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Abstract

A basis of the cycle space C(G) of a graph G is h-fold if each edge

of G occurs in at most h cycles of the basis. The basis number b(G) of

G is the least integer h such that C(G) has an h-fold basis. MacLane

[3] showed that a graph G is planar if and only if b(G) ≤ 2. Schmeichel

[4] proved that b(Kn) ≤ 3, and Banks and Schmeichel [2] proved that

b(Kd
2 ) ≤ 4 where Kd

2 is the d-dimesional hypercube. We show that

b(Kd
n) ≤ 9 for any n and d, where Kd

n is the cartesian d-th power of

the complete graph Kn.

0Keywords: cycle space of a graph, basis number, powers of complete graphs
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1 Introduction

Let G be a graph, and let e1, e2, · · · , eq be an enumeration of its edges. Then,

any subset S of E(G) corresponds to a (0, 1)-vector (a1, a2, . . . , aq) ∈ (Z2)
q

with ai = 1 if ei ∈ S and ai = 0 if ei /∈ S. Let C(G), called the cycle space

of G, be the subspace of (Z2)
q generated by the vectors corresponding to the

cycles in G. We will identify the elements of C(G) with the corresponding

subsets of E(G). It is well known that if G is connected, then the dimension

of C(G) is given by the following formula:

dim(C(G)) = q − p + 1

where p and q denote, respectively, the number of vertices and edges of G.

In fact, if T is a spanning tree in G and for every e ∈ E(G)\E(T ) we denote

by Ce the unique cycle with E(Ce) ⊆ E(T ) ∪ {e}, then the collection

BT = {E(Ce) : e ∈ E(G) \ E(T )}

forms a basis of C(G), called the fundamental basis corresponding to T .

Let B be any basis of C(G), and h be a positive integer. We say that B is

h-fold if each edge of G occurs in at most h cycles of B. The basis number of

G (denoted by b(G)) is the smallest integer h such that C(G) has an h-fold

basis.

The first important result concerning the basis number of a graph was

the following theorem of MacLane [3].

Theorem 1 A graph G is planar if and only if b(G) ≤ 2.

Schmeichel [4] proved that there are graphs with arbitrary large basis

numbers, and generalized the “only if” part of Theorem 1 by showing that

b(G) ≤ 2γ(G) + 2
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for any graph G, where γ(G) is the genus of G. Moreover, Schmeichel [4]

proved the following result.

Theorem 2 For every integer n ≥ 5, the basis number of the complete graph

Kn is equal to 3.

Note that Theorems 1 and 2 imply that the basis number of any complete

graph is at most 3.

Let Kd
2 be the d-dimensional hypercube, that is, the d-th cartesian power

of the complete graph K2. Banks and Schmeichel [2] proved the following

result about the basis number of the hypercube.

Theorem 3 For every integer d ≥ 7, the basis number of the hypercube Kd
2

is equal to 4.

In this paper, we are interested in establishing an upper bound on the

basis number of the d-th cartesian power of any complete graph.

For completeness, let us recall the definition of the cartesian product of

two graphs. The product G×H of G and H is the graph with V (G)×V (H)

as the vertex set and (g1, h1) adjacent to (g2, h2) if either g1g2 ∈ E(G) and

h1 = h2, or else if g1 = g2 and h1h2 ∈ E(H). Let Kd
n be the product of d

copies of the complete graph Kn, n ≥ 2, d ≥ 1.

Ali and Marougi [1] proved the following result on the cartesian product

of graphs.

Theorem 4 For any two connected graphs G and H, we have

b(G×H) ≤ max {b(G) + ∆(TH), b(H) + ∆(TG)}

where TG denotes a spanning tree of G with maximal degree as small as

possible, and ∆(TG) denotes the maximal degree of TG.
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Applying Theorems 2 and 4, we get easily the following two corollaries.

Corollary 5 For every n ≥ 2 and k ≥ 0, we have

b(K2k

n ) ≤ 2k + 3.

Proof. It follows from Theorems 1 and 2 that b(K20

n ) ≤ 3. Assume now that

k ≥ 1 and that b(K2k−1

n ) ≤ 2(k−1)+3. Since K2k

n = K2k−1

n ×K2k−1

n and since

any power of a complete graph is hamiltonian, it follows from Theorem 4 that

b(K2k

n ) ≤ b(K2k−1

n ) + 2 ≤ 2k + 3,

and the proof is complete.

Corollary 6 For every n ≥ 2 and d ≥ 1, we have

b(Kd
n) ≤ 2 log2 d + 5.

Proof. We show, by induction on k, that if d is an integer satisfying 2k−1 ≤
d ≤ 2k, then b(Kd

n) ≤ 2k + 3. For k = 0 and k = 1, the claim follows from

Corollary 5. Assume that k ≥ 2, and that our claim holds for smaller values

of k. Let d satisfy 2k−1 ≤ d ≤ 2k, and let d1 = bd/2c and d2 = dd/2e. Then

2k−2 ≤ d1, d2 ≤ 2k−1,

so it follows from the inductive hypothesis that b(Kd1
n ) ≤ 2 (k − 1) + 3 and

b(Kd2
n ) ≤ 2 (k − 1) + 3. Using Theorem 4 and the fact that any power of a

complete graph is hamiltonian, we get

b(K2k

n ) ≤ max
{
b(Kd1

n ) + 2, b(Kd2
n ) + 2

}
≤ 2k + 3,

completing the proof of the claim.
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It follows from the claim that

b(Kd
n) ≤ 2 dlog2 de+ 3 ≤ 2 log2 d + 5,

completing the proof.

In view of Theorem 3 saying that the basis number of a hypercube has a

constant upper bound, a natural question arises: does there exist a constant

c that is independent of n and d such that the basis number of Kd
n is bounded

from above by c for arbitrary values of n and d? Using a generalization of

the technique developed by Banks and Schmeichel [2], we will show that the

answer to the above question is positive. We shall prove the following result.

Theorem 7 For every n ≥ 2 and d ≥ 1, the basis number of Kd
n is at most 9.

2 Preliminary lemmas

Let n ≥ 2 be a fixed integer. We are going first to define, recursively, a

collection Bd of cycles in Kd
n, for every d ≥ 1. We will show later that Bd is

a 9-fold basis of C(Kd
n) .

It will be convenient to think of the vertices of Kd
n as d-tuples of n-ary

digits, i.e., the elements from the set {0, 1, . . . , n− 1} with two such d-tuples

being adjacent if and only if they differ at exactly one coordinate.

Given i ∈ {0, 1, . . . , n− 1} and a vertex u = (x1, x2, . . . , xd) of Kd
n, let

u(i) denote the vertex of Kd+1
n that is obtained from u by adjoining the digit

i at the end, i.e., let

u(i) = (x1, x2, . . . , xd, i) .

If G is any subgraph of the graph Kd
n, then G(i) will denote the isomorphic

copy of G in Kd+1
n obtained by adjoining the digit i at the end of each vertex
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of G, and if R is a collection of subgraphs of Kd
n, then let

R(i) =
{
G(i) : G ∈ R

}
,

i = 0, 1, . . . , n− 1.

For any d ≥ 1, let

τd =
(
t(d, 1), t(d, 2), · · · , t(d, nd − 1)

)
be a sequence of integers defined recursively as follows. Take

τ1 = (1, 1, . . . , 1︸ ︷︷ ︸)
n−1

and for d > 1, define τd by:

t(d, i) =

 t(d− 1, k) if i = nk,

d otherwise.

Then, for example, we have

τ2 = (2, 2, . . . , 2︸ ︷︷ ︸
n−1

, 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−1

, 1, . . . , 1, 2, 2, . . . , 2︸ ︷︷ ︸
n−1

, 1

︸ ︷︷ ︸
n−1

, 2, 2, . . . , 2︸ ︷︷ ︸
n−1

).

We will use the sequence τd to define a Hamiltonian path in Kd
n.

Given a pair u, v of vertices of Kd
n and i ∈ {0, 1, . . . , n− 1}, we say that

the vertex v is an i-successor of the vertex u if the i-th coordinate of v is

equal to the i-th coordinate of u plus 1 modulo n and all other coordinates

of u and v are the same. Let

Wd = (w1, w2, . . . , wnd)

be a sequence of vertices in Kd
n defined as follows. Take w1 to be arbitrary

and, for every i with 1 ≤ i < nd, let wi+1 be the t(d, i)-successor of wi. The

sequence Wd will be called the τd-sequence starting at w1.
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Lemma 8 For any vertex u of Kd
n, the τd-sequence starting at u is a Hamil-

tonian path in Kd
n.

Proof. We use induction with respect to d. For d = 1, the result is obvious.

Assume that d ≥ 2, and that for any vertex u of Kd−1
n the τd−1-sequence

starting at u is a Hamiltonian path in Kd−1
n . Let v be any vertex of Kd

n, and

Wd be the τd-sequence starting at v. We will show that Wd is a Hamiltonian

path in Kd
n. Let i be the last digit of v, let w1 be the vertex of Kd−1

n such

that v = w
(i)
1 , and let

Wd−1 = (w1, w2, . . . , wnd−1)

be the τd−1-sequence starting at w1. It follows from the definition of τd that

Wd =
(
w

(i)
1 , w

(i+1)
1 , . . . , w

(i+n−1)
1 , w

(i−1)
2 , w

(i)
2 , . . . , w

(i+n−2)
2 ,

. . . , w
(i+1)

nd−1 , w
(i+2)

nd−1 , . . . , w
(i+n)

nd−1

)
,

where the top indexes are taken modulo n. Since Wd−1 is a Hamiltonian path

in Kd−1
n , it is clear from the above representation that Wd is a Hamiltonian

path in Kd
n, and so the proof is complete.

The τd-sequence starting at (1, 1, . . . , 1, 0) will be called the τd-path and,

in the remainder of this chapter, we reserve the symbol Wd for the τd-path,

d ≥ 1.

Given an integer d ≥ 2, assume that the τd−1-path Wd−1 is equal to the

following sequence of vertices

Wd−1 = (w1, w2, . . . , wnd−1) .

Then the sequence

W
(j)
d−1 =

(
w

(j)
1 , w

(j)
2 , . . . , w

(j)

nd−1

)
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is a path in Kd
n, for every j ∈ {0, 1, . . . , n− 1}. For every i ∈

{
1, 2, . . . , nd−1

}
,

let Ji be the subgraph of Kd
n induced by the set of vertices

{
w

(j)
i : j ∈ {0, 1, . . . , n− 1}

}
.

Clearly, the graph Ji is isomorphic to Kn for each i. As we saw earlier,

b(Kn) ≤ 3. For every i ∈
{
1, 2, . . . , nd−1

}
, let Di be a 3-fold basis of Ji, and

let

Dd =
nd−1⋃
i=1

Di

For every i ∈
{
1, 2, . . . , nd−1 − 1

}
and j ∈ {0, 1, . . . , n− 2}, let Ci,j be the

following 4-cycle

Ci,j =
(
w

(j)
i , w

(j)
i+1, w

(j+1)
i+1 , w

(j+1)
i , w

(j)
i

)
,

and let

Fd =
{
Ci,j : i ∈

{
1, 2, . . . , nd−1 − 1

}
and j ∈ {0, 1, . . . , n− 2}

}
.

Now we are ready to define the collection Bd of cycles in Kd
n. For d = 1,

let B1 be any 3-fold basis of Kn. Assume now that d ≥ 2 and that the

collection Bd−1 has been defined. Define Bd by:

Bd =
n−1⋃
i=0

B(i)
d−1 ∪ Dd ∪ Fd.

To show that Bd is a 9-fold basis of C(Kd
n), we will need some prelimary

results.

Let d ≥ 2 be an integer. Assume that

Wd−1 = (w1, w2, . . . , wnd−1)

8



is the τd−1-path. For every i ∈
{
1, 2, . . . , nd−1 − 1

}
and every j, k ∈ {0, 1, . . . , n− 1}

with j 6= k, let Ci,j,k be the following 4-cycle

Ci,j,k =
(
w

(j)
i , w

(j)
i+1, w

(k)
i+1, w

(k)
i , w

(j)
i

)
.

Note that Ci,j,(j+1) is equal to the cycle Ci,j defined before. Let

Ed =
{
Ci,j,k : i ∈

{
1, 2, · · · , nd−1 − 1

}
, j, k ∈ {0, 1, · · · , n− 2} , j < k

}
.

Recall that Jnd−1 is the subgraph of Kd
n induced by the set of vertices

{w(j)

nd−1 : j = 0, 1, . . . , n− 1}.

Let D′
d = Dnd−1 be the 3-fold basis of Jnd−1 that is contained in Dd.

If Rd−1 ⊆ C(Kd−1
n ) and R(i)

d−1 is obtained from Rd−1 by adding the digit

i at the end of each vertex of each cycle, then the collection

R+
d−1 =

n−1⋃
i=0

R(i)
d−1

of cycles in Kd
n will be called the lift of Rd−1.

Lemma 9 If Rd−1 is a basis of C(Kd−1
n ), then R+

d−1 ∪ D′
d ∪ Ed is a basis of

C(Kd
n).

Proof. Let Rd−1 be any basis of Kd−1
n and let

Rd = R+
d−1 ∪ D′

d ∪ Ed

Since the graph Kd
n has nd vertices and is (n−1)d-regular, it has nd(n−1)d/2

edges, and so

dim C(Kd
n) =

nd(n− 1)d

2
− nd + 1 = nd

(
(n− 1)d

2
− 1

)
+ 1. (1)
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Thus

|Rd−1| = dim C(Kd−1
n ) = nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1,

and

|R+
d−1| = n|Rd−1| = nd

(
(n− 1)(d− 1)

2
− 1

)
+ n.

Moreover, we have

|Ed| =
(
nd−1 − 1

) n(n− 1)

2
=

nd(n− 1)

2
− n(n− 1)

2
,

and

|D′
d| = dim C(Kn) =

n(n− 1)

2
− n + 1.

Therefore

|Rd| = |R+
d−1|+ |D′

d|+ |Ed|

= nd

(
(n− 1)(d− 1)

2
− 1

)
+

nd(n− 1)

2
+ 1

= nd

(
(n− 1)d

2
− 1

)
+ 1

= dim C(Kd
n).

Thus to prove that Rd is a basis of C(Kd
n), it suffices to show that the cycles

of Rd are linearly independent.

Suppose, by way of contradiction, that there is a nonempty subset S ⊆ Rd

such that ∑
C∈S

C = 0 mod 2.

Since Rd−1 is a basis of C(Kd−1
n ), the set R(i)

d−1 is linearly independent in

C(Kd
n), for every i ∈ {0, 1, . . . , n− 1}. Since any cycle in R(i)

d−1 is edge-disjoint

from any cycle in R(j)
d−1 for j 6= i, the set R+

d−1 is linearly independent in

C(Kd
n). Since the set D′

d is a basis of Jnd−1 , and since no cycle in D′
d share an
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edge with a cycle in R+
d−1, it follows that R+

d−1 ∪ D′
d is linearly independent

in C(Kd
n). Therefore S must include at least one cycle Ed, i.e. there are

i ∈
{
1, 2, . . . , nd−1 − 1

}
and j, k ∈ {0, 1, · · · , n− 2} with j 6= k such that

Ci,j,k ∈ S.

We claim that C1,j,k ∈ S. Indeed, if i = 1, then we are done. If i >

1, then since Ci,j,k contains the edge w
(j)
i w

(k)
i and the only other cycle in

Rd containing the edge w
(j)
i w

(k)
i is Ci−1,j,k, we conclude that Ci−1,j,k ∈ S.

Continuing by induction we get C1,j,k ∈ S, and so the proof of the claim is

complete.

Since the cycle C1,j,k contains the edge w
(j)
1 w

(k)
1 which occurs in no other

cycle of Rd, and in particular in no other cycle of S we have a contradiction.

Thus Rd is a basis of C(Kd
n), and the proof of the lemma is complete.

Let Gd be the spanning subgraph of Kd
n with E(Gd) consisting of all the

edges of the paths

W
(j)
d−1 =

(
w

(j)
1 , w

(j)
2 , . . . , w

(j)

nd−1

)
,

for j ∈ {0, 1, . . . , n− 1}, and all the edges of the graphs Ji for i ∈
{
1, 2, . . . , nd−1

}
,

i.e., let

E(Gd) =
{
w

(j)
i w

(k)
i : i ∈

{
1, 2, . . . , nd−1

}
; j, k ∈ {0, 1, . . . , n− 1} ; j 6= k

}
∪
{
w

(j)
i w

(j)
i+1 : i ∈

{
1, 2, . . . , nd−1 − 1

}
, j ∈ {0, 1, . . . , n− 1}

}
.

Note that the graph Gd is isomorphic to the cartesian product of the complete

graph Kn with a path of length nd−1.

Lemma 10 The union Dd ∪ Fd is a basis of C(Gd).

Proof. Since for each i ∈
{
1, 2, . . . , nd−1

}
the graph Ji has n(n−1)/2 edges,

it follows that

|E(Gd)| = nd (n− 1) /2 + n
(
nd−1 − 1

)
.
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Therefore

dim C(Gd) =

(
nd(n− 1)

2
+ n(nd−1 − 1)

)
− nd + 1

=
(

n− 1

2

)
nd − n + 1.

Since Dd consists of nd−1 disjoint copies of a basis of Kn, it follows that

|Dd| = nd−1

(
n(n− 1)

2
− n + 1

)
.

Since

|Fd| = (nd−1 − 1)(n− 1)

we conclude that

|Dd ∪ Fd| = nd−1

(
n(n− 1)

2
− n + 1

)
+ (nd−1 − 1)(n− 1)

=
(

n− 1

2

)
nd − n + 1

= dim C(Gd).

(2)

Therefore, to show that Dd∪Fd is a basis of C(Gd) it suffices to show that the

cycles of Dd∪Fd are linearly independent. Suppose, by way of contradiction,

that there is S ⊆ Dd ∪ Fd such that

∑
C∈S

C = 0 mod 2.

Since the graphs J1, J2, . . ., Jnd−1 are mutually vertex disjoint and Di is a

basis of Ji for each i, it follows that the set Dd is linearly independent in

C(Gd). Therefore S must contain at least one cycle from Fd, i.e. the are

i ∈
{
1, 2, . . . , nd−1 − 1

}
and j ∈ {0, 1, . . . , n− 2} such that

Ci,j =
(
w

(j)
i , w

(j)
i+1, w

(j+1)
i+1 , w

(j+1)
i , w

(j)
i

)
∈ S.
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We claim that Ci,1 ∈ S. Indeed, if j > 0, then the cycle

Ci,j−1 =
(
w

(j−1)
i , w

(j−1)
i+1 , w

(j)
i+1, w

(j)
i , w

(j−1)
i

)
is the only other cycle of Dd∪Fd containing the edge w

(j)
i w

(j)
i+1. Since Ci,j ∈ S,

it follows that Ci,j−1 ∈ S. Continuing by induction, we see that S must

contain the cycle Ci,1, and so the proof of the claim is complete.

Since Ci,1 is the only cycle of Dd ∪ Fd containing the edge w
(0)
i w

(0)
i+1, we

have a contradiction. Thus Dd ∪Fd is a basis of C(Gd), and the proof of the

lemma is complete.

3 Proof of the main result

The aim of this section is to prove Theorem 7. It suffices to establish that

Bd is a 9-fold basis of Kd
n.

Theorem 11 For each d ≥ 1, the set Bd is a basis for Kd
n.

Proof. We are going to use induction with respect to d. For d = 1, B1 is a

basis of Kn by the definition. Assume that d ≥ 2 and that Bd−1 is a basis of

Kd−1
n . By the definition, we have

Bd = B+
d−1 ∪ Dd ∪ Fd.
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It follows from (2) and (1) that

|Bd| = n dim C(Kd−1
n ) +

(
n− 1

2

)
nd − n + 1

= n

(
nd−1

(
(n− 1)(d− 1)

2
− 1

)
+ 1

)
+
(

n− 1

2

)
nd − n + 1

= nd

(
(n− 1)(d− 1)

2
− 1

)
+
(

n− 1

2

)
nd + 1

= nd

(
(n− 1)d

2
− 1

)
+ 1

= dim C(Kd
n).

Therefore, to prove that Bd is a basis of C(Kd
n) it suffices to show that Bd spans

C(Kd
n). Since it follows from Lemma 9 that B+

d−1∪D′
d∪Ed is a basis of C(Kd

n),

it is enough to show that Bd spans B+
d−1 ∪D′

d ∪Ed. Since B+
d−1 ∪D′

d ⊆ Bd, we

only need to show that Bd spans Ed. Since each cycle of Ed is a cycle in the

graph Gd, it follows from Lemma 10 that Dd ∪Fd spans Ed. Since Dd ∪Fd ⊆
Bd, the proof is complete.

Given k ∈ {0, 1, . . . , n− 1}, an edge e of Kd
n is said to be of type k if and

only if the vertices of e differ in exactly the k-th coordinate. Two edges e1

and e2 of Kd
n are said to be k-correspondent if and only if the two vertices

of e2 can be obtained by changing the k-th coordinate of the vertices of e1.

The edge e2 is an k-successor of e1 if and only if the k-coordinates of the

endpoints of e2 are obtained from the k-coordinates of the endpoints of e1 by

adding 1 modulo n. Note that if two edges of Kd
n are `-correspondent, then

they must be of the same type k, with k 6= `.

Assume that d ≥ 3. Recall that, for each i = 0, 1, . . . , n − 1, the path

W
(i)
d−1 is the path in Kd

n obtained by adding the digit i at the end of each

vertex of the τd−1-path Wd−1.
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Lemma 12 If A is the set of all n mutually (d− 1)-correspondent edges of

Kd
n, then at most one edge of A can be an edge of the path W

(0)
d−1.

Proof. Let A = {e0, e1, . . . , en−1} be the set of all mutually (d − 1)-

correspondent edges, with ei = uivi and such that the (d − 1)-coordinate

of ui and vi is equal to i for i ∈ {0, 1, . . . , n− 1}. Assume that the edges in

A are of type k. Since the path W
(0)
d−1 does not have any edges of type d, we

can assume that k ≤ d− 2.

Suppose that e0 occurs in W
(0)
d−1. Since Wd−1 is the τd−1-path, and since

each occurrence of k in τd−1 is followed by n − 1 entries equal to d − 1, the

vertices following v0 in W
(0)
d−1 must be v1, v2, . . ., vn−1, i.e.,

W
(0)
d−1 = (. . . , u0, v0, v1, v2, . . . , vn−1, . . .) .

Since n ≥ 3, the vertex un−1 cannot follow vn−1 in W
(0)
d−1. Therefore neither

of the edges e1, e2, . . ., en−1 can occur in W
(0)
d−1, and the proof of the lemma

is complete.

Lemma 13 If d ≥ 3 and k ≤ d− 2, then the number of terms with value d

preceeding any occurence of k in τd is divisible by n.

Proof. Let αd be the sequence defined by

αd = (d, d, . . . , d︸ ︷︷ ︸
n−1

, d− 1, d, d, . . . , d︸ ︷︷ ︸
n−1

, d− 1, . . . , d, d, . . . , d︸ ︷︷ ︸
n−1

, d− 1

︸ ︷︷ ︸
n−1

, d, d, . . . , d︸ ︷︷ ︸
n−1

).

It is clear from the construction that the sequence τd consists of copies of

the sequence αd with a single term having value at most d− 2 between any

two consecutive copies of αd. Since the number of terms with value d in αd
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is equal to n (n− 1), each term with value k ≤ d− 2 in τd is preceeded by a

multiple of n of terms with value d. This completes the proof.

For each k ∈ {1, 2, . . . , d}, let ej,k denote the j-th edge of type k of the

path Wd and let e′j,k be the j-th edge of type k in W
(0)
d−1. Note that if k ≤ d−1,

then the number edges of type k in Wd is the same as the number of edges

of type k in W
(0)
d−1, so for each j, the edge ej,k exists if and only if e′j,k exists.

Lemma 14 If k ≤ d − 2, then the edge ej,k is the (d − 1)-successor of e′j,k,

for every j such that both ej,k and e′j,k exist.

Proof. Assume that k ≤ d − 2 and that j is such that both ej,k and e′j,k

exist. Let u, v be the endpoints of ej,k (with u appearing before v in Wd)

and u′, v′ be the endpoints of e′j,k (with u′ appearing before v′ in W
(0)
d−1). It

is enough to show that u is the (d − 1)-successor of u′. Note that the first

vertex of Wd is equal to (1, 1, . . . , 1, 0), and the first vertex of W
(0)
d−1 is equal

to (1, 1, . . . , 1, 0, 0). Thus the the first vertex of W
(0)
d−1 is the (d− 1)-successor

of the first vertex of W
(0,0)
d−2 .

Let ξm
` be the number of terms with value m preceeding the j-th occur-

rence of k in the sequence τ`, for every m = 1, 2, · · · , d and ` = d − 1, d. To

prove that u is the (d− 1)-successor of u′, we need to show that

ξm
d ≡ ξm

d−1 mod n

for every m = 1, 2, . . . , d.

Indeed, by the definition of τd, we have ξm
d = ξm

d−1 for every m ≤ d − 1.

Clearly ξd
d−1 = 0, and since k ≤ d − 2, it follows from Lemma 13 that ξd

d is

divisible by n. Therefore, u is the (d − 1)-successor of u′ and the proof is

complete.

Theorem 7 follows immediately from the following result.
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Theorem 15 The set Bd is a 9-fold basis of C(Kd
n) for every d ≥ 1.

Proof. For every i ∈
{
1, 2, · · · , nd−1 − 1

}
let Ci,n−1 be the 4-cycle

Ci,n−1 =
(
w

(n−1)
i , w

(n−1)
i+1 , w

(0)
i+1, w

(0)
i , w

(n−1)
i

)
,

and let

Fd = Fd ∪
{
Ci,n−1 : i ∈

{
1, 2, . . . , nd−1 − 1

}}
=

{
Ci,j : i ∈

{
1, 2, . . . , nd−1 − 1

}
and j ∈ {0, 1, . . . , n− 1}

}
.

Define recursively the collection Bd of cycles in Kd
n by B1 = B1 and

Bd = B+
d−1 ∪ Dd ∪ Fd,

where

B+
d−1 =

n−1⋃
i=0

B(i)
d−1

is the lift of Bd−1. Clearly, Bd ⊆ Bd for every d ≥ 1. We will show, by

induction with respect to d, that each edge e of Kd
n is used at most 9 times in

the cycles of Bd, and moreover, that it is used at most 7 times in the cycles

of Bd when e is an edge of the τd-path Wd, and that e is used at most 5 times

in the cycles of Bd if e is of type d. The basis B1 is 3-fold by its definition,

and it is clear from the construction that each edge of K2
n appears in at most

5 cycles of B2, so our claim holds for d = 1 and d = 2.

Assume that d ≥ 3, and that the set Bd−1 satisfies the specified condition.

Since any edge e of Kd
n of type d appears in at most 3 cycles of the set Dd,

in at most 2 cycles of the set Fd and in no cycles of B+
d−1, the edge e is used

at most 5 times in the cycles of Bd. Assume now that e is an edge of Kd
n of

type k ≤ d−1. Clearly, the edge e appears in no cycles of Dd. If e is an edge

of the path W
(i)
d−1 for some i ∈ {0, 1, . . . , n− 1}, then it appears in exactly 2
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cycles of Fd, and by the inductive hypothesis, it appears in at most 7 cycles

of B+

d−1. Otherwise, the edge e appears in no cycles of Fd and in at most 9

cycles of B+

d−1. To complete the proof, it remains to show that if e is an edge

of Wd of type k ≤ d− 1, then it appears in at most 7 cycles of Bd.

Let e be an edge of type k ≤ d − 1 in the path Wd. Suppose first that

k = d−1. Then it follows from the inductive hypothesis that e appears in at

most 5 cycles of B+
d−1. Since e appears in at most 2 cycles of Fd, it appears

in at most 7 cycles of Bd.

Now assume that k ≤ d − 2, and that e = ej,k, i.e., that e is the j-th

edge of type k in the path Wd. Consider the j-th edge e′j,k of type k in W
(0)
d−1.

By the inductive hypothesis, the edge e′j,k occurs in at most 7 cycles of B(0)
d−1.

By Lemma 14, ej,k is the (d − 1)-successor of e′j,k. Since any two (d− 1)-

correspondent edges of Kd−1
n appear in the same number of cycles of Bd−1,

it follows that the edges ej,k and e′j,k appear in the same number of cycles of

B(0)
d−1. Therefore, ej,k appears in at most 7 cycles of B(0)

d−1. Since e′j,k belongs

to W
(0)
d−1, it follows from Lemma 12 that ej,k does not belong to W

(0)
d−1. Hence

ej,k occurs in at most 7 cycles of Bd and the proof is complete.
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