantor manifold

M ⊆ Xj.

Let B ∈ Rm be a Bernstein set and f : X → R be the characteristic function of

B∩X. Since DIMD X < k, we have f ∈ kD. Hence the restriction of f to M is in kD′

where D′ is the family of Darboux functions on M . It follows from Lemma 16 that

the restriction of f to some perfect set in Rm is Darboux. Since no restriction of the
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characteristic function of a Bernstein set to a connected perfect set can be Darboux,

we got a contradiction proving that DIMD X ≥ ind X. �

5. Dimension relative to other classes of Darboux-like functions.

In this section we will consider how our definition of dimension works with some

other classes of Darboux-like functions. (See [6] or [3].) Given a topological space X,

a function f : X → R is:

• almost continuous (in sense of Stallings) if each open subset of X × R con-

taining the graph of f contains also the graph of a continuous function from

X to R;

• extendable provided there exists a connectivity function F : X × [0, 1] → R
such that f(x) = F (x, 0) for every x ∈ X;

• peripherally continuous if for every x ∈ X and for all pairs of open sets U

and V containing x and f(x), respectively, there exists an open subset W of

U such that x ∈ W and f [bd(W )] ⊂ V .

The classes that are defined above are denoted by AC(X), Ext(X), and PC(X),

respectively. The following inclusion relations hold when X = Rn. (See [6] or [3].)

Ext(R) - AC(R) - C(R) - D(R) - PC(R)

and, for n > 1,

Ext(Rn) = C(Rn) = PC(Rn) - AC(Rn) ∩ D(Rn)
��* AC(Rn)

D(Rn)
HHj

where - denotes a strict inclusion.

Natkaniec [14, prop. 1.7.1] proved that every function f : Rn → R is a sum of two

almost continuous functions. This implies that

(4) DIMAC Rn = 1 for every n = 1, 2, 3, . . .
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making the class AC useless in our definition of dimension. The situation is different

for the remaining two classes.

Let X be a separable metric space. Since

Ext(R2k+1) = C(R2k+1) = PC(R2k+1)

for k ≥ 1, and since any function X → R is both peripherally continuous and extend-

able when ind X = 0, the inequalities

(5) DIMExt X ≤ ind X and DIMPC X ≤ ind X

follow from Proposition 6 in precisely the same way as Theorem 3 does. Moreover, it

is immediate to see that the analog of Theorem 2 for the class Ext is also true.

Theorem 17. If X is a σ-compact metric space, then

DIMExt X = ind X.

Proof. The inequality DIMExt X ≤ ind X is a restatement of (5). The other inequality

holds since for every σ-compact metric space X we have DIMC X = ind X and the

inequality DIMExt X ≥ DIMC X is implied by Ext(X) ⊆ C(X) and (1).

In the case of the class PC the situation is quite different. Unlike for the classes

C, D, and Ext, (see (2) which holds also for DIMExt X) the dimension relative to the

class PC is very close to the inductive dimension for every separable metric space.

However, it is not clear whether we have equality even for all compact metric spaces.

Theorem 18. If X is a separable metric space, then

(6) ind X − 1 ≤ DIMPC X ≤ ind X.

Proof. Let k = ind X. The inequality DIMPC X ≤ k is a restatement of (5). To prove

the other inequality we will show that

(∗) for every g1, . . . , gk−1 ∈ PC(X) and ε > 0 there exist a closed subset Y of X

of cardinality continuum such that

|gi(x)− gi(y)| < ε

for every x, y ∈ Y and i = 1, 2, . . . , k − 1.
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We prove (∗) by induction on k ≥ 1. If k = 1, take Y = X. The cardinality of X

cannot be smaller than continuum since for some x ∈ X and r > 0 the boundaries

of the open balls in X with center x and radius smaller than r are non-empty and

pairwise disjoint.

Assume that k ≥ 2. Let g1, . . . , gk−1 ∈ PC(X) and ε > 0. There is p ∈ X and

an open neighborhood W of p such that ind bd(U) = k − 1 for any open U with

p ∈ U ⊆ W . Since g1 is peripherally continuous, there is an open neighborhood U

of p such that U ⊆ W and the image g1[bd(U)] is contained in the open interval

(g1(p)− ε/2, g1(p) + ε/2). Since ind bd(U) = k − 1, it follows from the inductive

hypothesis that there is a closed subset Y of bd(U) of cardinality continuum such

that

(7) |gi(x)− gi(y)| < ε

for every x, y ∈ Y and i = 2, 3, . . . , k − 1. Then Y is closed in X and it follows from

the choice of U , that (7) holds also for i = 1 completing the proof of (∗).

Now we show that (∗) implies that

DIMPC X ≥ k − 1.

Let Z be a subset of X such that A ∩ Z 6= ∅ and A \ Z 6= ∅ for every closed A ⊆ X

of cardinality continuum. The existence of such Z can be proved by listing all closed

subsets of X of cardinality continuum in a sequence 〈Aα〉α<c of length continuum,

defining two sequences 〈aα〉α<c and 〈bα〉α<c of points in X by transfinite induction so

that

aα ∈ Aα \ ({aβ : β < α} ∪ {bβ : β < α}) ,

and

bα ∈ Aα \ ({aβ : β ≤ α} ∪ {bβ : β < α}) ,

for every α < c, and putting

Z = {aα : α < c} .
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Let f : X → R be the characteristic function of the set Z. The proof will be

complete when we show that

f /∈ (k − 1) PC(X).

Suppose, by way of contradiction, that

f = g1 + · · ·+ gk−1

for some g1, . . . , gk−1 ∈ PC(X). By (∗) there is a closed subset Y of X of cardinality

continuum such that

|gi(x)− gi(y)| < 1

k − 1

for every x, y ∈ Y and i = 1, 2, . . . , k − 1. Therefore

|f(x)− f(y)| < 1

for every x, y ∈ Y . Since Y ∩Z and Y \Z are both non-empty, there are x, y ∈ Y with

f(x) = 0 and f(y) = 1 and we get a contradiction. Thus the proof is complete.

Corollary 19. If X is a space of Mazurkiewicz of dimension k ≥ 2, then the class

PC(X) is not equal to either C(X), D(X), or Ext(X).

Proof. If X is a space of Mazurkiewicz of dimension k ≥ 2, then

DIMC X = DIMD X = DIMExt X = 0 < k − 1 ≤ DIMPC X.

Problem 1. Does there exist a separable (complete separable, σ-compact, compact)

metric space X such that

(8) DIMPC X = ind X − 1?

It is clear that if X satisfies (8), then X cannot be a finite dimensional manifold

since DIMPC Rn = ind Rn. Moreover, such a space must be at least two-dimensional.

Indeed, if ind X = 0, then X 6= ∅ so DIMF X ≥ 0 for every F ⊆ RX . If ind X = 1,

then there is an x ∈ X and an open neighborhood W of x such that bd U 6= ∅ for
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every open U with x ∈ U ⊆ W . If f : X → R is the characteristic function of the

singleton {x}, then f is not peripherally continuous implying that DIMPC X ≥ 1.
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