REMARKS ON A GENERALIZATION OF RADON'S THEOREM

JERZY WOJCIECHOWSKI

Abstract

Let S^{n} be the n-dimensional sphere and K be the simplicial complex consisting of all faces of some $(n+1)$-dimensional simplex. We present an explicit construction of a function $g: S^{n} \rightarrow|K|$ such that for every $x \in S^{n}$ the supports of $g(x)$ and $g(-x)$ are disjoint. This construction provides a new proof of the following result of Bajmóczy and Bárány [1] that is a generalization of a theorem of Radon [4]: If $f:|K| \rightarrow \mathbb{R}^{n}$ is a continuous map, then there are two disjoint faces Δ_{1}, Δ_{2} of Δ such that $f\left(\Delta_{1}\right) \cap f\left(\Delta_{2}\right) \neq \emptyset$.

1. Introduction.

If $x_{0}, x_{1}, \ldots, x_{k}$ are points in \mathbb{R}^{m} such that $\left\{x_{1}-x_{0}, x_{2}-x_{0}, \ldots, x_{k}-x_{0}\right\}$ is a linearly independent set of k vectors in \mathbb{R}^{m}, then we say that these points are affinely independent. Let $0 \leq k \leq m$, and $x_{0}, x_{1}, \ldots, x_{k}$ be affinely independent points in \mathbb{R}^{m}. The (open) k-simplex $\Delta=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ is the following subset of \mathbb{R}^{m} :

$$
\begin{equation*}
\left\{x=\sum_{i=0}^{k} \mu_{i} x_{i}: \sum_{i=0}^{k} \mu_{i}=1, \mu_{i}>0 \text { for } i=0, \ldots, k\right\} . \tag{1}
\end{equation*}
$$

Since the points $x_{0}, x_{1}, \ldots, x_{k}$ are affinely independent, the reals $\mu_{i}, 0 \leq i \leq$ k, are uniquely determined by x and $x_{0}, x_{1}, \ldots, x_{k}$. We shall call the sum in (1) the barycentric representation of x with respect to $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$. The points x_{0}, \ldots, x_{k} are the vertices of Δ, and k is the dimension of Δ. A

[^0]simplex Δ_{1} is a face (proper face) of a simplex Δ_{2} if the vertex-set of Δ_{1} is a subset (proper subset) of the vertex-set of Δ_{2}.

A (geometric) simplicial complex K is a finite set of disjoint simplices such that every face of every simplex of K is also a simplex of K. The polyhedron $|K|$ of the simplicial complex K is the union of all its simplices; the complex K is then also called a simplicial decomposition of $|K|$.

If $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is the set of vertices of the simplicial complex K and $x \in|K|$, then there are unique reals $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{k} \mu_{i} x_{i}, \tag{2}
\end{equation*}
$$

where $\mu_{i} \geq 0$ for every $i=1,2, \ldots, k$,

$$
\sum_{i=1}^{k} \mu_{i}=1
$$

and the set $\left\{x_{i}: \mu_{i}>0\right\}$ is the vertex-set of a simplex Δ_{x} of K. We call the simplex Δ_{x} the support of x, and we say that the sum in (2) is the barycentric representation of x with respect to K, or just the barycentric representation of x if the complex is clear from the context.

The simplicial complex K^{\prime} is a subcomplex of the simplicial complex K if the set of simplices of K^{\prime} is a subset of the set of simplices of K, in particular the set of vertices of K^{\prime} is a subset of the set of vertices of K.

The well-known theorem of Radon [4] says that, for any $A \subset \mathbb{R}^{n}$ satisfying $|A| \geq n+2$, there are disjoint subsets B and C of A such that their convex hulls have nonempty intersection. Since, for any $A \subset \mathbb{R}^{n}$ satisfying $|A|=n+2$ the convex hull of A is the image of the closure of an ($n+1$)-dimensional simplex under a linear map, Radon's theorem is an immediate corollary to the following theorem.

Theorem 1. Let $\Delta \subset \mathbb{R}^{n+1}$ be an $(n+1)$-dimensional simplex and let K be the simplicial complex containing all faces of Δ. If $f:|K| \rightarrow \mathbb{R}^{n}$ is a linear map, then there are two disjoint faces Δ_{1}, Δ_{2} of Δ such that $f\left(\Delta_{1}\right) \cap f\left(\Delta_{2}\right) \neq$ \emptyset.

Thus the following theorem of Bajmóczy and Bárány [1] can be thought of as a generalization of Radon's theorem.

Theorem 2. Let Δ and K be as in Theorem 1. If $f:|K| \rightarrow \mathbb{R}^{n}$ is a continuous map, then there are two disjoint faces Δ_{1}, Δ_{2} of Δ such that $f\left(\Delta_{1}\right) \cap f\left(\Delta_{2}\right) \neq \emptyset$.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and Ulam [3] in their proof.

Theorem 3. For any continuous map $h: S^{n} \rightarrow \mathbb{R}^{n}$, there exists $x \in S^{n}$ with $h(x)=h(-x)$.

Theorem 2 follows immediately from Theorem 3 and the following theorem.

Theorem 4. Let Δ and K be as in Theorem 1. There exists a continuous map $g: S^{n} \rightarrow|K|$ such that for every $x \in S^{n}$ the supports of $g(x)$ and $g(-x)$ are disjoint.

In this brief note we are going to give a new very simple proof of Theorem 4. We present in it an explicit construction of the function g.

2. Proof of Theorem 4.

Assume that $\Delta=\left(x_{0}, \ldots, x_{n+1}\right)$. Let K_{1} be the simplicial complex with $\left\{x_{0}, \ldots, x_{n+1}\right\}$ as its set of vertices and all proper faces of Δ as its simplices. Let K_{2} be the barycentric subdivision of K_{1}. Let $\omega:\left|K_{2}\right| \rightarrow\left|K_{2}\right|$ be the free Z_{2}-action defined as follows. If $T \subset\left\{x_{0}, \ldots, x_{n+1}\right\}$ is the vertex-set of a simplex σ of K_{1} and c_{σ} is the barycentre of σ, then let

$$
\omega\left(c_{\sigma}\right)=c_{\sigma^{\prime}}
$$

where σ^{\prime} is the simplex of K_{1} whose vertex-set T^{\prime} is the complement of T, that is

$$
T^{\prime}=\left\{x_{0}, \ldots, x_{n+1}\right\} \backslash T
$$

Thus we have defined ω on the vertices of K_{2}. Let us extend ω linearly to $\left|K_{2}\right|$, that is for any $x \in\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right) \in K_{2}$ having the following barycentric
representation

$$
x=\sum_{i=1}^{r} \mu_{i} c_{\sigma_{i}}
$$

let

$$
\omega(x)=\sum_{i=1}^{r} \mu_{i} \omega\left(c_{\sigma_{i}}\right)
$$

Clearly, ω is well defined and there is a homeomorphism $f: S^{n} \rightarrow\left|K_{2}\right|$ which is equivariant with respect to the antipodal map on S^{n} and ω on $\left|K_{2}\right|$, that is such that for every $x \in S^{n}$ the following equality holds:

$$
f(-x)=\omega(f(x))
$$

Therefore, to prove our theorem, it is enough to show the existence of a continuous map $h:\left|K_{2}\right| \rightarrow|K|$ such that for every $x \in\left|K_{2}\right|$ the supports of $h(x)$ and $h(\omega(x))$ are disjoint.

Let K_{3} be the barycentric subdivision of K_{2}. We shall define h on the vertices of K_{3} first. Let d_{A} be the barycentre of the simplex $A=\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right)$ of K_{2}. Since A is a simplex of K_{2}, we can assume that σ_{i} is a proper face of σ_{i+1} for $i=1, \ldots, r-1$. Define

$$
h\left(d_{A}\right)=c_{\sigma_{1}}
$$

Now let us extend h linearly to $\left|K_{3}\right|=\left|K_{2}\right|$, that is for $x \in\left(d_{A_{1}}, \ldots, d_{A_{s}}\right) \in$ K_{3} with the barycentric representation

$$
x=\sum_{i=1}^{s} \mu_{i} d_{A_{i}}
$$

let

$$
h(x)=\sum_{i=1}^{s} \mu_{i} h\left(d_{A_{i}}\right) .
$$

Now we shall show that for every $x \in\left|K_{2}\right|$ the supports of $h(x)$ and $h(\omega(x))$ in K are disjoint. Note first that if d_{A} is the barycentre of a simplex $A=\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right)$, then

$$
\omega\left(d_{A}\right)=\omega\left(\frac{1}{r} \sum_{i=1}^{r} c_{\sigma_{i}}\right)=\frac{1}{r} \sum_{i=1}^{r} \omega\left(c_{\sigma_{i}}\right)=d_{B}
$$

where

$$
B=\left(\omega\left(c_{\sigma_{1}}\right), \ldots, \omega\left(c_{\sigma_{r}}\right)\right)
$$

For $x \in\left|K_{2}\right|$, let

$$
\left\{A_{1}, \ldots, A_{r}\right\}
$$

be the support of x in K_{3} and

$$
\left\{B_{1}, \ldots, B_{r}\right\}
$$

the support of $\omega(x)$ in K_{3}, where $B_{i}=\omega\left(A_{i}\right)$ for $i=1, \ldots, r$. Let

$$
\left\{\sigma_{i, 1}, \ldots, \sigma_{i, s_{i}}\right\}
$$

be the vertex-set of A_{i} for $i=1, \ldots, r$, where $\sigma_{i, j}$ is a proper face of $\sigma_{i, j+1}$ for $j=1, \ldots, s_{i}-1$. Now let

$$
\left\{\sigma_{i, 1}^{\prime}, \ldots, \sigma_{i, s_{i}}^{\prime}\right\}
$$

be the vertex-set of B_{i} for $i=1, \ldots, r$. Since the vertex-set of $\sigma_{i, j}^{\prime}$ is the complement of the vertex-set of $\sigma_{i, j}$, the simplex $\sigma_{i, j+1}^{\prime}$ is a proper face of $\sigma_{i, j}^{\prime}$, for all $i=1, \ldots, r$ and $j=1, \ldots, s_{i}-1$.

Since $h\left(A_{i}\right)=\sigma_{i, 1}$ for $i=1, \ldots, r$, the support of $h(x)$ in K_{2} is the set

$$
\left\{\sigma_{1,1}, \sigma_{2,1}, \ldots, \sigma_{r, 1}\right\}
$$

and since $h\left(B_{i}\right)=\sigma_{i, s_{i}}^{\prime}$ for $i=1, \ldots, r$, the support of $h(\omega(x))$ in K_{2} is the set

$$
\left\{\sigma_{1, s_{1}}^{\prime}, \sigma_{2, s_{2}}^{\prime}, \ldots, \sigma_{r, s_{r}}^{\prime}\right\} .
$$

We can assume that A_{i} is a proper face of A_{i+1} for $i=1, \ldots, r$. Then $\sigma_{i+1,1}$ is a (not necessarily proper) face of $\sigma_{i, 1}$ for $i=1, \ldots, r$, and thus the support of $h(x)$ in Δ^{n+1} is the vertex-set of $\sigma_{1,1}$. Since A_{i} is a proper face of A_{i+1}, the simplex B_{i} is a proper face of B_{i+1} for $i=1, \ldots, r$. Therefore, $\sigma_{i+1, s_{i+1}}^{\prime}$ is a face of $\sigma_{i, s_{i}}^{\prime}$ for $i=1, \ldots, r$, and thus the support of $h(\omega(x))$ in K is the vertex-set of $\sigma_{1, s_{1}}^{\prime}$. Now recall that the vertex-set of $\sigma_{1, s_{1}}^{\prime}$ is the complement of the vertex-set of $\sigma_{1, s_{1}}$. But the vertex-set of $\sigma_{1,1}$ is contained in the vertex-set of $\sigma_{1, s_{1}}$ so the supports of $h(x)$ and $h(\omega(x))$ in K are disjoint, and the theorem is proved.

References

[1] Bajmóczy, E. G., BÁRÁny, I., On a common generalization of Borsuk's and Radon's theorem, Acta Math. Acad. Sci. Hungar. (3-4) 34 (1979), 347-350.
[2] BÁrány, I., Shlosman, S. B., Szücs, A., On a topological generalization of a theorem of Tveberg, J. London Math. Soc. (2) 23 (1981), 158-164.
[3] Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20 (1933) 177-190.
[4] Grünbaum, B., Convex Polytopes, Interscience, London 1967.
[5] Wojciechowski, J., Long Induced Cycles in the Hypercube and Colourings of Graphs, Ph.D. thesis, Cambridge University, England (1990).

West Virginia University, Department of Mathematics, PO Box 6310, Morgantown, WV 26506-6310, USA

E-mail address: jerzy@math.wvu.edu

[^0]: This work is a part of the author's Ph.D. thesis 5 written at the University of Cambridge under the direction of Dr. Béla Bollobás. I would like to thank him for drawing my attention to the problem studied in this note and for his continued help and encouragement.

