
SUMS OF CONNECTIVITY FUNCTIONS ON Rn

KRZYSZTOF CIESIELSKI AND JERZY WOJCIECHOWSKI

Abstract. A function f : Rn → R is a connectivity function if the

graph of its restriction f |C to any connected C ⊂ Rn is connected

in Rn × R. The main goal of this paper is to prove that every

function f : Rn → R is a sum of n+1 connectivity functions (Cor 5).

We will also show that if n > 1, then every function g : Rn → R

which is a sum of n connectivity functions is continuous on some

perfect set (see Thm 8) which implies that the number n+1 in our

theorem is the best possible (Cor 9).

To prove the above results, we establish and then apply the

following theorems that are of interest on their own.

For every dense Gδ subset G of Rn there are homeomorphisms

h1, . . . , hn of Rn such that Rn = G ∪ h1(G) ∪ . . . hn(G) (Prop 7).

For every n > 1 and any connectivity function f : Rn → R, if

x ∈ Rn and ε > 0 then there exists an open set U ⊂ Rn such that

x ∈ U ⊂ Bn(x, ε), f |bd(U) is continuous and |f(x)− f(y)| < ε for

every y ∈ bd(U) (Prop 10).
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1. Preliminaries

Our basic terminology and notation is standard. (See e.g. [4].) The

terminology and preliminaries from dimension theory and the theory

of simplicial triangulations will be used only in some parts of the paper

and will be introduced on the “as needed” basis.

For a topological space X and U ⊂ X we will use the symbols cl(U)

and bd(U) to denote the closure and the boundary of U , respectively.
1
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Also, we will consider the following classes of functions f : X → R.

(We will use them only when X ⊂ Rn.)

: Conn(X) — the set of connectivity functions f : X → R, i.e.,

such that the graph of f |C is connected in X × R for every

connected subset C of X.

: PC(X) — the set of peripherally continuous functions f : X →
R, i.e., such that for every x ∈ X and any pair U ⊂ X and V ⊂
R of open neighborhoods of x and f(x), respectively, there exists

an open neighborhood W of x with cl(W ) ⊂ U and f [bd(W )] ⊂
V .

: Ext(X) — the set of extendable functions f : X → R, i.e., such

that there exists a connectivity function g : X× [0, 1] → R with

f(x) = g(x, 0) for every x ∈ X.

We will write Conn, PC and Ext in place of Conn(X), PC(X) and

Ext(X) when the space X is clear from the context.

It is immediate from the definition that Ext(X) ⊂ Conn(X) for every

connected space X. In what follows we will use the following theorem.

(The inclusion “⊂” was proved by Hamilton [8] and Stallings [14], and

the inclusion “⊃” by Hagan [7].)

Theorem 1. If n ≥ 2, then Conn(Rn) = PC(Rn).

To place our results within wider context we need to define two other

classes of real functions. However, the rest of this section will not be

used in an essential way in the proofs of our main results.

: D(X) — the set of Darboux functions f : X → R, i.e., such that

f [C] is connected in R for every connected subset C of X.

: AC(X) — the set of almost continuous functions f : X → R,

i.e., such that for every open subset U of X × R containing

the graph of f , there is a continuous function g : X → R with

g ⊂ U .
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We will write D and AC in place of D(X) and AC(X) when X is

clear from the context.

For X = R we have the following proper inclusions [1]:

(1) Ext ⊂ AC ⊂ Conn ⊂ D ⊂ PC .

In the case when X = Rn with n ≥ 2 the following relations are known

to hold:

Ext ⊂ PC = Conn ⊂ D∩AC, D∩AC 6 ⊂Conn, D 6 ⊂AC, AC 6 ⊂D .

The equality PC = Conn is a restatement of Theorem 1 and the in-

clusion Ext ⊂ Conn is obvious from the definition. We do not know

whether it is proper. The proof of the inclusion Conn ⊂ AC can

be found in [14]. The inclusion Conn ⊂ D is clear from the defini-

tion. This gives Conn ⊂ D∩AC. A simple Baire class 1 function in

D∩AC \Conn was described in [13, Example 1]. The examples show-

ing that D 6 ⊂AC and AC 6 ⊂D can be found in [11, Examples 1.1.9

and 1.1.10].

Our investigations in this paper are motivated by the following result

of Natkaniec [11, prop. 1.7.1].

Theorem 2. For every n > 0, any function f : Rn → R is the sum of

two almost continuous functions.

In general, given a class F of functions f : X → R where X ⊆ Rn,

let the repeatability R(F) of F be defined as the minimum integer k

such that any function f : X → R can be expressed as the sum of k

functions from F . Since the class AC(Rn) is a proper subset of RRn
,

Theorem 2 says that

(2) R(AC(Rn)) = 2,
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for every n ≥ 1. Since the classes Conn(R), D(R) and PC(R) are

proper subsets of RR, it follows from (2) and (1) that

R(Conn(R)) = R(D(R)) = R(PC(R)) = 2.

Moreover, Ciesielski and Rec law [3] and Rosen [12] independently proved

that

R(Ext(R)) = 2.

In this paper we show that the following general result holds.

Theorem 3. For every n ≥ 1

R(Ext(Rn)) = R(Conn(Rn)) = R(PC(Rn)) = n+ 1.

Theorem 3 follows from Theorem 4 and Corollary 9 that are stated

and proved in the next section. We do not know1 whether a similar

result is true for either of the classes D∩AC or D when n > 1.

2. The main results

In this section we will prove the main theorems of the paper modulo

three groups of technical results, each of which will be proved in one

of the sections that follow.

The following theorem and Theorem 8 are the main results of the

paper.

Theorem 4. Every function g : Rn → R can be represented as a sum

g = g0 +g1 + · · ·+gn of n+ 1 extendable functions g0, . . . , gn : Rn → R.

Since Ext(Rn) ⊂ Conn(Rn), Theorem 4 implies immediately the

following corollary.

1It has been settled recently by Francis Jordan (private communication) who

proved that for every n > 1 there exists a Baire 1 class function f : Rn → R which

is not a sum of n Darboux functions. This clearly implies R(D(Rn)) ≥ n + 1, while

the other inequality follows from Theorem 3.
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Corollary 5. Every function g : Rn → R can be represented as a sum

g = g0+g1+· · ·+gn of n+1 connectivity functions g0, . . . , gn : Rn → R.

2

For n = 1, Theorem 4 has been proved in [3]. For n > 1, it follows

from the next two propositions, which will be proved in Sections 3

and 4, respectively.

Proposition 6. For every n > 1, there exists a function f : Rn → R
and a dense Gδ subset G of Rn such that any function g : Rn → R with

g(x) = f(x) for x /∈ G is a connectivity function.

Proposition 7. If G ⊆ Rn is a dense Gδ set, then there are homeo-

morphisms hj : Rn → Rn for j ∈ {1, . . . , n} such that

G ∪
n⋃
j=1

hj(G) = Rn.

Proof of Theorem 4. Let g : Rn → R be an arbitrary function and

let f̂ : Rn × R → R and a dense Gδ subset Ĝ of Rn × R be as in

Proposition 6. By the Kuratowski-Ulam theorem (a category analog of

the Fubini theorem) there exists y ∈ R such that a Gδ set G = {x ∈
Rn : 〈x, y〉 ∈ Ĝ} is dense in Rn.

Notice that if f : Rn → R is defined by f(x) = f̂(x, y) for every

x ∈ Rn, then

(3) g : Rn → R is extendable provided g(x) = f(x) for every x /∈ G.

Let hj : Rn → Rn for j ∈ {1, . . . , n} be the homeomorphisms from

Proposition 7 and let h0 : Rn → Rn be the identity homeomorphism.

Notice that for every j ∈ {1, . . . , n}

(4) gj : Rn → R is extendable

provided gj(x) =
(
f ◦ h−1

j

)
(x) for every x /∈ hj(G).
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Indeed, if gj satisfies the hypothesis of (4), then gj = g ◦ h−1
j where

g is defined by

g(x) =

{
(gj ◦ hj) (x) if x ∈ G,

f(x) if x /∈ G.

But, by (3), g is extendable and so is gj as a composition of a homeo-

morphism and an extendable function.

Let G0 = G, and for every j = 1, 2, . . . , n put

Gj = hj(G) \
j−1⋃
i=0

hi(G).

Then the sets G0, G1, . . . , Gn form a partition of Rn. For each i =

0, 1, . . . , n, let gi : Rn → R be defined by

gi(x) =

{
g(x)−

∑
j∈{0,...,n}\{i}(f ◦ h

−1
j )(x) if x ∈ Gi,

(f ◦ h−1
i )(x) if x /∈ Gi.

Then

(g0 + · · ·+ gn) (x) = g(x)

for every x ∈ Rn. Since gi(x) =
(
f ◦ h−1

i

)
(x) for every i = 0, 1, . . . , n,

and every x /∈ hi(G), it follows from (4) that the functions g0, g1, . . . , gn

are extendable. 2

Next, we will turn to the proof of our second main result.

Theorem 8. If n > 1 and g1, g2, . . . , gn : Rn → R are connectivity

functions then there exists a perfect set P ⊆ Rn such that the restriction

of gj to P is continuous for every j ∈ {1, 2, . . . , n}.

Notice, that Theorem 8 immediately implies the following corollary.

In particular, the number n+ 1 in Theorem 4 is the best possible.

Corollary 9. For every n > 0 there exists a function f : Rn → R
which is not a sum of n peripherally continuous functions.
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Proof. r n = 1, the statement follows from the fact that there exists a

function f : R → R which is not peripherally continuous. (For example,

the characteristic function of a singleton.)

For n > 1, let f : Rn → R be the characteristic function of a Bern-

stein set, i.e., a set B ⊆ Rn such that B ∩ P 6= ∅ and B \ P 6= ∅ for

every perfect set P ⊆ Rn. Then the restriction of f to any perfect

subset of Rn is discontinuous. It follows from Theorem 8 that f is not

a sum of n connectivity functions.

The proof of Theorem 8 is based on the next two propositions, whose

proofs are postponed till Section 5.

Proposition 10. Let n > 0 and let f : Rn → R be a peripherally

continuous function. Then for any x0 ∈ Rn and any open set W in Rn

containing x0, there exists an open set U ⊆ W such that x0 ∈ U and

the restriction of f to bdU is continuous. Moreover, given any ε > 0,

the set U can be chosen so that |f(x0)− f(y)| < ε for every y ∈ bdU .

Proposition 11. Let n > 1 and g : Rn → R be peripherally continuous.

If X is a connected perfect subset of Rn, then there exists a perfect

subset P of X such that the restriction of g to P is continuous.

For X = [0, 1]n Proposition 11 has been proved earlier by Gibson,

Rosen and Roush [5].

Given X ⊆ Rn and U ⊆ Rn, we will write bdX U to denote the

boundary of U ∩X in X. For the proof of Theorem 8 we need to recall

the definition of the inductive dimension of subsets X of Rn. (See

e.g. [4].)

(i): indX = −1 if and only if X = ∅.
(ii): indX ≤ m if for any p ∈ X and any open neighborhood W

of p there exists an open neighborhood U ⊆ W of p such that

ind bdX U ≤ m− 1.
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(iii): indX = m if indX ≤ m and it is not true that indX ≤
m− 1.

Recall that ind Rn = n.

Proof of Theorem 8. We will define a sequence D0, D1, . . . , Dn−1 of

compact subsets of Rn such that indDi ≥ n − i and the restriction of

gj to Di is continuous for every j ≤ i < n.

First note, that this will finish the proof, since then we can choose

a component X of Dn−1, (which is perfect and connected) and apply

Proposition 11 to X and the function gn.

To construct such a sequence let D0 = Rn and assume that Di−1 has

been defined for some i ∈ {1, 2, . . . , n− 1}. Since indDi−1 ≥ n− i+ 1,

there exists p ∈ Di−1 and an open neighborhood W ⊂ Rn of p such

that ind bdDi−1
U ≥ n − i for every open neighborhood U ⊂ W of p.

Since gi is peripherally continuous, it follows from Proposition 10 that

there is an open neighborhood U ⊆ W of p such that the restriction of

gi to bdU is continuous. Let

Di = bdDi−1
U ⊆ bdU ∩Di−1.

Then indDi ≥ n − i and the restriction of gj to Di is continuous for

every j with 1 ≤ j ≤ i. Therefore the proof is complete. 2

3. Proof of Proposition 6

The proof presented here is analogous to the technique used in [3].

However, instead of equilateral triangulations of R2 we will use a more

general concept of a simplicial triangulation of Rn. An introduction

to simplicial triangulations of Rn can be found for example in [9]. For

completeness, we will give basic definitions and results.

Let X = {x0, x1, . . . , xm} be a set of m+ 1 points in Rn. The points

of X are in general position if the vectors x1−x0, x2−x0, . . . , xm−x0
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are linearly independent. An m-dimensional simplex ∆ = ∆(X) in Rn

is the subset of Rn of the form

∆ =

{∑
x∈X

βxx : (∀x ∈ X) (βx > 0) &
∑
x∈X

βx = 1

}
,

where X is a set of points in general position. The elements of X are

called the vertices of ∆. Any simplex ∆(Y ) with ∅ 6= Y ⊆ X is a face

of ∆(X). A face ∆(Y ) of ∆(X) is proper if Y 6= X. The closure cl ∆

of the simplex ∆ = ∆(X) is the union of all faces of ∆, i.e.,

cl ∆ =

{∑
x∈X

βxx : (∀x ∈ X) (βx ≥ 0) &
∑
x∈X

βx = 1

}
.

The boundary bd ∆ of the simplex ∆ is the union of all proper faces of

∆. Note that if ∆ is an n-dimensional simplex in Rn, then cl ∆ is the

topological closure and bd ∆ is the topological boundary of ∆.

A simplicial complex K is a set of disjoint simplices in Rn such that:

(i): if ∆ ∈ K and ∆′ is a face of ∆, then ∆′ is also in K; and,

(ii): any bounded subset of Rn intersects only finitely many sim-

plices of K.

A vertex of a simplicial complex K is a vertex of one of its simplices

and the boundary bdK of K is the union of the boundaries of the

simplices of K. If ∆ is a simplex, then symbol K∆ will denote the

simplicial complex consisting of all faces of ∆. If K is a simplicial

complex and X is the union of the simplices of K, then we say that K
is a triangulation of X.

Given an m-dimensional simplex ∆ = ∆(Y ), the barycenter c∆ of ∆

be defined by

c∆ =
∑
y∈Y

1

m+ 1
y.

Let K be a simplicial complex. The barycentric subdivision B(K) of K is

the simplicial complex consisting of all simplices ∆ ({c∆1 , c∆2 , . . . , c∆s})
where ∆i ∈ K for every i = 1, 2, . . . , s, and ∆j is a proper face of ∆j+1
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for every j = 1, 2, . . . , s − 1. For a non-negative integer k, the k-th

barycentric subdivision Bk(K) of K is defined inductively by: B0(K) =

K and Bk+1(K) = B(Bk(K)).

Let X ⊆ Rn and f : X → R. Then f is linear on X if there are

a0, a1, . . . , an ∈ R such that

f(x1, . . . , xn) = a0 +
n∑
i=1

aixi,

for every 〈x1, . . . , xn〉 ∈ X. If K is a triangulation of X and f : X → R
is a function that is linear on cl ∆ for every ∆ ∈ K, then we say that

f is K-linear. If X is compact and f : X → R is continuous, then the

variation of f on X is the difference between the maximal and minimal

values of f on X. The following lemmas are well known and easy to

prove.

Lemma 12. If ∆ is an n-dimensional simplex, then there exists an

n-dimensional simplex ∆′ ∈ B2(K∆) such that cl ∆′ ⊆ ∆. 2

Lemma 13. For every positive integers n and m there is an integer

k such that if ∆ is an n-dimensional simplex, then there is a set A ⊆
Bk(K∆) of cardinality m consisting of n-dimensional simplices such

that

cl ∆′ ⊆ ∆,

for any ∆′ ∈ A and

cl ∆′ ∩ cl ∆′′ = ∅,

for any distinct ∆′,∆′′ ∈ A.

Proof. oose an l such that for some n-dimensional simplex ∆ the

subdivision Bl(K∆) contains m distinct n-dimensional simplices. Note

that this is true also for any other n-dimensional simplex. Then, by

Lemma 12, Bl+2(K∆) contains the simplices as desired. So, k = l + 2

satisfies the lemma.
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Lemma 14. Let K be a triangulation of Rn and ∆,∆′ ∈
⋃
k∈ω Bk(K).

If the simplex ∆ is n-dimensional and a vertex of ∆′ belongs to ∆ then

∆′ ⊆ ∆.

Proof. r k ∈ ω let Ak denote the family of all n-dimensional simplices

from Bk(K) and let k, l ∈ ω be such that ∆ ∈ Ak and ∆′ ∈ Bl(K).

Notice that k < l, since otherwise the vertex from ∆′ could not belong

to
⋃
Ak ⊃ ∆. So, either ∆′ ⊆ ∆ or ∆′ ∩ ∆ = ∅, since simplices

from Bl(K) form a partition of Rn which is finer than that formed by

elements of Bk(K). But ∆′ ∩∆ = ∅ contradicts the assumption that ∆

contains a vertex of ∆′. So, ∆′ ⊆ ∆.

Lemma 15. [9] If ∆ is an n-dimensional simplex and d is the diameter

of ∆, then the diameter of any n-dimensional simplex in B(K∆) is at

most
n

n+ 1
d. 2

From Lemma 15 we obtain immediately the following corollary.

Corollary 16. Let ∆ be an n-dimensional simplex, f be a linear func-

tion on cl ∆, and a be the variation of f on cl ∆. If ∆′ ∈ B(K∆), then

the variation of f on cl ∆′ is at most
n

n+ 1
a. 2

Lemma 17. If K is a triangulation of X, and V is the set of all

vertices of K, then any function f : V → R can be uniquely extended

to a K-linear function on X. 2

Proof of Proposition 6. Fix n > 1, let D =
{ s

2m
: s ∈ Z,m ∈ N

}
be

the set of all dyadic rationals and let Di =

{
−4i

2i
,
−4i + 1

2i
, . . . ,

4i

2i

}
⊆ D

for every i ∈ ω. Let K be any triangulation of Rn. For each i ∈ ω, we

define integers ki, ri and `i, triangulations Ki and K′
i of Rn, a function

ψi on the set Ai of n-dimensional simplices of Ki, and a function ξi

on Ai × Di such that ψi and ξi take n-dimensional simplices in Rn as

values. Let k0 = 0.

Assume that i ∈ ω and that ki has been defined. Let Ki = Bki(K).

By Lemma 12, for each ∆ ∈ Ai there exists an n-dimensional simplex
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ψi(∆) ∈ B2(K∆) such that clψi(∆) ⊆ ∆. By Lemma 13, there is an

integer ri such that for every ∆ ∈ Ai and every j ∈ Di there is an

n-dimensional simplex ξi(∆, j) ∈ Bri(Kψ(∆)) with

cl ξi(∆, j) ⊆ ψi(∆)

such that

cl ξi(∆, j) ∩ cl ξi(∆, j
′) = ∅

for any distinct j, j′ ∈ Di. Let

K′
i = B2+ri(Ki),

let `i be an integer such that

(5)

(
n

n+ 1

)`i
· 4i ≤ 2−i,

and put ki+1 = ki+2+ri+ `i. This finishes the inductive construction.

Note that

Ki+1 = B`i(K′
i) and ξi(∆, j) ∈ K′

i

for every i ∈ ω, ∆ ∈ Ai and j ∈ Di.

For the next step of our construction we will need the following

additional notation. For each i ∈ ω, let Vi be the set of vertices of Ki,

let V ′
i be the set of vertices of K′

i, and put

V̄i = V ′
i ∩

⋃
∆∈Ai

bdψi(∆).

Moreover, for every i ∈ ω and every j ∈ Di, we define

V j
i =

⋃
∆∈Ai

V ∆,j
i ,

where V ∆,j
i ⊆ V ′

i is the set of vertices of ξi(∆, j). Also, for every i ∈ ω
and x ∈ Rn let ∆′

x,i ∈ K′
i be such that x ∈ ∆′

x,i, and for q ∈ ω put

Yq = Rn \
⋃
t>q

⋃
∆∈At

ψt(∆).
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Note that for every i, q ∈ ω with i > q, the following condition holds

(6) if x ∈ Yq, then every vertex of ∆′
x,i is in Yq.

Indeed, suppose that some vertex v of ∆′
x,i does not belong to Yq. Then

there is t > q and ∆ ∈ At such that v ∈ ψt(∆). Then, by Lemma 14,

∆′
x,i ⊆ ψt(∆), contradicting the fact that x ∈ Yq.
Now, we define recursively a sequence of functions g0, g1, . . . such

that the following conditions hold for every i ∈ ω:

(a): gi : Rn → [−2i−1, 2i−1] is Ki-linear,

(b): if x ∈ bdKi, then gi+1(x) = gi(x),

(c): if x ∈ bdψi(∆) for some ∆ ∈ Ai, then gi+1(x) = 0,

(d): if x ∈ bd ξi(∆, j) for some ∆ ∈ Ai and j ∈ Di, then gi+1(x) =

j,

(e): if there is q ∈ ω such that x ∈ Yq, then gi(x) ∈ [−2q, 2q],

(f): for every ∆ ∈ Ki the variation of gi on cl ∆ is at most 2−i.

Let g0(x) = 0 for every x ∈ Rn. Suppose that i ∈ ω and that the

function gi : Rn → [−2i−1, 2i−1] satisfies conditions (a)–(f). Let gi+1 be

the unique K′
i-linear extension of the function h : V ′

i → [−2i, 2i] defined

by:

h(v) =


0 if v ∈ V̄i,
j if v ∈ V j

i for some j ∈ Di,

gi(v) otherwise.

It is obvious that the function gi+1 satisfies conditions (a)–(d). To see

that condition (e) holds, note that if q < i and x ∈ Yq, then every

vertex v of ∆′
x,i is outside

⋃
j∈Di

V j
i implying that either gi+1(v) = gi(v)

or gi+1(v) = 0. Now it follows from (6) and the inductive hypothesis

that gi+1(v) ∈ [−2q, 2q] for any vertex v of ∆′
x,i, implying that gi+1(x) ∈

[−2q, 2q]. Finally, it follows from Corollary 16 and inequality (5) that

the function gi+1 satisfies condition (f).
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For each i ∈ ω, let fi be the restriction of gi to bdKi. If follows from

condition (b) that fi+1 is an extension of fi for every i ∈ ω. Let

X =
⋃
i∈ω

bdKi,

and let

f =
⋃
i∈ω

fi : X → R.

We are going to extend the function f to a function on Rn. Let x ∈
Rn\X. If there is an integer q ≥ 0 such that x ∈ Yq, then it follows from

condition (e) that gi(x) ∈ [−2q, 2q] for every i ∈ ω. Then let f(x) be

the limit of some convergent subsequence of the sequence 〈gi(x)〉∞i=0. If

such q does not exist, then let f(x) = 0. This completes the definition

of the function f .

We will show first that f is peripherally continuous.

Denote by X ′ the set of points x ∈ Rn \X for which the integer q as

above exists, i.e., let

X ′ = (Rn \X) ∩
⋃
q∈ω

Yq,

and put X ′′ = (Rn \X) \X ′. Note that f(x) = 0 for x ∈ X ′′.

To see that f is peripherally continuous choose x ∈ Rn \ X and

for each i ∈ ω, let ∆x,i be the simplex of Ai containing x. Since the

sequence k0, k1, . . . is strictly increasing it follows from Lemma 15 that

the diameters of ∆x,i converge to 0 as i → ∞. If x ∈ X ′, then the

peripheral continuity of f at x follows from condition (f). If x ∈ X ′′,

then there are infinitely many integers i such that x belongs to ψi(∆)

for some ∆ ∈ Ai. Since f(x) = 0, the peripheral continuity of f at x

follows from condition (c). If x ∈ X, then for each i ∈ ω, let Ex,i be

the set of simplices ∆ ∈ Ai such that x ∈ cl ∆ and

Zx,i =
⋃

∆∈Ex,i

cl ∆.
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Since the diameter of Zx,i is at most twice as large as the maximal

diameter of a simplex in Ex,i, it follows from Lemma 15 that the diam-

eters of Zx,i converge to 0 as i → ∞. Thus it follows from condition

(f) that f is peripherally continuous at x.

By Theorem 1 it remains to define the subset G of Rn that is a dense

Gδ set and any function h : Rn → R with h(x) = f(x) for x /∈ G is

peripherally continuous.

So, for each j ∈ D define

Gj =
⋃

i∈{k : j∈Dk}

⋃
∆∈Ai

ξi(∆, j)

and notice that Gj is an open and dense subset of Rn. This implies

that

G =
⋂
j∈D

Gj

is a dense Gδ subset of Rn. We will show that G has the desired

property.

So, let h : Rn → R be any function with h(x) = f(x) for x /∈ G.

Function h is peripherally continuous at any x /∈ G by the same reason

that f is. If x ∈ G, then for any j ∈ D there is arbitrarily large i ∈ ω

such that x ∈ ξi(∆, j) for some ∆ ∈ Ai, thus it follows from condition

(d) that h is peripherally continuous at x. The proof is complete. 2

4. Proof of Proposition 7

In what follows we will identify a natural number n with the set of

its predecessors, i.e., n = {0, . . . , n− 1}. Let A ⊆ R. We say that A is

a thick meager set if A is a countable union of nowhere dense perfect

sets and A is dense in R. If 〈Ai : i ∈ n〉 is a family of sets then∏
i∈n

Ai = A0 × · · · × An−1.
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Lemma 18. If G is a dense Gδ set in Rn, then for each i ∈ n there is

a countable dense set Bi ⊆ R and a thick meager set Yi ⊆ R such that

Bi ∩ Yi = ∅ and ∏
i∈n

(Bi ∪ Yi) ⊂ G.

Proof. Let G be a dense Gδ set in Rn. First note that it is enough to

prove that for each i ∈ n there is a thick meager set Yi ⊆ R such that

(7)
∏
i∈n

Yi ⊂ G,

since then for every i ∈ n there exists a countable dense Bi ⊂ Yi and a

thick meager set Y ′
i ⊂ Yi such that Bi ∩ Y ′

i = ∅.
We prove (7) by induction on n. If n = 1, then it is clear that (7)

holds. Assume that n ≥ 2 and that (7) holds for smaller values of n.

We claim that

(†) there is a thick meager set Y ⊆ R, and a dense Gδ set G′ in

Rn−1 such that Y ×G′ ⊆ G.

It is obvious that (†) and the induction hypothesis imply that the

lemma holds.

To prove (†) we will first show that:

(?) for every p < q there exists a nowhere dense perfect set Yp,q ⊆
(p, q) and a dense Gδ set Gp,q ⊆ Rn−1 such that Yp,q×Gp,q ⊆ G.

Clearly (?) implies (†), since for A = {〈p, q〉 ∈ Q2 : p < q} the sets

Y =
⋃

〈p,q〉∈A Yp,q and G′ =
⋂

〈p,q〉∈AGp,q, satisfy (†).
Now we show that (?) holds. Assume that

G =
⋂
m∈ω

Um,

where Um is an open dense set in Rn for every m ∈ ω, and let p < q. Let

J0, J1, . . . be an enumeration of some countable basis of the topology

of Rn−1, and let 〈t0, u0〉, 〈t1, u1〉, . . . be an enumeration of ω × ω. Let
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Ti be the set of all zero-one sequences g : i → 2 of length i, and for

g ∈ Ti and j ∈ 2 let g ∗ j ∈ Ti+1 be the concatenation of g and j, i.e.,

g ∗ j = 〈s0, s1, . . . , sn−1, j〉 ,

where g = 〈s0, s1. . . . , sn−1〉. For each i ∈ ω we define, by induction

on i, an open set Vi ⊆ Rn−1 and a family {Wg : g ∈ Ti} of nonempty

open subsets of (p, q), such that the following conditions hold for every

i ∈ ω:

(i) Vi ∩ Jti 6= ∅;

(ii)

(⋃
g∈Ti

clWg

)
× Vi ⊆ Uui

;

(iii) diamWg ≤ 2−i for every g ∈ Ti;
(iv) clWg∗0 ∩ clWg∗1 = ∅ for every g ∈ Ti−1 provided i > 0;

(v) clWg∗0 ∪ clWg∗1 ⊆ Wg for every g ∈ Ti−1 provided i > 0.

For i = 0 choose arbitrary Wτ ⊂ (p, q), τ being an empty sequence,

and V0 ⊂ Jt0 such that clWτ × V0 ⊆ Uu0 . Such a choice can be made,

since Uu0 is dense in Rn. It is clear that with such a choice conditions

(i)-(v) are satisfied.

To make the inductive step choose i < ω, i > 0, such that Vi−1 and

Wg for each g ∈ Ti−1 satisfying (i)-(v) are already defined. Since Uui
is

dense open in Rn, there are nonempty open set Vi ⊆ Jti and for every

g ∈ Ti−1 a nonempty open set W ′
g ⊆ Wg such that ⋃

g∈Ti−1

clW ′
g

× Vi ⊆ Uui
.

For each g ∈ Ti−1 choose nonempty open sets Wg∗0,Wg∗1 ⊆ W ′
g satis-

fying (iii)-(v). This completes our construction.

To prove that (?) holds, it suffices to take

Yp,q =
⋂
i∈ω

⋃
g∈Ti

clWg and Gp,q =
⋂
m∈ω

Hm,
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where

Hm =
⋃
{Vi : ui = m}.

Then it is clear that Yp,q is a nowhere dense perfect subset of (p, q) and

that Gp,q is a Gδ subset of Rn−1. To see that Gp,q is dense in Rn−1,

it is enough to note that for every m ∈ ω the set Hm intersects every

element of the basis {Ji : i ∈ ω} of Rn−1. It remains to verify that

Yp,q ×Gp,q ⊆ G.

So, choose arbitrary x ∈ Yp,q, y ∈ Gp,q and m ∈ ω. Then y ∈ Hm and

there exists i ∈ ω such that ui = m and y ∈ Vi implying that

〈x, y〉 ∈

(⋃
g∈Ti

clWg

)
× Vi ⊆ Uui

= Um.

Therefore 〈x, y〉 ∈
⋂
m∈ω Um = G and so the proof is complete.

Lemma 19. If B ⊆ R is a countable dense set, Y ⊆ R is a thick meager

set and Z ⊆ R is a meager set such that B ∩ Y = B ∩ Z = ∅, then

there is an increasing homeomorphism g : R → R such that Z ⊆ g(Y )

and g(B) = B.

Proof. is clear that we can assume that the set Z is thick meager. Let

Z =
⋃
i∈ω

Zi,

where {Zi : i ∈ ω} is a family of mutually disjoint nowhere dense per-

fect sets. Let 〈bi : i ∈ ω〉 be an enumeration of B and 〈Ii : i ∈ ω〉 be an

enumeration of all non-empty open intervals (p, q) with rational end-

points p, q ∈ R. We construct, by induction on i ∈ ω, two strictly

increasing sequences 〈ni ∈ ω : i ∈ ω〉 and 〈mi ∈ ω : i ∈ ω〉, and a se-

quence 〈fi : i ∈ ω〉 of functions such that the following conditions hold

for every k ∈ ω:
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(i) fk :
⋃
i≤k Zni

∪ {bmi
: i ≤ k} → Y ∪ B is a strictly increasing

continuous function extending
⋃
i<k fi such that fk

[⋃
i≤k Zni

]
⊆

Y and fk [{bmi
: i ≤ k}] ⊆ B;

(ii) if k = 4j, then
⋃
i≤j Zi ⊆ dom fk;

(iii) if k = 4j + 1, then fk
[⋃

i≤k Zni

]
∩ Ij 6= ∅;

(iv) if k = 4j + 2, then {bi : i ≤ j} ⊆ dom fk;

(v) if k = 4j + 3, then {bi : i ≤ j} ⊆ range fk.

Then the function

f =
⋃
i∈ω

fi : Z ∪B → Y ∪B

is strictly increasing, f [Z] ⊆ Y is dense in R and f [B] = B. Thus

f can be extended to a homeomorphism h from R to R and g = h−1

satisfies the requirements. This completes the proof.

In the remainder of this section we will use the following non-standard

notation. If 〈Ai : i ∈ n〉 is a family of sets, C is a set and j ∈ n, then

let

Ai ∨j C =

{
C if i = j,

Ai if i 6= j.

If moreover 〈Bi : i ∈ n〉 is a family of sets and f is a function from n

into 2 = {0, 1}, then define

Ai ∨f Bi =

{
Ai if f(i) = 0,

Bi if f(i) = 1.

We will also use the notation Ai ∨f Bi ∨j C to denote the set Di ∨j C
where Di = Ai ∨f Bi, that is

Ai ∨f Bi ∨j C =


C if i = j,

Bi if i 6= j and f(i) = 1,

Ai if i 6= j and f(i) = 0.
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Lemma 20. Let G ⊆ Rn be a Gδ set. If f : n→ 2 is a function, i ∈ n
and 〈b0, . . . , bn−1〉 ∈ Rn, then the set{

x ∈ R :
∏
t∈n

({bt} ∨f R ∨i {x}) ⊆ G

}
is a Gδ subset of R.

Proof. sume that

G =
⋂
k∈ω

Uk,

with Uk ⊆ Rn being open for every k ∈ ω. Let

Dr
x =

∏
t∈n

({bt} ∨f [−r, r] ∨i {x}) ⊆ Rn,

for every x ∈ R and r ∈ ω, and let

V r
k = {x ∈ R : Dr

x ⊆ Uk} ,

for every k, r ∈ ω. Then{
x ∈ R :

∏
t∈n

({bt} ∨f R ∨i {x}) ⊆ G

}
=
⋂
k∈ω

⋂
r∈ω

V r
k .

To complete the proof it remains to show that the set V r
k is open in R

for every k, r ∈ ω.

Suppose that x ∈ V r
k . Then Dr

x ⊆ Uk and since Uk is open, it

follows that for every y ∈ Dr
x there is an open neighbourhood Wy

of y in Rn with Wy ⊆ Uk. Since Dr
x is compact, there is a finite

subfamily of {Wy : y ∈ Dr
x} that covers Dr

x implying that there is an

open neighbourhood A ⊆ R of x such that∏
t∈n

({bt} ∨f [−r, r] ∨i A) ⊆ Uk.

So A ⊆ V r
k implying that V r

k is open and hence completing the proof.

Proof of Proposition 7. Assume that G ⊆ Rn is a dense Gδ. By

Lemma 18, for each i ∈ n there is a countable dense set Bi ⊆ R and a
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thick meager set Yi ⊆ R such that Bi ∩ Yi = ∅ and∏
i∈n

(Bi ∪ Yi) ⊆ G.

We will define homeomorphisms gij : R → R for every i ∈ n and j ∈
{1, 2, . . . , n} such that if

hj = g0
j × · · · × gn−1

j : Rn → Rn,

then

(8)
∏
i∈n

(Bi ∨f R) ⊆ G ∪
k⋃
j=1

hj(G)

for every k ∈ n+1 and every function f : n→ 2 such that |f−1(1)| = k.

(Here |X| stands for the cardinality of the set X.) The construction

will be done by induction with respect to k.

Note that for k = 0, the equation (8) is already satisfied for the

constant function f ≡ 0, the only f : n → 2 with |f−1(1)| = 0. This

gives the starting point for our induction. Notice also that if k = n,

then the equation (8) with the constant function f ≡ 1 implies that

G ∪
n⋃
j=1

hj(G) = Rn.

Thus it remains to do the inductive step.

Assume that k ∈ n and that the homeomorphisms gij : R → R have

been defined for every i ∈ n and j ∈ {1, . . . , k} in such a way that

(8) is satisfied for every f : n → 2 with |f−1(1)| = k. We are going to

define gik+1 for every i ∈ n so that the equation (8) with k replaced by

k + 1 is satisfied for every f : n→ 2 with |f−1(1)| = k + 1.

For every i ∈ n, let Fi be the set of all functions f : n→ 2 such that∣∣f−1(1)
∣∣ = k and f(i) = 0.
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Fix i ∈ n. It follows from Lemma 20 that for every b = 〈b0, . . . , bn−1〉 ∈
B0× · · ·×Bn−1, and every f ∈ Fi there is a Gδ set Kf,b

i ⊆ R such that

∏
t∈n

(
{bt} ∨f R ∨i Kf,b

i

)
⊆ G ∪

k⋃
j=1

hj(G).

Notice also that, by (8), Bi ⊆ Kf,b
i . So, Kf,b

i is a dense Gδ set. Thus,

the set

Ki =
⋂
{Kf,b

i : f ∈ Fi and b ∈ B0 × · · · ×Bn−1}

is a dense Gδ set with Bi ⊆ Ki and

(9)
∏
t∈n

(Bt ∨f R ∨i Ki) ⊆ G ∪
k⋃
j=1

hj(G)

for every f ∈ Fi. In particular, Zi = R \ Ki is a meager set with

Bi ∩ Zi = ∅. By Lemma 19, there is a homeomorphism gik+1 : R → R
such that Zi ⊆ gik+1(Yi) and gik+1(Bi) = Bi.

Let hk+1 = g0
k+1 × · · · × gn−1

k+1 . We claim that

∏
i∈n

(Bi ∨f R) ⊆ G ∪
k+1⋃
j=1

hj(G)

for every f : n→ 2 with |f−1(1)| = k + 1. Indeed, let f : n→ 2 be any

function satisfying |f−1(1)| = k + 1 and pick

x ∈
∏
i∈n

(Bi ∨f R) .

We will show that

x ∈ G ∪
k+1⋃
j=1

hj(G).

If there is i ∈ f−1(1) such that

x ∈
∏
t∈n

(Bt ∨f R ∨i Ki) ,
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then it follows from (9) that

x ∈ G ∪
k⋃
j=1

hj(G)

so we can assume that for every i ∈ f−1(1) we have

x /∈
∏
t∈n

(Bt ∨f R ∨i Ki) .

Then

x ∈
∏
i∈n

(Bi ∨f Zi) ⊆
∏
i∈n

(
Bi ∨f gik+1(Yi)

)
.

Since gik+1(Bi) = Bi and ∏
i∈n

(Bi ∨f Yi) ⊆ G

for every i ∈ n, it follows that∏
i∈n

(
Bi ∨f gik+1(Yi)

)
= hk+1

(∏
i∈n

(Bi ∨f Yi)

)
⊆ hk+1(G).

Therefore

x ∈ hk+1(G)

and so the proof is complete. 2

5. Proofs of Propositions 10 and 11

In the proof that follows we will need some additional definitions and

results from dimension theory. (See for example [10]).

Given X ⊆ Rn and an integer m ≥ 1, we say that X is an m-

dimensional Cantor-manifold if X is compact, indX = m, and for

every Y ⊆ X with indY ≤ m − 2, the set X \ Y is connected. Note

that an m-dimensional Cantor-manifold X is connected and for every

p ∈ X
indpX = m,

i.e., there exists an open neighborhood W of p such that ind bdX U =

m− 1 for any open neighborhood U ⊆ W of p.
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Given X ⊆ Rn and p, q ∈ Rn \X, we say that X separates p and q

if they are in distinct components of Rn \X.

The following lemmas are proved in [10].

Lemma 21. For any compact Y ⊆ Rn with indY ≥ m there exists an

m-dimensional Cantor manifold X ⊆ Y . 2

Lemma 22. If X ⊆ Rn is a compact set that separates p and q, and

no proper closed subset of X does so, then X is an (n−1)-dimensional

Cantor manifold. 2

Using Zorn’s Lemma it is easy to prove the following lemma.

Lemma 23. If X ⊆ Rn is a compact set that separates p and q, then

there is a compact X ′ ⊆ X that separates p and q and no proper closed

subset of X ′ does so. 2

Given a subset U of Rn, we say that U is a quasiball if U is a bounded

and connected open set, and bdU is an (n− 1)-dimensional Cantor

manifold. The open ball in Rn with center x ∈ Rn and radius ε > 0

will be denoted by Bn(x, ε).

Lemma 24. If V is an open set and

x ∈ V ⊆ Bn(x, δ)

for some x ∈ Rn and δ > 0, then there is a quasiball U ⊆ Bn(x, δ)

containing x with bdU ⊆ bdV .

Proof. t y be an element of the unbounded component of Rn \ clV .

Since V is bounded, bdV is compact, so it follows from Lemmas 23

and 22 that there is an (n− 1)-dimensional Cantor manifold X ⊆ bdV

that separates x from y. Let U be the component of Rn \X containing

x. It is clear that U satisfies the requirements.

Corollary 25. Let f : Rn → R be a peripherally continuous function.

Then for any x ∈ Rn, any ε > 0 and any open set W in Rn containing
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x, there is a quasiball U ⊆ W containing x such that |f(x)− f(y)| < ε

for any y ∈ bdU .

Proof. t δ > 0 be such that Bn(x, δ) ⊂ W . Since f is peripherally

continuous there is an open neighborhood V ⊂ bdV ⊂ Bn(x, δ) of x

such that |f(x)− f(y)| < ε for any y ∈ bdU . Then U from Lemma 24

satisfies the requirements.

Given open sets U and W in Rn, we say that U and W are indepen-

dent if all the intersections U ∩W , U ∩W c, U c ∩W , and U c ∩W c are

nonempty, where U c and W c are the complements of the closures of U

and W , respectively. Given x ∈ Rn, a halfline starting at x is a set A

of the form

A = {x+ αz : α ≥ 0}

form some nonzero z ∈ Rn.

Lemma 26. If U and W are independent quasiballs, then bdU ∩
bdW 6= ∅.

Proof. t U c and W c be the complements of the closures of U and

W respectively. Since W ∩ U and W ∩ U c are nonempty and W is

connected, it follows that W ∩ bdU is nonempty. Similarly, U ∩ bdW

is nonempty.

Since U is bounded, any halfline starting at a point in U intersects

bdU . The analogous statement holds for W . Let x ∈ U ∩W and A be

a halfline starting at x. Since bdU ∪ bdW is compact there is

y ∈ A ∩ (bdU ∪ bdW )

such that the halfline B starting at y that is a subset of A does not

intersect bdU ∪ bdW except at y. Without loss of generality, we can

assume that y ∈ bdU\bdW . Then B does not intersect bdW implying

that B ∩W = ∅. Therefore

y ∈ W c ∩ bdU
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implying that W c∩bdU is nonempty. Since W ∩bdU is also nonempty

and bdU is connected, we conclude that bdU ∩ bdW is nonempty.

For n ∈ ω let ωn be the set of all sequences of elements of ω of length

n, and let

ω<ω =
⋃
n∈ω

ωn.

Note that ω0 = {∅}. For s ∈ ω<ω and j ∈ ω let s∗j be the concatenation

of s and j, i.e.,

s ∗ j = 〈s0, s1, . . . , sn−1, j〉 ,

where s = 〈s0, s1. . . . , sn−1〉. Given T ⊆ ω<ω and n ∈ ω, let

Tn = T ∩ ωn.

Given s ∈ Tn and t ∈ Tn+1 such that there is j ∈ ω with t = s ∗ j, we

say that s is the father of t and that t is a son of s. A nonempty subset

T of ω<ω is a tree if for every s ∈ T \ {∅} the father of s belongs to T

and every element of T has at least one son in T . We say that the tree

T is finitely branching if Tn is finite for every n ∈ ω.

Let T be a finitely branching tree and f : Rm → R be a peripherally

continuous function. A family

U = {Us : s ∈ T}

of quasiballs in Rm will be called a good T -family of quasiballs for

f if there is a function η : T → Rm and two sequences 〈qn : n ∈ ω〉
and 〈rn : n ∈ ω〉 of positive real numbers such that the series

∑∞
n=0 qn

and
∑∞

n=0 rn converge and the following conditions are satisfied for any

n ∈ ω, s ∈ Tn and any son t of s:

(i) η(s) ∈ Us;
(ii) the distance from η(s) to any element of Us is at most qn;

(iii) |f(x)− f(η(s))| ≤ rn for any x ∈ bdUs;

(iv) η(t) ∈ bdUs;
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(v) the quasiballs Us and Ut are independent.

For any γ ∈ ωω let γn be the initial segment of γ of length n. Assume

that U = {Us : s ∈ T} is a good T -family of quasiballs for f and that

η : T → Rm, 〈qn : n ∈ ω〉 and 〈rn : n ∈ ω〉 satisfy conditions (i)–(v).

Define

T ∗ = {γ ∈ ωω : γn ∈ T} .

Given γ ∈ T ∗, we say that x ∈ Rm is a γ-limit of U if for every open

neighborhood V of x in Rm there is k ∈ ω with

Uγn
∩ V 6= ∅

for every n ≥ k. It follows from condition (ii) that for every γ ∈ T ∗

there is exactly one γ-limit xγ of U . Define

LU = {xγ ∈ Rm : γ ∈ T ∗}

to be the set of all limit points of U .

Lemma 27. Let T be a finitely branching tree and f : Rm → R be

a peripherally continuous function. If U = {Us : s ∈ T} is a good T -

family of quasiballs for f , then the restriction of f to LU is continuous.

Proof. t η : T → Rm, 〈qn : n ∈ ω〉 and 〈rn : n ∈ ω〉 satisfy conditions

(i)–(v). Given γ ∈ T ∗ and t ∈ ω, let

Bγ,t =
∞⋃
n=t

bdUγn
.

Let t ∈ ω. It follows from condition (v) and Lemma 26 that the set

Bγ,t is connected. Since the γ-limit xγ of U belongs to clBγ,t, therefore

Bγ,t∪{xγ} is connected. Since f is a peripherally continuous function,

it is also a Darboux function, implying that the set f(Bγ,t ∪ {xγ}) is

connected, and so f(xγ) ∈ cl f(Bγ,t). Since

|f(xγ)− f(η(γt))| ≤
∣∣f(η(γt)− f(η(γt+1))

∣∣+∣∣f(η(γt+1))− f(η(γt+2))
∣∣+. . . ,
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it follows from (iii) that

(10) |f(xγ)− f(η(γt))| ≤
∞∑
n=t

rn,

for every γ ∈ T ∗ and t ∈ ω.

Now let x ∈ LU and ε > 0. Since the series
∑∞

n=0 rn converges, there

exists t ∈ ω such that

(11)
∞∑
n=t

rn <
ε

2
.

For each s ∈ Tt let

Bs = {xγ : γt = s} .

It is clear that Bs is closed in Rn for every s ∈ Tt. Since the set Tt is

finite, there is an open neighborhood V of x such that

V ∩Bs = ∅,

for every s ∈ Tt with x /∈ Bs. It follows that for every y ∈ V ∩LU there

exists s ∈ Tt with x, y ∈ Bs, implying by (10) and (11) that

|f(x)− f(y)| ≤ |f(x)− f(η(s))|+ |f(y)− f(η(s))| < ε.

Therefore f is continuous at x and so the proof is complete.

Proof of Proposition 10. Let x0, W and ε be as in the proposition.

Let 〈qi : i ∈ ω〉 and 〈ri : i ∈ ω〉 be any sequences of positive real numbers

such that

(12)
∞∑
i=0

ri < ε

and

(13) Bn

(
x0,

∞∑
i=0

qi

)
⊆ W.
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We will define inductively a finitely branching tree T , a good T -family

U = {Us : s ∈ T} of quasiballs for f and a function η : T → Rn such

that conditions (i)–(v) are satisfied, and moreover:

(14) bd

(
m⋃
i=0

⋃
s∈Ti

Us

)
⊆

⋃
t∈Tm+1

Ut.

Let T0 = {∅} and η(∅) = x0. Since f is peripherally continuous, it

follows from Corollary 25 that there is a U∅ such that conditions (i)–

(iii) are satisfied. Suppose that m ∈ ω, and that Ti and Us have been

defined for every i ≤ m and s ∈
⋃
i≤m Ti. Let

(15) C = bd

(
m⋃
i=0

⋃
s∈Ti

Us

)
.

Since the set Tm is finite, we have

C ⊆ bd

(⋃
i<m

⋃
s∈Ti

Us

)
∪
⋃
s∈Tm

bdUs,

and condition (14) of the inductive hypothesis implies that

bd

(⋃
i<m

⋃
s∈Ti

Us

)
⊆
⋃
s∈Tm

Us.

Therefore

C ⊆
⋃
s∈Tm

bdUs.

Let {Cs : s ∈ Tm} be a partition of C such that Cs ⊆ bdUs for every

s ∈ Tm. Since f is peripherally continuous, it follows from Corollary 25

that for every y ∈ C there is there is a quasiball By containing y

such that the distance from y to any element of By is at most qn and

|f(x)− f(y)| ≤ rn for any x ∈ bdBy. Moreover By can be chosen so

that By and Us are independent if y ∈ Cs. Since C is compact, there

is a finite subset Y of C such that

C ⊆
⋃
y∈Y

By.
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Let

Ys = Cs ∩ Y.

Then {Ys : s ∈ Tm} is a partition of Y . Define

Tm+1 = {s ∗ j : s ∈ Tm and j ∈ {0, 1, . . . , |Ys| − 1}} .

For t ∈ Tm+1 let η(t) be such that if s ∈ Tm, then

{η(t) : t is a son of s} = Ys,

and let

Ut = Bη(t).

This completes the definition of T , η and U . Let

U =
⋃
s∈T

Us.

Then

bdU ⊆ LU ,

and so Lemma 27 implies that f is continuous on bdU . Condition (13)

implies that U ⊆ W and condition (12) implies that |f(x0)− f(y)| < ε,

thus the proof is complete. 2

Proof of Proposition 11. Let T be the tree consisting of all fi-

nite zero-one sequences. We are going to define a good T -family U =

{Us : s ∈ T} of quasiballs for g. Let 〈ri : i ∈ ω〉 be a sequence of positive

real numbers such that the series
∑∞

i=0 ri converges. We shall define a

sequence 〈qi : i ∈ ω〉 of positive real numbers with
∑∞

i=0 qi < ∞ and a

function η : T → Rn such that conditions (i)–(v) are satisfied. We will

also define an auxiliary function η′ : T → X. The construction will be

done by induction on i < ω in such a way that the following additional

conditions hold:

(a) η(∅) ∈ X is arbitrary and q1 = q0 < diam(X)/2;

(b) η(s ∗ 0) = η(s ∗ 1) = η′(s) ∈ bdUs ∩X for any s ∈ Ti;
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(c) qi = 1
4

mins∈Ti−2
|η′(s ∗ 0)− η′(s ∗ 1)| for i > 1;

(d) clUs∗1 ⊆ Us∗0 for any s ∈ Ti.

To see that the construction can be made, notice that the choice

of each Us satisfying (i)-(iii), (v) and (d) can be guaranteed by Corol-

lary 25. We can choose η′(s) ∈ bdUs∩X, since bdUs∩X is non-empty

as X is connected and Us has the diameter smaller than X. So, (b)

implies (iv). Also, qi > 0, since the points η′(s ∗ 0) and η′(s ∗ 1) are

different by (d). This completes the construction.

Let P = LU . It is clear that P is a closed subset of X, and it follows

from (c) that xγ 6= xδ for distinct γ, δ ∈ T ∗. This implies that P is a

perfect set. We conclude from Lemma 27 that the restriction of g to P

is continuous, completing the proof. 2
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