THE BASIS NUMBER OF THE POWERS OF THE COMPLETE GRAPH

Salar Y. Alsardary
Philadelphia College of Pharmacy and Science,
Dept. of Math. Physics and Comp. Science,
600 South 43rd St., Philadelphia, PA 19104.
Jerzy Wojciechowski
Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV 26506-6310.

Abstract

A basis of the cycle space $\mathcal{C}(G)$ of a graph G is h-fold if each edge of G occurs in at most h cycles of the basis. The basis number $b(G)$ of G is the least integer h such that $\mathcal{C}(G)$ has an h-fold basis. MacLane [3] showed that a graph G is planar if and only if $b(G) \leq 2$. Schmeichel [4] proved that $b\left(K_{n}\right) \leq 3$, and Banks and Schmeichel [2] proved that $b\left(K_{2}^{d}\right) \leq 4$ where K_{2}^{d} is the d-dimesional hypercube. We show that $b\left(K_{n}^{d}\right) \leq 9$ for any n and d, where K_{n}^{d} is the cartesian d-th power of the complete graph K_{n}.

[^0]
1 Introduction

Let G be a graph, and let $e_{1}, e_{2}, \cdots, e_{q}$ be an enumeration of its edges. Then, any subset S of $E(G)$ corresponds to a $(0,1)$-vector $\left(a_{1}, a_{2}, \ldots, a_{q}\right) \in\left(Z_{2}\right)^{q}$ with $a_{i}=1$ if $e_{i} \in S$ and $a_{i}=0$ if $e_{i} \notin S$. Let $\mathcal{C}(G)$, called the cycle space of G, be the subspace of $\left(Z_{2}\right)^{q}$ generated by the vectors corresponding to the cycles in G. We will identify the elements of $\mathcal{C}(G)$ with the corresponding subsets of $E(G)$. It is well known that if G is connected, then the dimension of $\mathcal{C}(G)$ is given by the following formula:

$$
\operatorname{dim}(\mathcal{C}(G))=q-p+1
$$

where p and q denote, respectively, the number of vertices and edges of G. In fact, if T is a spanning tree in G and for every $e \in E(G) \backslash E(T)$ we denote by C_{e} the unique cycle with $E\left(C_{e}\right) \subseteq E(T) \cup\{e\}$, then the collection

$$
B_{T}=\left\{E\left(C_{e}\right): e \in E(G) \backslash E(T)\right\}
$$

forms a basis of $\mathcal{C}(G)$, called the fundamental basis corresponding to T.
Let B be any basis of $\mathcal{C}(G)$, and h be a positive integer. We say that B is h-fold if each edge of G occurs in at most h cycles of B. The basis number of G (denoted by $b(G))$ is the smallest integer h such that $\mathcal{C}(G)$ has an h-fold basis.

The first important result concerning the basis number of a graph was the following theorem of MacLane [3].

Theorem $1 A$ graph G is planar if and only if $b(G) \leq 2$.
Schmeichel [4] proved that there are graphs with arbitrary large basis numbers, and generalized the "only if" part of Theorem 1 by showing that

$$
b(G) \leq 2 \gamma(G)+2
$$

for any graph G, where $\gamma(G)$ is the genus of G. Moreover, Schmeichel [4] proved the following result.

Theorem 2 For every integer $n \geq 5$, the basis number of the complete graph K_{n} is equal to 3.

Note that Theorems 1 and 2 imply that the basis number of any complete graph is at most 3.

Let K_{2}^{d} be the d-dimensional hypercube, that is, the d-th cartesian power of the complete graph K_{2}. Banks and Schmeichel [2] proved the following result about the basis number of the hypercube.

Theorem 3 For every integer $d \geq 7$, the basis number of the hypercube K_{2}^{d} is equal to 4 .

In this paper, we are interested in establishing an upper bound on the basis number of the d-th cartesian power of any complete graph.

For completeness, let us recall the definition of the cartesian product of two graphs. The product $G \times H$ of G and H is the graph with $V(G) \times V(H)$ as the vertex set and $\left(g_{1}, h_{1}\right)$ adjacent to $\left(g_{2}, h_{2}\right)$ if either $g_{1} g_{2} \in E(G)$ and $h_{1}=h_{2}$, or else if $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$. Let K_{n}^{d} be the product of d copies of the complete graph $K_{n}, n \geq 2, d \geq 1$.

Ali and Marougi [1] proved the following result on the cartesian product of graphs.

Theorem 4 For any two connected graphs G and H, we have

$$
b(G \times H) \leq \max \left\{b(G)+\Delta\left(T_{H}\right), b(H)+\Delta\left(T_{G}\right)\right\}
$$

where T_{G} denotes a spanning tree of G with maximal degree as small as possible, and $\Delta\left(T_{G}\right)$ denotes the maximal degree of T_{G}.

Applying Theorems 2 and 4, we get easily the following two corollaries.

Corollary 5 For every $n \geq 2$ and $k \geq 0$, we have

$$
b\left(K_{n}^{2^{k}}\right) \leq 2 k+3
$$

Proof. It follows from Theorems 1 and 2 that $b\left(K_{n}^{2^{0}}\right) \leq 3$. Assume now that $k \geq 1$ and that $b\left(K_{n}^{2^{k-1}}\right) \leq 2(k-1)+3$. Since $K_{n}^{2^{k}}=K_{n}^{2^{k-1}} \times K_{n}^{2^{k-1}}$ and since any power of a complete graph is hamiltonian, it follows from Theorem 4 that

$$
b\left(K_{n}^{2^{k}}\right) \leq b\left(K_{n}^{2^{k-1}}\right)+2 \leq 2 k+3,
$$

and the proof is complete.

Corollary 6 For every $n \geq 2$ and $d \geq 1$, we have

$$
b\left(K_{n}^{d}\right) \leq 2 \log _{2} d+5
$$

Proof. We show, by induction on k, that if d is an integer satisfying $2^{k-1} \leq$ $d \leq 2^{k}$, then $b\left(K_{n}^{d}\right) \leq 2 k+3$. For $k=0$ and $k=1$, the claim follows from Corollary 5 . Assume that $k \geq 2$, and that our claim holds for smaller values of k. Let d satisfy $2^{k-1} \leq d \leq 2^{k}$, and let $d_{1}=\lfloor d / 2\rfloor$ and $d_{2}=\lceil d / 2\rceil$. Then

$$
2^{k-2} \leq d_{1}, d_{2} \leq 2^{k-1}
$$

so it follows from the inductive hypothesis that $b\left(K_{n}^{d_{1}}\right) \leq 2(k-1)+3$ and $b\left(K_{n}^{d_{2}}\right) \leq 2(k-1)+3$. Using Theorem 4 and the fact that any power of a complete graph is hamiltonian, we get

$$
b\left(K_{n}^{2^{k}}\right) \leq \max \left\{b\left(K_{n}^{d_{1}}\right)+2, b\left(K_{n}^{d_{2}}\right)+2\right\} \leq 2 k+3,
$$

completing the proof of the claim.

It follows from the claim that

$$
b\left(K_{n}^{d}\right) \leq 2\left\lceil\log _{2} d\right\rceil+3 \leq 2 \log _{2} d+5,
$$

completing the proof.
In view of Theorem 3 saying that the basis number of a hypercube has a constant upper bound, a natural question arises: does there exist a constant c that is independent of n and d such that the basis number of K_{n}^{d} is bounded from above by c for arbitrary values of n and d ? Using a generalization of the technique developed by Banks and Schmeichel [2], we will show that the answer to the above question is positive. We shall prove the following result.

Theorem 7 For every $n \geq 2$ and $d \geq 1$, the basis number of K_{n}^{d} is at most 9 .

2 Preliminary lemmas

Let $n \geq 2$ be a fixed integer. We are going first to define, recursively, a collection \mathcal{B}_{d} of cycles in K_{n}^{d}, for every $d \geq 1$. We will show later that \mathcal{B}_{d} is a 9-fold basis of $\mathcal{C}\left(K_{n}^{d}\right)$.

It will be convenient to think of the vertices of K_{n}^{d} as d-tuples of n-ary digits, i.e., the elements from the set $\{0,1, \ldots, n-1\}$ with two such d-tuples being adjacent if and only if they differ at exactly one coordinate.

Given $i \in\{0,1, \ldots, n-1\}$ and a vertex $u=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ of K_{n}^{d}, let $u^{(i)}$ denote the vertex of K_{n}^{d+1} that is obtained from u by adjoining the digit i at the end, i.e., let

$$
u^{(i)}=\left(x_{1}, x_{2}, \ldots, x_{d}, i\right) .
$$

If G is any subgraph of the graph K_{n}^{d}, then $G^{(i)}$ will denote the isomorphic copy of G in K_{n}^{d+1} obtained by adjoining the digit i at the end of each vertex
of G, and if \mathcal{R} is a collection of subgraphs of K_{n}^{d}, then let

$$
\mathcal{R}^{(i)}=\left\{G^{(i)}: G \in \mathcal{R}\right\},
$$

$i=0,1, \ldots, n-1$.
For any $d \geq 1$, let

$$
\tau_{d}=\left(t(d, 1), t(d, 2), \cdots, t\left(d, n^{d}-1\right)\right)
$$

be a sequence of integers defined recursively as follows. Take

$$
\tau_{1}=(\underbrace{1,1, \ldots, 1}_{n-1})
$$

and for $d>1$, define τ_{d} by:

$$
t(d, i)= \begin{cases}t(d-1, k) & \text { if } i=n k \\ d & \text { otherwise }\end{cases}
$$

Then, for example, we have

$$
\tau_{2}=(\underbrace{(\underbrace{2,2, \ldots, 2}_{n-1}}_{n-1}, 1, \underbrace{2,2, \ldots, 2}_{n-1}, 1, \ldots, 1, \underbrace{2,2, \ldots, 2}_{n-1}, 1, \underbrace{2,2, \ldots, 2}_{n-1}) .
$$

We will use the sequence τ_{d} to define a Hamiltonian path in K_{n}^{d}.
Given a pair u, v of vertices of K_{n}^{d} and $i \in\{0,1, \ldots, n-1\}$, we say that the vertex v is an i-successor of the vertex u if the i-th coordinate of v is equal to the i-th coordinate of u plus 1 modulo n and all other coordinates of u and v are the same. Let

$$
W_{d}=\left(w_{1}, w_{2}, \ldots, w_{n^{d}}\right)
$$

be a sequence of vertices in K_{n}^{d} defined as follows. Take w_{1} to be arbitrary and, for every i with $1 \leq i<n^{d}$, let w_{i+1} be the $t(d, i)$-successor of w_{i}. The sequence W_{d} will be called the τ_{d}-sequence starting at w_{1}.

Lemma 8 For any vertex u of K_{n}^{d}, the τ_{d}-sequence starting at u is a Hamiltonian path in K_{n}^{d}.

Proof. We use induction with respect to d. For $d=1$, the result is obvious. Assume that $d \geq 2$, and that for any vertex u of K_{n}^{d-1} the τ_{d-1}-sequence starting at u is a Hamiltonian path in K_{n}^{d-1}. Let v be any vertex of K_{n}^{d}, and W_{d} be the τ_{d}-sequence starting at v. We will show that W_{d} is a Hamiltonian path in K_{n}^{d}. Let i be the last digit of v, let w_{1} be the vertex of K_{n}^{d-1} such that $v=w_{1}^{(i)}$, and let

$$
W_{d-1}=\left(w_{1}, w_{2}, \ldots, w_{n^{d-1}}\right)
$$

be the τ_{d-1}-sequence starting at w_{1}. It follows from the definition of τ_{d} that

$$
\begin{gathered}
W_{d}=\left(w_{1}^{(i)}, w_{1}^{(i+1)}, \ldots, w_{1}^{(i+n-1)}, w_{2}^{(i-1)}, w_{2}^{(i)}, \ldots, w_{2}^{(i+n-2)},\right. \\
\left.\ldots, w_{n^{d-1}}^{(i+1)}, w_{n^{d-1}}^{(i+2)}, \ldots, w_{n^{d-1}}^{(i+n)}\right)
\end{gathered}
$$

where the top indexes are taken modulo n. Since W_{d-1} is a Hamiltonian path in K_{n}^{d-1}, it is clear from the above representation that W_{d} is a Hamiltonian path in K_{n}^{d}, and so the proof is complete.

The τ_{d}-sequence starting at $(1,1, \ldots, 1,0)$ will be called the τ_{d}-path and, in the remainder of this chapter, we reserve the symbol W_{d} for the τ_{d}-path, $d \geq 1$.

Given an integer $d \geq 2$, assume that the τ_{d-1}-path W_{d-1} is equal to the following sequence of vertices

$$
W_{d-1}=\left(w_{1}, w_{2}, \ldots, w_{n^{d-1}}\right) .
$$

Then the sequence

$$
W_{d-1}^{(j)}=\left(w_{1}^{(j)}, w_{2}^{(j)}, \ldots, w_{n^{d-1}}^{(j)}\right)
$$

is a path in K_{n}^{d}, for every $j \in\{0,1, \ldots, n-1\}$. For every $i \in\left\{1,2, \ldots, n^{d-1}\right\}$, let J_{i} be the subgraph of K_{n}^{d} induced by the set of vertices

$$
\left\{w_{i}^{(j)}: j \in\{0,1, \ldots, n-1\}\right\} .
$$

Clearly, the graph J_{i} is isomorphic to K_{n} for each i. As we saw earlier, $b\left(K_{n}\right) \leq 3$. For every $i \in\left\{1,2, \ldots, n^{d-1}\right\}$, let D_{i} be a 3 -fold basis of J_{i}, and let

$$
\mathcal{D}_{d}=\bigcup_{i=1}^{n^{d-1}} D_{i}
$$

For every $i \in\left\{1,2, \ldots, n^{d-1}-1\right\}$ and $j \in\{0,1, \ldots, n-2\}$, let $C_{i, j}$ be the following 4-cycle

$$
C_{i, j}=\left(w_{i}^{(j)}, w_{i+1}^{(j)}, w_{i+1}^{(j+1)}, w_{i}^{(j+1)}, w_{i}^{(j)}\right),
$$

and let

$$
\mathcal{F}_{d}=\left\{C_{i, j}: i \in\left\{1,2, \ldots, n^{d-1}-1\right\} \text { and } j \in\{0,1, \ldots, n-2\}\right\} .
$$

Now we are ready to define the collection \mathcal{B}_{d} of cycles in K_{n}^{d}. For $d=1$, let \mathcal{B}_{1} be any 3 -fold basis of K_{n}. Assume now that $d \geq 2$ and that the collection \mathcal{B}_{d-1} has been defined. Define \mathcal{B}_{d} by:

$$
\mathcal{B}_{d}=\bigcup_{i=0}^{n-1} \mathcal{B}_{d-1}^{(i)} \cup \mathcal{D}_{d} \cup \mathcal{F}_{d}
$$

To show that \mathcal{B}_{d} is a 9 -fold basis of $\mathcal{C}\left(K_{n}^{d}\right)$, we will need some prelimary results.

Let $d \geq 2$ be an integer. Assume that

$$
W_{d-1}=\left(w_{1}, w_{2}, \ldots, w_{n^{d-1}}\right)
$$

is the τ_{d-1}-path. For every $i \in\left\{1,2, \ldots, n^{d-1}-1\right\}$ and every $j, k \in\{0,1, \ldots, n-1\}$ with $j \neq k$, let $C_{i, j, k}$ be the following 4-cycle

$$
C_{i, j, k}=\left(w_{i}^{(j)}, w_{i+1}^{(j)}, w_{i+1}^{(k)}, w_{i}^{(k)}, w_{i}^{(j)}\right) .
$$

Note that $C_{i, j,(j+1)}$ is equal to the cycle $C_{i, j}$ defined before. Let

$$
\mathcal{E}_{d}=\left\{C_{i, j, k}: i \in\left\{1,2, \cdots, n^{d-1}-1\right\}, j, k \in\{0,1, \cdots, n-2\}, j<k\right\} .
$$

Recall that $J_{n^{d-1}}$ is the subgraph of K_{n}^{d} induced by the set of vertices

$$
\left\{w_{n^{d-1}}^{(j)}: j=0,1, \ldots, n-1\right\} .
$$

Let $\mathcal{D}_{d}^{\prime}=D_{n^{d-1}}$ be the 3 -fold basis of $J_{n^{d-1}}$ that is contained in \mathcal{D}_{d}.
If $\mathcal{R}_{d-1} \subseteq \mathcal{C}\left(K_{n}^{d-1}\right)$ and $\mathcal{R}_{d-1}^{(i)}$ is obtained from \mathcal{R}_{d-1} by adding the digit i at the end of each vertex of each cycle, then the collection

$$
\mathcal{R}_{d-1}^{+}=\bigcup_{i=0}^{n-1} \mathcal{R}_{d-1}^{(i)}
$$

of cycles in K_{n}^{d} will be called the lift of \mathcal{R}_{d-1}.
Lemma 9 If \mathcal{R}_{d-1} is a basis of $\mathcal{C}\left(K_{n}^{d-1}\right)$, then $\mathcal{R}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime} \cup \mathcal{E}_{d}$ is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$.

Proof. Let \mathcal{R}_{d-1} be any basis of K_{n}^{d-1} and let

$$
\mathcal{R}_{d}=\mathcal{R}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime} \cup \mathcal{E}_{d}
$$

Since the graph K_{n}^{d} has n^{d} vertices and is $(n-1) d$-regular, it has $n^{d}(n-1) d / 2$ edges, and so

$$
\begin{equation*}
\operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right)=\frac{n^{d}(n-1) d}{2}-n^{d}+1=n^{d}\left(\frac{(n-1) d}{2}-1\right)+1 . \tag{1}
\end{equation*}
$$

Thus

$$
\left|\mathcal{R}_{d-1}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}^{d-1}\right)=n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1
$$

and

$$
\left|\mathcal{R}_{d-1}^{+}\right|=n\left|\mathcal{R}_{d-1}\right|=n^{d}\left(\frac{(n-1)(d-1)}{2}-1\right)+n .
$$

Moreover, we have

$$
\left|\mathcal{E}_{d}\right|=\left(n^{d-1}-1\right) \frac{n(n-1)}{2}=\frac{n^{d}(n-1)}{2}-\frac{n(n-1)}{2}
$$

and

$$
\left|\mathcal{D}_{d}^{\prime}\right|=\operatorname{dim} \mathcal{C}\left(K_{n}\right)=\frac{n(n-1)}{2}-n+1
$$

Therefore

$$
\begin{aligned}
\left|\mathcal{R}_{d}\right| & =\left|\mathcal{R}_{d-1}^{+}\right|+\left|\mathcal{D}_{d}^{\prime}\right|+\left|\mathcal{E}_{d}\right| \\
& =n^{d}\left(\frac{(n-1)(d-1)}{2}-1\right)+\frac{n^{d}(n-1)}{2}+1 \\
& =n^{d}\left(\frac{(n-1) d}{2}-1\right)+1 \\
& =\operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right) .
\end{aligned}
$$

Thus to prove that \mathcal{R}_{d} is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, it suffices to show that the cycles of \mathcal{R}_{d} are linearly independent.

Suppose, by way of contradiction, that there is a nonempty subset $S \subseteq \mathcal{R}_{d}$ such that

$$
\sum_{C \in S} C=0 \bmod 2
$$

Since \mathcal{R}_{d-1} is a basis of $\mathcal{C}\left(K_{n}^{d-1}\right)$, the set $\mathcal{R}_{d-1}^{(i)}$ is linearly independent in $\mathcal{C}\left(K_{n}^{d}\right)$, for every $i \in\{0,1, \ldots, n-1\}$. Since any cycle in $\mathcal{R}_{d-1}^{(i)}$ is edge-disjoint from any cycle in $\mathcal{R}_{d-1}^{(j)}$ for $j \neq i$, the set \mathcal{R}_{d-1}^{+}is linearly independent in $\mathcal{C}\left(K_{n}^{d}\right)$. Since the set \mathcal{D}_{d}^{\prime} is a basis of $J_{n^{d-1}}$, and since no cycle in \mathcal{D}_{d}^{\prime} share an
edge with a cycle in \mathcal{R}_{d-1}^{+}, it follows that $\mathcal{R}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime}$ is linearly independent in $\mathcal{C}\left(K_{n}^{d}\right)$. Therefore S must include at least one cycle \mathcal{E}_{d}, i.e. there are $i \in\left\{1,2, \ldots, n^{d-1}-1\right\}$ and $j, k \in\{0,1, \cdots, n-2\}$ with $j \neq k$ such that $C_{i, j, k} \in S$.

We claim that $C_{1, j, k} \in S$. Indeed, if $i=1$, then we are done. If $i>$ 1, then since $C_{i, j, k}$ contains the edge $w_{i}^{(j)} w_{i}^{(k)}$ and the only other cycle in \mathcal{R}_{d} containing the edge $w_{i}^{(j)} w_{i}^{(k)}$ is $C_{i-1, j, k}$, we conclude that $C_{i-1, j, k} \in S$. Continuing by induction we get $C_{1, j, k} \in S$, and so the proof of the claim is complete.

Since the cycle $C_{1, j, k}$ contains the edge $w_{1}^{(j)} w_{1}^{(k)}$ which occurs in no other cycle of \mathcal{R}_{d}, and in particular in no other cycle of S we have a contradiction. Thus \mathcal{R}_{d} is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, and the proof of the lemma is complete.

Let G_{d} be the spanning subgraph of K_{n}^{d} with $E\left(G_{d}\right)$ consisting of all the edges of the paths

$$
W_{d-1}^{(j)}=\left(w_{1}^{(j)}, w_{2}^{(j)}, \ldots, w_{n^{d-1}}^{(j)}\right)
$$

for $j \in\{0,1, \ldots, n-1\}$, and all the edges of the graphs J_{i} for $i \in\left\{1,2, \ldots, n^{d-1}\right\}$, i.e., let

$$
\begin{aligned}
E\left(G_{d}\right)= & \left\{w_{i}^{(j)} w_{i}^{(k)}: i \in\left\{1,2, \ldots, n^{d-1}\right\} ; j, k \in\{0,1, \ldots, n-1\} ; j \neq k\right\} \\
& \cup\left\{w_{i}^{(j)} w_{i+1}^{(j)}: i \in\left\{1,2, \ldots, n^{d-1}-1\right\}, j \in\{0,1, \ldots, n-1\}\right\}
\end{aligned}
$$

Note that the graph G_{d} is isomorphic to the cartesian product of the complete graph K_{n} with a path of length n^{d-1}.

Lemma 10 The union $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ is a basis of $\mathcal{C}\left(G_{d}\right)$.
Proof. Since for each $i \in\left\{1,2, \ldots, n^{d-1}\right\}$ the graph J_{i} has $n(n-1) / 2$ edges, it follows that

$$
\left|E\left(G_{d}\right)\right|=n^{d}(n-1) / 2+n\left(n^{d-1}-1\right)
$$

Therefore

$$
\begin{aligned}
\operatorname{dim} \mathcal{C}\left(G_{d}\right) & =\left(\frac{n^{d}(n-1)}{2}+n\left(n^{d-1}-1\right)\right)-n^{d}+1 \\
& =\left(\frac{n-1}{2}\right) n^{d}-n+1
\end{aligned}
$$

Since \mathcal{D}_{d} consists of n^{d-1} disjoint copies of a basis of K_{n}, it follows that

$$
\left|\mathcal{D}_{d}\right|=n^{d-1}\left(\frac{n(n-1)}{2}-n+1\right) .
$$

Since

$$
\left|\mathcal{F}_{d}\right|=\left(n^{d-1}-1\right)(n-1)
$$

we conclude that

$$
\begin{align*}
\left|\mathcal{D}_{d} \cup \mathcal{F}_{d}\right| & =n^{d-1}\left(\frac{n(n-1)}{2}-n+1\right)+\left(n^{d-1}-1\right)(n-1) \\
& =\left(\frac{n-1}{2}\right) n^{d}-n+1 \tag{2}\\
& =\operatorname{dim} \mathcal{C}\left(G_{d}\right) .
\end{align*}
$$

Therefore, to show that $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ is a basis of $\mathcal{C}\left(G_{d}\right)$ it suffices to show that the cycles of $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ are linearly independent. Suppose, by way of contradiction, that there is $S \subseteq \mathcal{D}_{d} \cup \mathcal{F}_{d}$ such that

$$
\sum_{C \in S} C=0 \bmod 2 .
$$

Since the graphs $J_{1}, J_{2}, \ldots, J_{n^{d-1}}$ are mutually vertex disjoint and D_{i} is a basis of J_{i} for each i, it follows that the set \mathcal{D}_{d} is linearly independent in $\mathcal{C}\left(G_{d}\right)$. Therefore S must contain at least one cycle from \mathcal{F}_{d}, i.e. the are $i \in\left\{1,2, \ldots, n^{d-1}-1\right\}$ and $j \in\{0,1, \ldots, n-2\}$ such that

$$
C_{i, j}=\left(w_{i}^{(j)}, w_{i+1}^{(j)}, w_{i+1}^{(j+1)}, w_{i}^{(j+1)}, w_{i}^{(j)}\right) \in S .
$$

We claim that $C_{i, 1} \in S$. Indeed, if $j>0$, then the cycle

$$
C_{i, j-1}=\left(w_{i}^{(j-1)}, w_{i+1}^{(j-1)}, w_{i+1}^{(j)}, w_{i}^{(j)}, w_{i}^{(j-1)}\right)
$$

is the only other cycle of $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ containing the edge $w_{i}^{(j)} w_{i+1}^{(j)}$. Since $C_{i, j} \in S$, it follows that $C_{i, j-1} \in S$. Continuing by induction, we see that S must contain the cycle $C_{i, 1}$, and so the proof of the claim is complete.

Since $C_{i, 1}$ is the only cycle of $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ containing the edge $w_{i}^{(0)} w_{i+1}^{(0)}$, we have a contradiction. Thus $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ is a basis of $\mathcal{C}\left(G_{d}\right)$, and the proof of the lemma is complete.

3 Proof of the main result

The aim of this section is to prove Theorem 7. It suffices to establish that \mathcal{B}_{d} is a 9 -fold basis of K_{n}^{d}.

Theorem 11 For each $d \geq 1$, the set \mathcal{B}_{d} is a basis for K_{n}^{d}.
Proof. We are going to use induction with respect to d. For $d=1, \mathcal{B}_{1}$ is a basis of K_{n} by the definition. Assume that $d \geq 2$ and that \mathcal{B}_{d-1} is a basis of K_{n}^{d-1}. By the definition, we have

$$
\mathcal{B}_{d}=\mathcal{B}_{d-1}^{+} \cup \mathcal{D}_{d} \cup \mathcal{F}_{d}
$$

It follows from (2) and (1) that

$$
\begin{aligned}
\left|\mathcal{B}_{d}\right| & =n \operatorname{dim} \mathcal{C}\left(K_{n}^{d-1}\right)+\left(\frac{n-1}{2}\right) n^{d}-n+1 \\
& =n\left(n^{d-1}\left(\frac{(n-1)(d-1)}{2}-1\right)+1\right)+\left(\frac{n-1}{2}\right) n^{d}-n+1 \\
& =n^{d}\left(\frac{(n-1)(d-1)}{2}-1\right)+\left(\frac{n-1}{2}\right) n^{d}+1 \\
& =n^{d}\left(\frac{(n-1) d}{2}-1\right)+1 \\
& =\operatorname{dim} \mathcal{C}\left(K_{n}^{d}\right) .
\end{aligned}
$$

Therefore, to prove that \mathcal{B}_{d} is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$ it suffices to show that \mathcal{B}_{d} spans $\mathcal{C}\left(K_{n}^{d}\right)$. Since it follows from Lemma 9 that $\mathcal{B}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime} \cup \mathcal{E}_{d}$ is a basis of $\mathcal{C}\left(K_{n}^{d}\right)$, it is enough to show that \mathcal{B}_{d} spans $\mathcal{B}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime} \cup \mathcal{E}_{d}$. Since $\mathcal{B}_{d-1}^{+} \cup \mathcal{D}_{d}^{\prime} \subseteq \mathcal{B}_{d}$, we only need to show that \mathcal{B}_{d} spans \mathcal{E}_{d}. Since each cycle of \mathcal{E}_{d} is a cycle in the graph G_{d}, it follows from Lemma 10 that $\mathcal{D}_{d} \cup \mathcal{F}_{d}$ spans \mathcal{E}_{d}. Since $\mathcal{D}_{d} \cup \mathcal{F}_{d} \subseteq$ \mathcal{B}_{d}, the proof is complete.

Given $k \in\{0,1, \ldots, n-1\}$, an edge e of K_{n}^{d} is said to be of type k if and only if the vertices of e differ in exactly the k-th coordinate. Two edges e_{1} and e_{2} of K_{n}^{d} are said to be k-correspondent if and only if the two vertices of e_{2} can be obtained by changing the k-th coordinate of the vertices of e_{1}. The edge e_{2} is an k-successor of e_{1} if and only if the k-coordinates of the endpoints of e_{2} are obtained from the k-coordinates of the endpoints of e_{1} by adding 1 modulo n. Note that if two edges of K_{n}^{d} are ℓ-correspondent, then they must be of the same type k, with $k \neq \ell$.

Assume that $d \geq 3$. Recall that, for each $i=0,1, \ldots, n-1$, the path $W_{d-1}^{(i)}$ is the path in K_{n}^{d} obtained by adding the digit i at the end of each vertex of the τ_{d-1}-path W_{d-1}.

Lemma 12 If A is the set of all n mutually $(d-1)$-correspondent edges of K_{n}^{d}, then at most one edge of A can be an edge of the path $W_{d-1}^{(0)}$.

Proof. Let $A=\left\{e_{0}, e_{1}, \ldots, e_{n-1}\right\}$ be the set of all mutually $(d-1)$ correspondent edges, with $e_{i}=u_{i} v_{i}$ and such that the $(d-1)$-coordinate of u_{i} and v_{i} is equal to i for $i \in\{0,1, \ldots, n-1\}$. Assume that the edges in A are of type k. Since the path $W_{d-1}^{(0)}$ does not have any edges of type d, we can assume that $k \leq d-2$.

Suppose that e_{0} occurs in $W_{d-1}^{(0)}$. Since W_{d-1} is the τ_{d-1}-path, and since each occurrence of k in τ_{d-1} is followed by $n-1$ entries equal to $d-1$, the vertices following v_{0} in $W_{d-1}^{(0)}$ must be $v_{1}, v_{2}, \ldots, v_{n-1}$, i.e.,

$$
W_{d-1}^{(0)}=\left(\ldots, u_{0}, v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}, \ldots\right) .
$$

Since $n \geq 3$, the vertex u_{n-1} cannot follow v_{n-1} in $W_{d-1}^{(0)}$. Therefore neither of the edges $e_{1}, e_{2}, \ldots, e_{n-1}$ can occur in $W_{d-1}^{(0)}$, and the proof of the lemma is complete.

Lemma 13 If $d \geq 3$ and $k \leq d-2$, then the number of terms with value d preceeding any occurence of k in τ_{d} is divisible by n.

Proof. Let α_{d} be the sequence defined by

$$
\alpha_{d}=\underbrace{\underbrace{d, d, \ldots, d}_{n-1}, d-1, \underbrace{d, d, \ldots, d}_{n-1}, d-1, \ldots, \underbrace{d, d, \ldots, d}_{n-1}, d-1}_{n-1}, \underbrace{d, d, \ldots, d}_{n-1}) .
$$

It is clear from the construction that the sequence τ_{d} consists of copies of the sequence α_{d} with a single term having value at most $d-2$ between any two consecutive copies of α_{d}. Since the number of terms with value d in α_{d}
is equal to $n(n-1)$, each term with value $k \leq d-2$ in τ_{d} is preceeded by a multiple of n of terms with value d. This completes the proof.

For each $k \in\{1,2, \ldots, d\}$, let $e_{j, k}$ denote the j-th edge of type k of the path W_{d} and let $e_{j, k}^{\prime}$ be the j-th edge of type k in $W_{d-1}^{(0)}$. Note that if $k \leq d-1$, then the number edges of type k in W_{d} is the same as the number of edges of type k in $W_{d-1}^{(0)}$, so for each j, the edge $e_{j, k}$ exists if and only if $e_{j, k}^{\prime}$ exists.

Lemma 14 If $k \leq d-2$, then the edge $e_{j, k}$ is the $(d-1)$-successor of $e_{j, k}^{\prime}$, for every j such that both $e_{j, k}$ and $e_{j, k}^{\prime}$ exist.

Proof. Assume that $k \leq d-2$ and that j is such that both $e_{j, k}$ and $e_{j, k}^{\prime}$ exist. Let u, v be the endpoints of $e_{j, k}$ (with u appearing before v in W_{d}) and u^{\prime}, v^{\prime} be the endpoints of $e_{j, k}^{\prime}$ (with u^{\prime} appearing before v^{\prime} in $W_{d-1}^{(0)}$). It is enough to show that u is the $(d-1)$-successor of u^{\prime}. Note that the first vertex of W_{d} is equal to $(1,1, \ldots, 1,0)$, and the first vertex of $W_{d-1}^{(0)}$ is equal to $(1,1, \ldots, 1,0,0)$. Thus the the first vertex of $W_{d-1}^{(0)}$ is the $(d-1)$-successor of the first vertex of $W_{d-2}^{(0,0)}$.

Let ξ_{ℓ}^{m} be the number of terms with value m preceeding the j-th occurrence of k in the sequence τ_{ℓ}, for every $m=1,2, \cdots, d$ and $\ell=d-1, d$. To prove that u is the $(d-1)$-successor of u^{\prime}, we need to show that

$$
\xi_{d}^{m} \equiv \xi_{d-1}^{m} \bmod n
$$

for every $m=1,2, \ldots, d$.
Indeed, by the definition of τ_{d}, we have $\xi_{d}^{m}=\xi_{d-1}^{m}$ for every $m \leq d-1$. Clearly $\xi_{d-1}^{d}=0$, and since $k \leq d-2$, it follows from Lemma 13 that ξ_{d}^{d} is divisible by n. Therefore, u is the $(d-1)$-successor of u^{\prime} and the proof is complete.

Theorem 7 follows immediately from the following result.

Theorem 15 The set \mathcal{B}_{d} is a 9-fold basis of $\mathcal{C}\left(K_{n}^{d}\right)$ for every $d \geq 1$.
Proof. For every $i \in\left\{1,2, \cdots, n^{d-1}-1\right\}$ let $C_{i, n-1}$ be the 4-cycle

$$
C_{i, n-1}=\left(w_{i}^{(n-1)}, w_{i+1}^{(n-1)}, w_{i+1}^{(0)}, w_{i}^{(0)}, w_{i}^{(n-1)}\right),
$$

and let

$$
\begin{aligned}
\overline{\mathcal{F}}_{d} & =\mathcal{F}_{d} \cup\left\{C_{i, n-1}: i \in\left\{1,2, \ldots, n^{d-1}-1\right\}\right\} \\
& =\left\{C_{i, j}: i \in\left\{1,2, \ldots, n^{d-1}-1\right\} \text { and } j \in\{0,1, \ldots, n-1\}\right\} .
\end{aligned}
$$

Define recursively the collection $\overline{\mathcal{B}}_{d}$ of cycles in K_{n}^{d} by $\overline{\mathcal{B}}_{1}=\mathcal{B}_{1}$ and

$$
\overline{\mathcal{B}}_{d}=\overline{\mathcal{B}}_{d-1}^{+} \cup \mathcal{D}_{d} \cup \overline{\mathcal{F}}_{d},
$$

where

$$
\overline{\mathcal{B}}_{d-1}^{+}=\bigcup_{i=0}^{n-1} \overline{\mathcal{B}}_{d-1}^{(i)}
$$

is the lift of $\overline{\mathcal{B}}_{d-1}$. Clearly, $\mathcal{B}_{d} \subseteq \overline{\mathcal{B}}_{d}$ for every $d \geq 1$. We will show, by induction with respect to d, that each edge e of K_{n}^{d} is used at most 9 times in the cycles of $\overline{\mathcal{B}}_{d}$, and moreover, that it is used at most 7 times in the cycles of $\overline{\mathcal{B}}_{d}$ when e is an edge of the τ_{d}-path W_{d}, and that e is used at most 5 times in the cycles of $\overline{\mathcal{B}}_{d}$ if e is of type d. The basis $\overline{\mathcal{B}}_{1}$ is 3 -fold by its definition, and it is clear from the construction that each edge of K_{n}^{2} appears in at most 5 cycles of $\overline{\mathcal{B}}_{2}$, so our claim holds for $d=1$ and $d=2$.

Assume that $d \geq 3$, and that the set $\overline{\mathcal{B}}_{d-1}$ satisfies the specified condition. Since any edge e of K_{n}^{d} of type d appears in at most 3 cycles of the set \mathcal{D}_{d}, in at most 2 cycles of the set $\overline{\mathcal{F}}_{d}$ and in no cycles of $\overline{\mathcal{B}}_{d-1}^{+}$, the edge e is used at most 5 times in the cycles of $\overline{\mathcal{B}}_{d}$. Assume now that e is an edge of K_{n}^{d} of type $k \leq d-1$. Clearly, the edge e appears in no cycles of \mathcal{D}_{d}. If e is an edge of the path $W_{d-1}^{(i)}$ for some $i \in\{0,1, \ldots, n-1\}$, then it appears in exactly 2
cycles of $\overline{\mathcal{F}}_{d}$, and by the inductive hypothesis, it appears in at most 7 cycles of $\overline{\mathcal{B}}_{d-1}^{+}$. Otherwise, the edge e appears in no cycles of $\overline{\mathcal{F}}_{d}$ and in at most 9 cycles of $\overline{\mathcal{B}}_{d-1}^{+}$. To complete the proof, it remains to show that if e is an edge of W_{d} of type $k \leq d-1$, then it appears in at most 7 cycles of $\overline{\mathcal{B}}_{d}$.

Let e be an edge of type $k \leq d-1$ in the path W_{d}. Suppose first that $k=d-1$. Then it follows from the inductive hypothesis that e appears in at most 5 cycles of $\overline{\mathcal{B}}_{d-1}^{+}$. Since e appears in at most 2 cycles of $\overline{\mathcal{F}}_{d}$, it appears in at most 7 cycles of $\overline{\mathcal{B}}_{d}$.

Now assume that $k \leq d-2$, and that $e=e_{j, k}$, i.e., that e is the j-th edge of type k in the path W_{d}. Consider the j-th edge $e_{j, k}^{\prime}$ of type k in $W_{d-1}^{(0)}$. By the inductive hypothesis, the edge $e_{j, k}^{\prime}$ occurs in at most 7 cycles of $\overline{\mathcal{B}}_{d-1}^{(0)}$. By Lemma 14, $e_{j, k}$ is the $(d-1)$-successor of $e_{j, k}^{\prime}$. Since any two $(d-1)$ correspondent edges of K_{n}^{d-1} appear in the same number of cycles of $\overline{\mathcal{B}}_{d-1}$, it follows that the edges $e_{j, k}$ and $e_{j, k}^{\prime}$ appear in the same number of cycles of $\overline{\mathcal{B}}_{d-1}^{(0)}$. Therefore, $e_{j, k}$ appears in at most 7 cycles of $\overline{\mathcal{B}}_{d-1}^{(0)}$. Since $e_{j, k}^{\prime}$ belongs to $W_{d-1}^{(0)}$, it follows from Lemma 12 that $e_{j, k}$ does not belong to $W_{d-1}^{(0)}$. Hence $e_{j, k}$ occurs in at most 7 cycles of $\overline{\mathcal{B}}_{d}$ and the proof is complete.

References

[1] A. A. Ali and G. T. Marougi, The basis number of the cartesian product of some graphs, J. Indian Math. Soc. (N.S.), 58 (1-4) (1992), 123-134.
[2] J. A. Banks and E. F. Schmeichel, The basis number of the n-cube, J. Combin. Theory Ser. B, 33 (2) (1982), 95-100.
[3] S. MacLane, A combinatorial condition for planar graphs, Fund. Math. 28 (1937), 22-32.
[4] E. F. Schmeichel, The basis number of a graph, J. Combin. Theory Ser. B. 30 (2) (1981), 123-129.

[^0]: ${ }^{0}$ Keywords: cycle space of a graph, basis number, powers of complete graphs

