A DETERMINANT PROPERTY OF CATALAN NUMBERS

M. E. MAYS AND JERZY WOJCIECHOWSKI

Abstract

Catalan numbers arise in a family of persymmetric arrays with determinant 1. The demonstration involves a counting result for disjoint path systems in acyclic directed graphs.

1. Introduction

The Catalan number c_{n} is the number of all sequences $\left\langle s_{1}, s_{2}, \ldots, s_{2 n}\right\rangle$ such that $s_{i} \in$ $\{-1,1\}, \sum_{j=1}^{i} s_{j} \geq 0$ for every $i \in\{1,2, \ldots, 2 n-1\}$, and $\sum_{j=1}^{2 n} s_{j}=0$, in particular c_{0} is the number of empty sequences so $c_{0}=1$. A persymmetric matrix is a square matrix with constant skew diagonals. In older literature, such matrices were called orthosymmetric.

Let k, t be fixed integers with $k \geq 1$ and $t \geq 0$. Let $M_{k}^{t}=\left(m_{i j}\right)_{i, j=1}^{k}$ be the persymmetric matrix with the sequence of consecutive Catalan numbers starting at c_{t} being the first row of M_{k}^{t}. Explicitly, we have then $m_{i j}=c_{t+i+j-2}$, and

$$
M_{k}^{t}=\left[\begin{array}{cccc}
c_{t} & c_{t+1} & \cdots & c_{t+k-1} \\
c_{t+1} & c_{t+2} & \ldots & c_{t+k} \\
\vdots & \vdots & \ddots & \vdots \\
c_{t+k-1} & c_{t+k} & \cdots & c_{t+2 k-2}
\end{array}\right]
$$

Consider the infinite directed graph G with $\mathbb{Z} \times \mathbb{Z}$ as the set of vertices and directed arcs from (i, j) to $(i+1, j)$ and to $(i, j+1)$, for every $i, j \in \mathbb{Z}$. Let d_{i} denote the vertex (i, i) in G, $i \in \mathbb{Z}$. Note that the number of directed paths in G from d_{i} to d_{j}, with $j \geq i$, is equal to the Catalan number c_{j-i}. Let Q_{k}^{t} be the family consisting of all sets of k pairwise vertex disjoint directed paths $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$ in G such that γ_{i} joins d_{-i} with $d_{t+i}, i=0,1, \ldots, k-1$.

We are going to prove the following result.
Theorem 1. The determinant $\operatorname{det} M_{k}^{t}$ is equal to the cardinality $\left|Q_{k}^{t}\right|$.
Key words and phrases. Catalan numbers, persymmetric arrays, paths in acyclic directed graphs.
The work of the second author was partially supported by NSF Cooperative Research Grant INT-9600548.

In particular, it is easy to see that $\left|Q_{k}^{0}\right|=\left|Q_{k}^{1}\right|=1$, so we have the following corollary.
Corollary 2. The determinants $\operatorname{det} M_{k}^{0}$ and $\operatorname{det} M_{k}^{1}$ are both equal to 1.
It is also easy to see that

$$
\operatorname{det} M_{k}^{2}=\left|Q_{k}^{2}\right|=k+1
$$

and (see section 4)

$$
\operatorname{det} M_{k}^{3}=\left|Q_{k}^{3}\right|=\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

Our proof of Theorem 11 will be based on a result of Gronau et al. 11 on disjoint path systems in acyclic directed graphs. For the convenience of the reader we will include the proof of that result. For $t=1$, our main result also follows from work of Shapiro [2], who noted an LU factorization of M_{k}^{1} using an array he called a Catalan triangle.

2. Disjoint Path systems

Let $G=(V, E)$ be an acyclic directed graph, where V is a finite set of vertices and E is a set of ordered pairs of vertices (directed edges of G). If $e=(v, w) \in E$, then v is the tail of e and w is the head of e. The assumption that G is acyclic means that there are no directed cycles in G, that is, there does not exist a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ with $\left(v_{i}, v_{i+1 \bmod k}\right) \in E$ for every $i \in\{0,1, \ldots, k\}$, in particular, $(v, v) \notin E$ for every $v \in V$. A source (sink) in G is a vertex of indegree 0 (outdegree 0), that is, a vertex that is not a head (tail) of any edge. A path in G is a sequence $v_{0}, v_{1}, \ldots, v_{k}$ of distinct vertices such that $\left(v_{i}, v_{i+1}\right) \in E$ for every $i \in\{0,1, \ldots, k-1\}$. We say that such a path leads from v_{0} to v_{k}.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a certain fixed set of sources, and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a fixed set of sinks in G. A path system in (G, A, B) is a set $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of paths in G such that there exist a permutation $\sigma=\sigma(W) \in S_{n}$ so that w_{i} leads from a_{i} to $b_{\sigma(i)}$ for every $i \in\{1,2, \ldots, n\}$. We say that W is disjoint if for every i and $j(1 \leq i<j \leq n)$ the paths w_{i} and w_{j} have disjoint sets of vertices. Let \mathcal{W} be the set of all (not necessarily disjoint) path systems in (G, A, B).

Theorem 3. ([1]) Let $p_{i j}$ be the number of paths leading from a_{i} to b_{j} in G, let p^{+}be the number of disjoint path systems W in (G, A, B) for which $\sigma(W)$ is an even permutation, and let p^{-}be the number of such systems with for which $\sigma(W)$ is odd. Then $\operatorname{det}\left(p_{i j}\right)=p^{+}-p^{-}$.

Proof. If w is a path in G, then let $E(w)$ be the set of edges used by w. If $W=$ $\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathcal{W}$, then let

$$
E(W)=\bigcup_{i=1}^{n} E\left(w_{i}\right)
$$

Given a set of edges $D \subseteq E$ and a permutation $\tau \in S_{n}$, let

$$
P(D, \tau)=\{W \in \mathcal{W}: E(W)=D \text { and } \sigma(W)=\tau\}
$$

and $p(D, \tau)=|P(D, \tau)|$.
Since

$$
\bigcup_{D \subseteq E} P(D, \tau)=\{W \in \mathcal{W}: \sigma(W)=\tau\}
$$

we have

$$
\sum_{D \subseteq E} p(D, \tau)=\prod_{i=1}^{n} p_{i \tau(i)}
$$

and so

$$
\begin{aligned}
p & =\sum_{\tau \in S_{n}} \sum_{D \subseteq E} \operatorname{sgn}(\tau) p(D, \tau)=\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) \sum_{D \subseteq E} p(D, \tau) \\
& =\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) \prod_{i=1}^{n} p_{i \tau(i)}=\operatorname{det}\left(p_{i j}\right) .
\end{aligned}
$$

To complete the proof it remains to show that $p=p^{+}-p^{-}$.
Let \mathcal{D}_{1} be the set of all $D \subseteq E$ such that $D=E(W)$ for some disjoint path system $W \in \mathcal{W}$, let \mathcal{D}_{2} be the set of all $D \subseteq E$ such that $D=E(W)$ for some $W \in \mathcal{W}$ that is not disjoint, and let \mathcal{D}_{3} be the set of all $D \subseteq E$ such that $D \neq E(W)$ for any $W \in \mathcal{W}$. Then we have

$$
\begin{aligned}
p= & \sum_{\tau \in S_{n}} \sum_{D \subseteq E} \operatorname{sgn}(\tau) p(D, \tau)=\sum_{D \subseteq E} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau) \\
= & \sum_{D \in \mathcal{D}_{1}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau)+\sum_{D \in \mathcal{D}_{2}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau) \\
& +\sum_{D \in \mathcal{D}_{3}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau) .
\end{aligned}
$$

If $D=E(W) \in \mathcal{D}_{1}$, then W is the only path system in \mathcal{W} with $D=E(W)$, implying that

$$
\sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau)=\operatorname{sgn}(\sigma(W))
$$

Therefore

$$
\sum_{D \in \mathcal{D}_{1}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau)=p^{+}-p^{-}
$$

Since obviously

$$
\sum_{D \in \mathcal{D}_{3}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau)=0
$$

the proof of the theorem will be complete when we show that

$$
\begin{equation*}
\sum_{D \in \mathcal{D}_{2}} \sum_{\tau \in S_{n}} \operatorname{sgn}(\tau) p(D, \tau)=0 \tag{*}
\end{equation*}
$$

Claim: If $D \in \mathcal{D}_{2}$ and

$$
\mathcal{W}_{D}=\bigcup_{\tau \in S_{n}} P(D, \tau)=\{W \in \mathcal{W}: E(W)=D\}
$$

then there is a bijection $f: \mathcal{W}_{D} \rightarrow \mathcal{W}_{D}$ such that

$$
\operatorname{sgn}(\sigma(f(W)))=-\operatorname{sgn}(\sigma(W))
$$

for every $W \in \mathcal{W}_{D}$.
It is clear that the claim implies (*). It remains to prove the claim.
Let $D \in \mathcal{D}_{2}$. If $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \in \mathcal{W}_{D}$, then let $i \in\{1,2, \ldots, n\}$ be the smallest integer with w_{i} having a common vertex with another path of W, let v be the first vertex along w_{i} that is also a vertex of another path of W, and let $j \in\{1,2, \ldots, n\} \backslash\{i\}$ be the smallest integer such that v is a vertex of w_{j}. Let $f(W)=\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}\right\}$ be a path system in \mathcal{W}_{D} such that $w_{k}^{\prime}=w_{k}$ for $k \notin\{i, j\}$ and $w_{i}^{\prime}, w_{j}^{\prime}$ are obtained from w_{i} and w_{j} respectively, by exchanging the segments leading from v to $b_{\tau(i)}$ and from v to $b_{\tau(j)}$, where $\tau=\sigma(W)$. Clearly \dagger is satisfied and since $f \circ f$ is the identity map on \mathcal{W}_{D}, it follows that f is a bijection. Hence the proof of the claim, and thus of the theorem, is complete.

3. Proof of the main result

In this section we are going to prove Theorem1. Let k, t be positive integers with $k \geq 1$, $t \geq 0$, and G_{k}^{t} be the subgraph of the directed acyclic graph G (see section 1 that is induced by the following set of vertices:

$$
V_{k}^{t}=\{(i, j) \in \mathbb{Z} \times \mathbb{Z}:-k+1 \leq i \leq t+k-1 \text { and } i \leq j \leq t+k-1\}
$$

For example, the graph G_{3}^{2} looks as follows

Note that for every $i, j \in \mathbb{Z}$ with

$$
-k+1 \leq i \leq j \leq t+k-1
$$

the number of directed paths in G_{k}^{t} from d_{i} to d_{j} is the same as in G, and so it is equal to the Catalan number c_{j-i}.

Let $A_{k}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $B_{k}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be k-element sets that are disjoint from V_{k}^{t} and from each other. Let H_{k}^{t} be the directed acyclic graph obtained from G_{k}^{t} by adding $A_{k} \cup B_{k}$ to the set of vertices and adding new directed arcs from a_{i} to d_{-i+1} and from d_{t+i-1} to $b_{i}, i=1,2, \ldots, k$. Then, for every $i, j=1,2, \ldots, k$, the number of directed paths in H_{k}^{t} from a_{i} to b_{j} is equal to the Catalan number c_{r} with

$$
r=(t+j-1)-(-i+1)=t+i+j-2,
$$

which is $m_{i j}$. Consider disjoint path systems in $\left(H_{k}^{t}, A_{k}, B_{k}\right)$. It is easy to see that for each such system W the permutation $\sigma(W)$ is the identity permutation. See the following picture for an example of such a system in H_{3}^{2} (the vertices a_{i} and b_{j} are not pictured).

Therefore, we have $p^{+}=\left|Q_{k}^{t}\right|$ and $p^{-}=0$. It follows from Theorem 3 that

$$
\operatorname{det} M_{k}^{t}=p^{+}-p^{-}=\left|Q_{k}^{t}\right| .
$$

Thus the proof of Theorem 1 is complete.

4. Applications

Corollary 4. Consider the infinite array $A=\left\{a_{i j}\right\}$ in which the rows are interpreted as sequences satisfying the following properties:
(1) $a_{i j}=a_{i-1 j}$ for $j \leq 2 i-2$
(2) If $j>2 i-2, a_{i j}$ satisfies

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{i j-2 i+2} & \ldots & a_{i j-i} & a_{i j-i+1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{i j-i+2} & \ldots & a_{i j-2} & a_{i j-1} \\
a_{i j-i+1} & \ldots & a_{i j-1} & a_{i j}
\end{array}\right]=1
$$

then $a_{11}, a_{12}, a_{23}, a_{24}, a_{35}, a_{36}, \ldots$ is the sequence of Catalan numbers.
The array defined by these properties is

$$
N=\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 2 & 5 & 13 & 34 & 89 & \ldots \\
1 & 1 & 2 & 5 & 14 & 42 & 99 & \ldots \\
1 & 1 & 2 & 5 & 14 & 42 & 132 & \ldots \\
\vdots & \ddots
\end{array}\right]
$$

This array is not persymmetric itself, of course, but $i \times i$ persymmetric arrays built from any $2 i-1$ successive elements of the i th row have determinant 1 . Successive rows of N may be interpreted as sequences that converge to the sequence of Catalan numbers, in the sense that row i matches the Catalan sequence for the first $2 i$ terms. The 2×2 determinants that determine the second row make it the sequence of every other Fibonacci number.

Corollary 5. In the infinite persymmetric array whose first row is the Catalan sequence

$$
M=\left[\begin{array}{cccccc}
1 & 1 & 2 & 5 & 14 & \ldots \\
1 & 2 & 5 & 14 & 42 & \ldots \\
2 & 5 & 14 & 42 & 132 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

any finite square submatrix has positive determinant. Furthermore, the Catalan sequence is the smallest sequence with this property, in the sense that among all sequences of integers with this property it is lexicographically least.

Proof. Any square $k \times k$ submatrix of M is equal to the matrix M_{k}^{t} for some $t \geq 0$. It follows from Theorem 1 that $\operatorname{det} M_{k}^{t}>0$.

To conclude the proof it remains to show that among all sequences of integers with the stated property the Catalan sequence is lexicographically least. Suppose that $c_{0}^{\prime}, c_{1}^{\prime}, \ldots$ has the stated property and is not the Catalan sequence. Let r be the smallest integer such that $c_{r} \neq c_{r}^{\prime}$. We need to show that $c_{r}<c_{r}^{\prime}$. Obviously $c_{0}^{\prime}, c_{1}^{\prime} \geq 1$ so we can assume that $r \geq 2$. There are integers k, t with $k \geq 2$ and $t \in\{0,1\}$ such that $r=t+2 k-2$. Expanding the determinant with respect to the last row we get

$$
\begin{aligned}
0 & <\operatorname{det}\left[\begin{array}{cccc}
c_{t}^{\prime} & c_{t+1}^{\prime} & \cdots & c_{t+k-1}^{\prime} \\
c_{t+1}^{\prime} & c_{t+2}^{\prime} & \cdots & c_{t+k}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
c_{t+k-1}^{\prime} & c_{t+k}^{\prime} & \cdots & c_{t+2 k-2}^{\prime}
\end{array}\right] \\
& =\operatorname{det} M_{k}^{t}+\left(c_{2 k-1}^{\prime}-c_{2 k-1}\right) \operatorname{det} M_{k-1}^{t} \\
& =1+\left(c_{2 k-1}^{\prime}-c_{2 k-1}\right)
\end{aligned}
$$

since $\operatorname{det} M_{k}^{t}=\operatorname{det} M_{k-1}^{t}=1$ by Corollary 2. Thus $c_{2 k-1}<c_{2 k-1}^{\prime}$, completing the proof.
The corollaries provide novel characterizations of the Catalan sequence, somewhat removed from the enumerative settings in which the sequence usually arises. In particular, Corollary 4 generates the Catalan sequence two terms at a time, as a limiting sequence of a family of sequences, each given via linear recurrences of slow growing order. Corollary 5 specifies a determinant property that many sequences may possess, but for which the Catalan sequence is least in a natural order.

Finally, let us prove the following easy observation mentioned in section 1.
Proposition 6. For every positive integer k we have

$$
\operatorname{det} M_{k}^{3}=\left|Q_{k}^{3}\right|=\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6} .
$$

Proof. To see that $\left|Q_{k}^{3}\right|=\sum_{i=1}^{k+1} i^{2}$, partition Q_{k}^{3} into $k+1$ sets $R_{0}, R_{1}, \ldots, R_{k}$ such that R_{i} consists of those sets of paths $\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}\right\} \in Q_{k}^{3}$, where γ_{i} joins d_{-i} with d_{t+i}, that satisfy the extra condition that γ_{j} goes through $(-j, t+j)$ for $j=i, i+1, \ldots, k-1$ and through $(-j+1, t+j-1)$ for $j=0,1, \ldots, i-1$. For example, if $k=3$, then R_{2} consists of the sets $\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}\right\} \in Q_{3}^{3}$ such that γ_{0} goes through $(1,2), \gamma_{1}$ goes through (0,3), and γ_{2}
goes through $(-2,5)$; see the following picture where double arrows denote arcs that have to be taken and single arrows denote possible arcs.

It is easy to see that $\left|R_{i}\right|=(i+1)^{2}$. For example, in the picture above there are three possibilities for the paths γ_{0} and γ_{1} to reach vertices $(1,2)$ and $(0,3)$ respectively, and three possibilities for the remaining parts of the paths, implying that $\left|R_{2}\right|=3^{2}$. Thus the proof is complete.

Acknowledgement: The authors would like to thank the anonymous referee for helpful suggestions of how to improve the presentation.

References

[1] H.-D.O.F. Gronau, W. Just, W. Schade, P. Scheffler, J. Wojciechowski, Path systems in acyclic directed graphs, Zastosowania Matematyki (Applicationes Mathematicae) XIX. 3-4 (1987), 399411.
[2] L.W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), 83-90.

Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV 26506-6310

