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Abstract. Let Sn be the n-dimensional sphere and K be the simplicial

complex consisting of all faces of some (n + 1)-dimensional simplex. We

present an explicit construction of a function g : Sn → |K| such that

for every x ∈ Sn the supports of g(x) and g(−x) are disjoint. This

construction provides a new proof of the following result of Bajmóczy

and Bárány [1] that is a generalization of a theorem of Radon [4]: If

f : |K| → Rn is a continuous map, then there are two disjoint faces ∆1,

∆2 of ∆ such that f(∆1) ∩ f(∆2) 6= ∅.

1. Introduction.

If x0, x1, . . . , xk are points in Rm such that {x1−x0, x2−x0, . . . , xk−x0} is

a linearly independent set of k vectors in Rm, then we say that these points

are affinely independent. Let 0 ≤ k ≤ m, and x0, x1, . . . , xk be affinely

independent points in Rm. The (open) k-simplex ∆ = (x0, x1, . . . , xk) is the

following subset of Rm:

(1)

{
x =

k∑
i=0

µixi :
k∑

i=0

µi = 1, µi > 0 for i = 0, . . . , k

}
.

Since the points x0, x1, . . . , xk are affinely independent, the reals µi, 0 ≤ i ≤
k, are uniquely determined by x and x0, x1, . . . , xk. We shall call the sum

in (1) the barycentric representation of x with respect to (x0, x1, . . . , xk).

The points x0, . . . , xk are the vertices of ∆, and k is the dimension of ∆. A
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simplex ∆1 is a face (proper face) of a simplex ∆2 if the vertex-set of ∆1 is

a subset (proper subset) of the vertex-set of ∆2.

A (geometric) simplicial complex K is a finite set of disjoint simplices

such that every face of every simplex of K is also a simplex of K. The

polyhedron |K| of the simplicial complex K is the union of all its simplices;

the complex K is then also called a simplicial decomposition of |K|.
If {x1, x2, . . . , xk} is the set of vertices of the simplicial complex K and

x ∈ |K|, then there are unique reals µ1, µ2, . . . , µk such that

(2) x =
k∑

i=1

µixi,

where µi ≥ 0 for every i = 1, 2, . . . , k,

k∑
i=1

µi = 1,

and the set {xi : µi > 0} is the vertex-set of a simplex ∆x of K. We call

the simplex ∆x the support of x, and we say that the sum in (2) is the

barycentric representation of x with respect to K, or just the barycentric

representation of x if the complex is clear from the context.

The simplicial complex K ′ is a subcomplex of the simplicial complex K if

the set of simplices of K ′ is a subset of the set of simplices of K, in particular

the set of vertices of K ′ is a subset of the set of vertices of K.

The well-known theorem of Radon [4] says that, for any A ⊂Rn satisfying

|A| ≥ n + 2, there are disjoint subsets B and C of A such that their convex

hulls have nonempty intersection. Since, for any A ⊂Rn satisfying |A| = n+2

the convex hull of A is the image of the closure of an (n + 1)-dimensional

simplex under a linear map, Radon’s theorem is an immediate corollary to

the following theorem.

Theorem 1. Let ∆ ⊂Rn+1 be an (n + 1)-dimensional simplex and let K be

the simplicial complex containing all faces of ∆. If f : |K| →Rn is a linear

map, then there are two disjoint faces ∆1, ∆2 of ∆ such that f(∆1)∩f(∆2) 6=
∅.
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Thus the following theorem of Bajmóczy and Bárány [1] can be thought

of as a generalization of Radon’s theorem.

Theorem 2. Let ∆ and K be as in Theorem 1. If f : |K| →Rn is a

continuous map, then there are two disjoint faces ∆1, ∆2 of ∆ such that

f(∆1) ∩ f(∆2) 6= ∅.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and

Ulam [3] in their proof.

Theorem 3. For any continuous map h : Sn →Rn, there exists x ∈ Sn with

h(x) = h(−x).

Theorem 2 follows immediately from Theorem 3 and the following theo-

rem.

Theorem 4. Let ∆ and K be as in Theorem 1. There exists a continuous

map g : Sn → |K| such that for every x ∈ Sn the supports of g(x) and g(−x)

are disjoint.

In this brief note we are going to give a new very simple proof of Theorem

4. We present in it an explicit construction of the function g.

2. Proof of Theorem 4.

Assume that ∆ = (x0, . . . , xn+1). Let K1 be the simplicial complex with

{x0, . . . , xn+1} as its set of vertices and all proper faces of ∆ as its simplices.

Let K2 be the barycentric subdivision of K1. Let ω : |K2| → |K2| be the

free Z2-action defined as follows. If T ⊂ {x0, . . . , xn+1} is the vertex-set of

a simplex σ of K1 and cσ is the barycentre of σ, then let

ω(cσ) = cσ′ ,

where σ′ is the simplex of K1 whose vertex-set T ′ is the complement of T ,

that is

T ′ = {x0, . . . , xn+1} \ T.

Thus we have defined ω on the vertices of K2. Let us extend ω linearly to

|K2|, that is for any x ∈ (cσ1 , . . . , cσr) ∈ K2 having the following barycentric
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representation

x =
r∑

i=1

µicσi ,

let

ω(x) =
r∑

i=1

µiω(cσi).

Clearly, ω is well defined and there is a homeomorphism f : Sn → |K2|
which is equivariant with respect to the antipodal map on Sn and ω on

|K2|, that is such that for every x ∈ Sn the following equality holds:

f(−x) = ω(f(x)).

Therefore, to prove our theorem, it is enough to show the existence of a

continuous map h : |K2| → |K| such that for every x ∈ |K2| the supports of

h(x) and h(ω(x)) are disjoint.

Let K3 be the barycentric subdivision of K2. We shall define h on the ver-

tices of K3 first. Let dA be the barycentre of the simplex A = (cσ1 , . . . , cσr)

of K2. Since A is a simplex of K2, we can assume that σi is a proper face

of σi+1 for i = 1, . . . , r − 1. Define

h(dA) = cσ1 .

Now let us extend h linearly to |K3| = |K2|, that is for x ∈ (dA1 , . . . , dAs) ∈
K3 with the barycentric representation

x =
s∑

i=1

µidAi ,

let

h(x) =
s∑

i=1

µih (dAi) .

Now we shall show that for every x ∈ |K2| the supports of h(x) and

h(ω(x)) in K are disjoint. Note first that if dA is the barycentre of a simplex

A = (cσ1 , . . . , cσr), then

ω(dA) = ω

(
1
r

r∑
i=1

cσi

)
=

1
r

r∑
i=1

ω(cσi) = dB

where

B = (ω(cσ1), . . . , ω(cσr)) .
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For x ∈ |K2|, let

{A1, . . . , Ar}

be the support of x in K3 and

{B1, . . . , Br}

the support of ω(x) in K3, where Bi = ω(Ai) for i = 1, . . . , r. Let

{σi,1, . . . , σi,si}

be the vertex-set of Ai for i = 1, . . . , r, where σi,j is a proper face of σi,j+1

for j = 1, . . . , si − 1. Now let

{
σ′

i,1, . . . , σ
′
i,si

}
be the vertex-set of Bi for i = 1, . . . , r. Since the vertex-set of σ′

i,j is the

complement of the vertex-set of σi,j , the simplex σ′
i,j+1 is a proper face of

σ′
i,j , for all i = 1, . . . , r and j = 1, . . . , si − 1.

Since h(Ai) = σi,1 for i = 1, . . . , r, the support of h(x) in K2 is the set

{σ1,1, σ2,1, . . . , σr,1} ,

and since h(Bi) = σ′
i,si

for i = 1, . . . , r, the support of h(ω(x)) in K2 is the

set {
σ′

1,s1
, σ′

2,s2
, . . . , σ′

r,sr

}
.

We can assume that Ai is a proper face of Ai+1 for i = 1, . . . , r. Then

σi+1,1 is a (not necessarily proper) face of σi,1 for i = 1, . . . , r, and thus the

support of h(x) in ∆n+1 is the vertex-set of σ1,1. Since Ai is a proper face

of Ai+1, the simplex Bi is a proper face of Bi+1 for i = 1, . . . , r. Therefore,

σ′
i+1,si+1

is a face of σ′
i,si

for i = 1, . . . , r, and thus the support of h(ω(x))

in K is the vertex-set of σ′
1,s1

. Now recall that the vertex-set of σ′
1,s1

is

the complement of the vertex-set of σ1,s1 . But the vertex-set of σ1,1 is

contained in the vertex-set of σ1,s1 so the supports of h(x) and h(ω(x)) in

K are disjoint, and the theorem is proved.
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