On Constructing Snakes in Powers of Complete Graphs

Jerzy Wojciechowski
Department of Mathematics, West Virginia University, PO BOX 6310, Morgantown, WV 26506-6310, USA
E-mail: JERZY@MATH.WVU.EDU

Abstract

We prove the conjecture of Abbott and Katchalski that for every $m \geq 2$ there is a positive constant λ_{m} such that $S\left(K_{m n}^{d}\right) \geq \lambda_{m} n^{d-1} S\left(K_{m}^{d-1}\right)$ where $S\left(K_{m}^{d}\right)$ is the length of the longest snake (cycle without chords) in the cartesian product K_{m}^{d} of d copies of the complete graph K_{m}. As a corollary, we conclude that for any finite set P of primes there is a constant $c=c(P)>0$ such that $S\left(K_{n}^{d}\right) \geq c n^{d-1}$ for any n divisible by an element of P and any $d \geq 1$.

1. Introduction

Let G be a graph. By a path in G we mean a sequence of distinct vertices of G with every pair of consecutive vertices being adjacent. A path will be called closed if its first vertex is adjacent to the last one.

Let P be a path in the graph G. By a chord of P we mean an edge of G joining two nonconsecutive vertices of P. If P is closed and e is a chord of P, then we say that e is a proper chord if it is not the edge joining the first vertex of P to its last vertex. Note that a proper chord of a closed path corresponds to the standard notion of a chord in a cycle. By a snake we mean a closed path without proper chords, and an open snake is a path without chords.

Let G and H be graphs. The product $G \times H$ of G and H is the graph with $V(G) \times$ $V(H)$ as the vertex set and $\left(g_{1}, h_{1}\right)$ adjacent to $\left(g_{2}, h_{2}\right)$ if either $g_{1} g_{2} \in E(G)$ and $h_{1}=h_{2}$, or else if $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$.

Let K_{n}^{d} be the product of d copies of the complete graph $K_{n}, n \geq 2, d \geq 1$. It will be convenient to think of the vertices of K_{n}^{d} to be the d-tuples of n-ary digits, i.e. the elements of the set $\{0,1, \ldots, n-1\}$, with edges between any two d-tuples differing at exactly one coordinate.

Let $S\left(K_{n}^{d}\right)$ be the length of the longest snake in K_{n}^{d}. The problem of estimating the value of $S\left(K_{n}^{d}\right)$ has a long history. It was first met by Kautz [9] in the case of $n=2$ (known in the literature as the snake-in-the-box problem) in constructing a type of error-checking code for a certain analog-to-digital conversion systems. The evaluation of $S\left(K_{2}^{d}\right)$ has proven to be a notoriously difficult problem and, on the other hand, it has been demonstrated to be of importance in connection with several applied problems (see for example [10], [11]). As a consequence several authors became interested in estimating the value of $S\left(K_{2}^{d}\right)$ and a large literature has evolved (see [5] for a list of references). Subsequently, the general case of the problem with an arbitrary value of n has been introduced by Abbott and Dierker
[2] and developed further by Abbott and Katchalski [4], [6], and Wojciechowski [15]. The following theorem is a result of these investigations.

Theorem 1.1. For any integer $n \geq 2$, there is a constant $c_{n}>0$ such that

$$
\begin{equation*}
S\left(K_{n}^{d}\right) \geq c_{n} n^{d} \tag{1.1}
\end{equation*}
$$

for any $d \geq 1$.

In the case when $n=2$, Theorem 1.1 was first proved by Evdokimov [8]. Other shorter proofs, in that case, were given by Abbott and Katchalski [3] and Wojciechowski [13]. The largest value of the constant $c_{2}=\frac{77}{256}=0.300781 \ldots$ was obtained by Abbott and Katchalski [5].

In the case when $n \equiv 0 \bmod 4$, Theorem 1.1 has been proved by Abbott and Katchalski [6]. Actually, they proved the following theorem that allows for this case of Theorem 1.1 to be deduced from the case when $n=2$.

Theorem 1.2. If $n \equiv 0 \bmod 4$, then

$$
S\left(K_{n}^{d}\right) \geq\left(\frac{n}{2}\right)^{d-1} S\left(K_{2}^{d-1}\right)
$$

for every $d \geq 3$.

As remarked by Abbott and Katchalski [6], a modification of their technique can be used to prove that the following more general theorem holds.

Theorem 1.3. There is a constant $\lambda>0$ such that if $n \geq 2$ is an even integer, then

$$
S\left(K_{n}^{d}\right) \geq \lambda\left(\frac{n}{2}\right)^{d-1} S\left(K_{2}^{d-1}\right)
$$

for any $d \geq 2$.

Theorem 1.3 implies that Theorem 1.1 holds for every even integer $n \geq 2$. In the case of n being odd, Theorem 1.1 was proved by Wojciechowski [15]. He proved the following result which implies the corresponding case of Theorem 1.1.

Theorem 1.4. If $n \geq 3$ is an odd integer, then

$$
S\left(K_{n}^{d}\right) \geq 2(n-1) n^{d-4}
$$

for any $d \geq 5$.

The constant c_{n} in Theorem 1.1 cannot be made independent of n since Abbott and Katchalski [4] proved that

$$
S\left(K_{n}^{d}\right) \leq\left(1+\frac{1}{d-1}\right) n^{d-1}
$$

However the following conjecture seems plausible.

Conjecture 1.5. There is a constant $c>0$ such that

$$
\begin{equation*}
S\left(K_{n}^{d}\right) \geq c n^{d-1} \tag{1.2}
\end{equation*}
$$

for any $n \geq 2, d \geq 1$.

It follows from Theorems 1.1 and 1.3 that if we restrict the range of values of n to even integers, then Conjecture 1.5 holds, i.e. the following theorem is true.

Theorem 1.6. There is a constant $c>0$ such that if $n \geq 2$ is an even integer, then

$$
S\left(K_{n}^{d}\right) \geq c n^{d-1}
$$

for any $d \geq 1$.

In the general case, however, Conjecture 1.5 remains still open since in the case of n being odd, the value of c in (1.2) given by Theorem $1.4\left(c=2(n-1) / n^{3}\right)$ depends on n and approaches 0 when n tends to infinity.

The main result of this paper is the following generalization of Theorem 1.3 conjectured by Abbott and Katchalski [1].

Theorem 1.7. For any integer $m \geq 2$, there is a constant $\lambda_{m}>0$ such that

$$
S\left(K_{m n}^{d}\right) \geq \lambda_{m} n^{d-1} S\left(K_{m}^{d-1}\right),
$$

for any $n \geq 1$ and $d \geq 2$.

As a corollary of Theorem 1.7, we get the following generalization of Theorem 1.6 which provides further evidence for Conjecture 1.5 to be true.

Theorem 1.8. Let P be a finite set of primes. Then there is a constant $c=c(P)>0$ such that

$$
S\left(K_{n}^{d}\right) \geq c n^{d-1}
$$

for any integer n that is divisible by an element of P and for any $d \geq 1$.

Actually, we prove the following result that implies Theorem 1.7.

Theorem 1.9. Let $m, n \geq 2$ and $d \geq 4$ be integers. Then

$$
S\left(K_{m n}^{d}\right) \geq n^{d-1}\left(S\left(K_{m}^{d-1}\right)+1\right),
$$

if n is even, and

$$
S\left(K_{m n}^{d}\right) \geq(n-1) n^{d-2}\left(S\left(K_{m}^{d-1}\right)+1\right)
$$

if n is odd.

The proof of Theorem 1.9 is given in section 3 .

2. Basic Definitions

A k-path in a graph is a path consisting of k vertices, i.e.a path of length $k-1$. If P is a k-path, then we will write $k=|P|$. A chain \mathcal{C} of paths is a sequence $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of paths such that each path of \mathcal{C} has at least two vertices, and the last vertex of P_{i} is equal to the first vertex of $P_{i+1}, i=1,2, \ldots, k-1$. A k-chain of paths is a chain consisting of k paths. A chain $\mathcal{C}=\left(P_{i}\right)_{i=1}^{k}$ of paths will be called closed if the first vertex of P_{1} is equal to the last vertex of P_{k}. If \mathcal{C} is a $k r$-chain of paths, then the r-splitting of \mathcal{C} is the sequence $\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{r}\right)$ of k-chains of paths which joined together (juxtaposed) give \mathcal{C}.

Let G and H be graphs. Given a k-chain of paths $\mathcal{C}=\left(P_{i}\right)_{i=1}^{k}$ in G with $P_{i}=$ $\left(u_{1}, u_{2}, \ldots, u_{r_{i}}\right)$ and a k-path $Q=\left(v_{i}\right)_{i=1}^{k}$ in H, let $\mathcal{C} \otimes Q$ be the $\left(\sum_{i=1}^{k}\left|P_{i}\right|\right)$-path in the graph $G \times H$ obtained by juxtaposing the paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{k}^{\prime}$, where $P_{i}^{\prime}=$ $\left(\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right), \ldots,\left(u_{r_{i}}, v_{i}\right)\right), i=1,2, \ldots, k$.

Let $d, m, n \geq 2$ be integers. We assume d, m and n to be fixed throughtout the paper. Given an integer p with $1 \leq p \leq d$, let G_{p} be the graph

$$
G_{p}=K_{m n}^{p} \times K_{m}^{d-p}
$$

In particular $G_{d}=K_{m n}^{d}$. Let $p \geq 1$ and $q \geq 1$ be integers with $p+q \leq d$. If $u=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ is a vertex of the graph $G_{p}\left(\right.$ i.e. $a_{1}, a_{2}, \ldots, a_{p} \in\{0,1, \ldots, m n-1\}$, $\left.a_{p+1}, a_{p+2}, \ldots, a_{d} \in\{0,1, \ldots, m-1\}\right)$ and $v=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$ is a vertex of the graph K_{n}^{q}, then let $u \boxplus v$ be the vertex of $G_{p+q}=K_{m n}^{p+q} \times K_{m}^{d-p-q}$ defined by

$$
u \boxplus v=\left(a_{1}, a_{2}, \ldots, a_{p}, a_{p+1}^{\prime}, a_{p+2}^{\prime}, \ldots, a_{p+q}^{\prime}, a_{p+q+1}, a_{p+q+2}, \ldots, a_{d}\right),
$$

where

$$
a_{p+i}^{\prime}=a_{p+i}+m b_{i}
$$

for $i=1,2, \ldots, q$. If $P=\left(u_{i}\right)_{i=1}^{k}$ is a k-path in G_{p} and v is a vertex in K_{n}^{q}, then let $P \boxplus v=\left(u_{1} \boxplus v, u_{2} \boxplus v, \ldots, u_{k} \boxplus v\right)$. Clearly $P \boxplus v$ is a k-path in G_{p+q}.

Given a k-chain of paths $\mathcal{C}=\left(P_{i}\right)_{i=1}^{k}$ in the graph G_{p} and a k-path $Q=\left(v_{i}\right)_{i=1}^{k}$ in the graph K_{n}^{q}, let $\mathcal{C} \boxtimes Q$ be the $\left(\sum_{i=1}^{k}\left|P_{i}\right|\right)$-path in the graph G_{p+q} obtained by juxtaposing the paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{k}^{\prime}$, where $P_{i}^{\prime}=P_{i} \boxplus v_{i}, i=1,2, \ldots, k$. Note that if the chain \mathcal{C} is closed and the path Q is closed, then the path $\mathcal{C} \boxtimes Q$ is also closed.

Given a $k r$-chain \mathcal{C} of paths in G_{p} with the r-splitting $\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}, \ldots, \mathfrak{C}_{r}\right)$ and an r-chain $\mathcal{D}=\left(P_{i}\right)_{i=1}^{r}$ of k-paths in the graph K_{n}^{q}, set

$$
\mathcal{C} \boxtimes \mathcal{D}=\left(\mathfrak{C}_{1} \boxtimes P_{1}, \mathcal{C}_{2} \boxtimes P_{2}, \ldots, \mathcal{C}_{r} \boxtimes P_{r}\right)
$$

Note that for each $i \in\{1,2, \ldots, r-1\}$ the last vertex of the path $\mathcal{C}_{i} \boxtimes P_{i}$ is equal to the first vertex of the path $\mathcal{C}_{i+1} \boxtimes P_{i+1}$, hence the sequence $\mathcal{C} \boxtimes \mathcal{D}$ is an r-chain of paths in G_{p+q}. Note that if the chains \mathcal{C} and \mathcal{D} are closed, then the chain $\mathcal{C} \boxtimes \mathcal{D}$ is also closed. It is straightforward to verify that the following property holds.

Property 2.1. Let q_{1}, q_{2} be positive integers with $q_{1}+q_{2}=q$. If \mathcal{C} is a $k r$-chain of paths in G_{p}, \mathcal{D} is an r-chain of k-paths in $K_{n}^{q_{1}}$ and P is a k-path in $K_{n}^{q_{2}}$, then

$$
\mathcal{C} \boxtimes(\mathcal{D} \otimes P)=(\mathcal{C} \boxtimes \mathcal{D}) \boxtimes P
$$

If v_{1}, v_{2} are vertices of G_{p}, then we say that v_{1} and v_{2} are apart if they differ either at one of the first p coordinates or at least at two coordinates. Let P_{1} and P_{2} be paths in G_{p}. We say that P_{1} and P_{2} are apart if for every pair of vertices v_{1}, v_{2} of P_{1}, P_{2} respectively, the vertices v_{1} and v_{2} are apart. We say that P_{1} and P_{2} are almost apart if they have one vertex v in common and for every pair of vertices v_{1}, v_{2} of P_{1}, P_{2} respectively, such that at least one of v_{1}, v_{2} is different than v, the vertices v_{1} and v_{2} are apart.

When we refer to a pair s_{i}, s_{j} of elements of a sequence $\left(s_{1}, s_{2}, \ldots, s_{t}\right)$, we say that s_{i} and s_{j} are cyclically consecutive if either $j=i \pm 1$ or $\{i, j\}=\{1, t\}$.

Let $\mathcal{C}=\left(P_{i}\right)_{i=1}^{k}$ be a chain of paths in the graph G_{p}. We say that \mathcal{C} is openly separated if any two consecutive paths of \mathcal{C} are almost apart and any two nonconsecutive paths are apart. We say that \mathcal{C} is closely separated if \mathcal{C} is closed, any two cyclically consecutive paths of \mathcal{C} are almost apart and any two cyclically nonconsecutive paths are apart. The following lemma holds.

Lemma 2.2. Let \mathcal{C} be a chain of open snakes in the graph G_{p} and Q be a path in K_{n}^{q}.
(i) If \mathcal{C} is openly separated, then the path $\mathcal{C} \boxtimes Q$ is an open snake in the graph G_{p+q}.
(ii) If \mathfrak{C} is closely separated and Q is closed, then the path $\mathcal{C} \boxtimes Q$ is a snake in G_{p+q}.

Proof. Let $\mathcal{C}=\left(P_{i}\right)_{i=1}^{k}$ and $Q=\left(v_{i}\right)_{i=1}^{k}$. Then the path $R=\mathcal{C} \boxtimes Q$ is obtained by juxtaposing the paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{k}^{\prime}$, where $P_{i}^{\prime}=P_{i} \boxplus v_{i}, i=1,2, \ldots, k$. Let w_{1}, w_{2} be vertices of R that are adjacent in G_{p+q} and assume that $w_{1}=u_{1} \boxplus v_{i}, w_{2}=u_{2} \boxplus v_{j}$ where u_{1} is a vertex of P_{i} and u_{2} is a vertex of $P_{j}, i, j \in\{1,2, \ldots, k\}$. If $i=j$, then the vertices u_{1}, u_{2} are adjacent in G_{p}, hence they must be consecutive in P_{i} since P_{i} is an open snake. Therefore w_{1}, w_{2} are consecutive in R and so $w_{1} w_{2}$ is not a chord of R.

Assume now that $i \neq j$. Since $w_{1} w_{2} \in E\left(G_{p+q}\right)$, the vertices w_{1}, w_{2} differ at exactly one coordinate $t \in\{1,2, \ldots, d\}$. Hence u_{1}, u_{2} must agree at each coordinate in $\{1,2, \ldots, d\} \backslash\{t\}$. Since $v_{i} \neq v_{j}$, it follows that $t \in\{p+1, p+2, \ldots, p+q\}$, so u_{1}, u_{2} are not apart. Therefore the paths P_{i}, P_{j} are not apart.

If \mathcal{C} is openly separated, then any two nonconsecutive paths of \mathcal{C} are apart, hence the paths P_{i}, P_{j} are consecutive in $\mathcal{C}\left(\right.$ say P_{j} follows $\left.P_{i}\right)$ and they are almost apart in G_{p}. Thus $u_{1}=u_{2}$ is the last vertex of P_{i} and the first vertex of P_{j}, thus w_{1}, w_{2} are consecutive in R. Hence $w_{1} w_{2}$ is not a chord of R, and the proof of (i) is complete.

Similarly, if \mathcal{C} is closely separated, then the paths P_{i}, P_{j} are cyclically consecutive in \mathcal{C} (say P_{j} follows P_{i}) and $u_{1}=u_{2}$ must be the last vertex of P_{i} and the first vertex of P_{j}, hence w_{1}, w_{2} are cyclically consecutive in R. Thus $w_{1} w_{2}$ is not a proper cord of R and the proof of (ii), hence of the lemma, is complete.

If P is a path, then let $-P$ be the path obtained from P by reversing the order of vertices, and if $\mathcal{C}=\left(P_{i}\right)_{i=1}^{r}$ is a chain of paths, then let $-\mathcal{C}=\left(-P_{r},-P_{r-1}, \ldots,-P_{1}\right)$ be the chain of paths obtained from \mathcal{C} by reversing the order of paths and reversing every path. The expression $(-1)^{i} X$, where X is a path or a chain of paths, will mean X for i even and $-X$ for i odd. Obviously, the following property holds.

Property 2.3. If \mathcal{C} is an r-chain of paths in the graph G_{p} and P is an r-path in the graph K_{n}^{q}, then $\mathcal{C} \boxtimes(-Q)=-(-\mathcal{C} \boxtimes Q)$.

Let \mathcal{C} be a $k r$-chain of paths, and let $\mathcal{S}=\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{r}\right)$ be the r-splitting of \mathcal{C}. By the alternate matrix of the splitting \mathcal{S} we mean the following $(r \times k)$-matrix \mathcal{A} of paths:

$$
\mathcal{A}=\left(\begin{array}{c}
\mathcal{C}_{1} \\
-\mathfrak{C}_{2} \\
\vdots \\
(-1)^{r-1} \mathfrak{C}_{r}
\end{array}\right)=\left(\begin{array}{cccc}
Q_{1}^{1} & Q_{1}^{2} & \cdots & Q_{1}^{k} \\
-Q_{2}^{1} & -Q_{2}^{2} & \cdots & -Q_{2}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
(-1)^{r-1} Q_{r}^{1} & (-1)^{r-1} Q_{r}^{2} & \cdots & (-1)^{r-1} Q_{r}^{k}
\end{array}\right)
$$

where $\mathcal{C}_{i}=\left(Q_{i}^{1}, Q_{i}^{2}, \ldots, Q_{i}^{k}\right)$ for i odd and $\mathcal{C}_{i}=\left(Q_{i}^{k}, Q_{i}^{k-1}, \ldots, Q_{i}^{1}\right)$ for i even, $i=$ $1,2, \ldots, r$. The splitting \mathcal{S} will be called openly alternating if for any $\ell \in\{1,2, \ldots, k\}$ and for any two distinct paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ appearing in the ℓ-th column of \mathcal{A}, the paths Q_{i}^{ℓ}, Q_{j}^{ℓ} are almost apart when they are consecutive in \mathcal{C} and they are apart otherwise.

Assume now that the chain \mathcal{C} is closed and r is even. Then, we say that the splitting \mathcal{S} is closely alternating if for any $\ell \in\{1,2, \ldots, k\}$ and for any two distinct paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ appearing in the ℓ-th column of \mathcal{A}, the paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ are almost apart when they are cyclically consecutive in \mathcal{C} and they are apart otherwise. The following lemma holds.

Lemma 2.4. Let \mathcal{C} be a $k r$-chain of paths in the graph G_{p} and P be a k-path in K_{n}^{q}.
(i) If the r-splitting of \mathcal{C} is openly alternating and \mathcal{D} is the r-chain $\left(P,-P, \ldots,(-1)^{r-1} P\right)$, then the r-chain $\mathcal{C} \boxtimes \mathcal{D}$ of paths in the graph G_{p+q} is openly separated.
(ii) If r is even, the r-splitting of \mathcal{C} is closely alternating and \mathcal{D} is the closed r-chain

$$
(P,-P, P,-P, \ldots,-P), \text { then the closed } r \text {-chain } \mathcal{C} \boxtimes \mathcal{D} \text { of paths in the graph } G_{p+q}
$$ is closely separated.

Proof. Let $\mathcal{S}=\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{r}\right)$ be the r-splitting of \mathcal{C} and let

$$
\mathcal{A}=\left(\begin{array}{c}
\mathcal{C}_{1} \\
-\mathcal{C}_{2} \\
\vdots \\
(-1)^{r-1} \mathcal{C}_{r}
\end{array}\right)=\left(\begin{array}{cccc}
Q_{1}^{1} & Q_{1}^{2} & \ldots & Q_{1}^{k} \\
-Q_{2}^{1} & -Q_{2}^{2} & \ldots & -Q_{2}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
(-1)^{r-1} Q_{r}^{1} & (-1)^{r-1} Q_{r}^{2} & \ldots & (-1)^{r-1} Q_{r}^{k}
\end{array}\right)
$$

be the alternate matrix of \mathcal{S}. Then we have

$$
\mathcal{E}=\mathcal{C} \boxtimes \mathcal{D}=\left(\mathcal{C}_{1} \boxtimes P, \mathfrak{C}_{2} \boxtimes(-P), \ldots, \mathcal{C}_{r} \boxtimes(-1)^{r-1} P\right)=\left(R_{1}, R_{2}, \ldots, R_{r}\right)
$$

Let R_{i}, R_{j} be distinct paths of \mathcal{E} and let u_{1} be a vertex of the path R_{i} and u_{2} be a vertex of R_{j}. Assume that u_{1}, u_{2} are not apart in G_{p+q}. To complete the proof of (i), we need to show that the paths R_{i}, R_{j} are consecutive in \mathcal{E} and that $u_{1}=u_{2}$ is their common vertex.

Assume that $P=\left(v_{\ell}\right)_{\ell=1}^{k}$. Then $u_{1}=w_{1} \boxplus v_{s}$ where w_{1} is a vertex of the path Q_{i}^{s} and $u_{2}=w_{2} \boxplus v_{t}$ where w_{2} is a vertex of Q_{j}^{t}, for some $s, t \in\{1,2, \ldots, k\}$. Since u_{1}, u_{2} are not apart in G_{p+q}, they agree at each coordinate $1,2, \ldots, p+q$, hence $v_{s}=v_{t}$ and $s=t$. Thus the paths Q_{i}^{s} and Q_{j}^{t} appear in the same column of \mathcal{A}. Since u_{1}, u_{2} are not apart in G_{p+q}, it follows that the vertices w_{1}, w_{2} are not apart in G_{p} and hence the paths Q_{i}^{s} and Q_{j}^{t} are not apart in G_{p}. Since \mathcal{S} is openly alternating, Q_{i}^{s} and Q_{j}^{t} are consecutive in \mathcal{C} and they are almost apart in G_{p}. It follows that R_{i}, R_{j} are consecutive in \mathcal{E} and that $w_{1}=w_{2}$. Hence $u_{1}=u_{2}$ and the proof of (i) is complete.

The proof of (ii) is similar.

Let $\langle n\rangle=2\left\lfloor\frac{n}{2}\right\rfloor$, i.e.let $\langle n\rangle=n$ if n is even and $\langle n\rangle=n-1$ if n is odd. Let $t \geq 1$ and \mathcal{C} be be an n^{t}-chain of paths in G_{p}. We say that \mathcal{C} is openly well assembled if either $t=1$ and \mathcal{C} is an openly separated chain of open snakes, or $t \geq 2$, every chain \mathcal{C}_{i} in the n-splitting $\mathcal{S}=\left(\mathfrak{C}_{1}, \mathfrak{C}_{2}, \ldots, \mathfrak{C}_{n}\right)$ of \mathfrak{C} is openly well assembled and \mathcal{S} is openly alternating.

Let \mathcal{D} be an $\langle n\rangle n^{t}$-chain of paths in G_{p}. We say that \mathcal{D} is closely well assembled if every chain \mathcal{D}_{i} in the $\langle n\rangle$-splitting $\mathcal{S}^{\prime}=\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{\langle n\rangle}\right)$ of \mathcal{D} is openly well assembled and \mathcal{S}^{\prime} is closely alternating. The following property can be proved by a straightforward induction with respect to t.

Property 2.5. If $t \geq 1, \mathcal{C}$ is an openly well assembled n^{t}-chain of paths in the graph G_{p}, then the chain $-\mathcal{C}$ is also openly well assembled.

For every $t \geq 1$ we are going now to define the n^{t}-path π_{n}^{t} in K_{n}^{t}, and the closed $\langle n\rangle n^{t-1}$-path γ_{n}^{t} in K_{n}^{t}. These paths will be used in the construction of long snakes. Let π_{n}^{1} be the n-path $(0,1, \ldots, n-1)$ and γ_{n}^{1} be the closed $\langle n\rangle$-path $(0,1, \ldots,\langle n\rangle-1)$ in K_{n}^{t}. Assuming that the path π_{n}^{t} in K_{n}^{t} is defined, let

$$
\pi_{n}^{t+1}=\left(\pi_{n}^{t},-\pi_{n}^{t}, \pi_{n}^{t},-\pi_{n}^{t}, \ldots,(-1)^{n-1} \pi_{n}^{t}\right) \otimes \pi_{n}^{1}
$$

and

$$
\gamma_{n}^{t+1}=\left(\pi_{n}^{t},-\pi_{n}^{t}, \pi_{n}^{t},-\pi_{n}^{t}, \ldots,-\pi_{n}^{t}\right) \otimes \gamma_{n}^{1}
$$

The following lemma holds.

Lemma 2.6. If \mathcal{C} is an openly well assembled n^{q}-chain of paths in the graph G_{p}, then the path $\mathcal{C} \boxtimes \pi_{n}^{q}$ is an open snake in the graph G_{p+q}.

Proof. We are going to use induction with respect to q. For $q=1$, the lemma is true by Lemma 2.2 (i). Assume that $p+q+1 \leq d$ and \mathcal{C} is an openly assembled n^{q+1}-chain of paths in the graph G_{p}. We have $\mathcal{C} \boxtimes \pi_{n}^{d+1}=\mathcal{C} \boxtimes\left(\mathcal{D} \otimes \pi_{n}^{1}\right)$, where $\mathcal{D}=\left(\pi_{n}^{q},-\pi_{n}^{q}, \ldots,(-1)^{n-1} \pi_{n}^{q}\right)$. By Property 2.1, the chain $\mathcal{C} \boxtimes \pi_{n}^{q+1}$ is equal to $(\mathcal{C} \boxtimes \mathcal{D}) \boxtimes \pi_{n}^{1}$. Let $\mathcal{S}=\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{n}\right)$ be the n-splitting of \mathcal{C}. Then

$$
\mathcal{C} \boxtimes \mathcal{D}=\left(\mathcal{C}_{1} \boxtimes \pi_{n}^{q}, \mathcal{C}_{2} \boxtimes\left(-\pi_{n}^{q}\right), \ldots, \mathcal{C}_{n} \boxtimes(-1)^{n-1} \pi_{n}^{q}\right)
$$

By Property 2.3,

$$
\mathcal{C} \boxtimes \mathcal{D}=\left(\mathcal{C}_{1} \boxtimes \pi_{n}^{q},-\left(-\mathcal{C}_{2} \boxtimes \pi_{n}^{q}\right), \ldots,(-1)^{n-1}\left((-1)^{n-1} \mathfrak{C}_{n} \boxtimes \pi_{n}^{q}\right)\right)
$$

Since the chain \mathcal{C} is openly well assembled, the chains $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{n}$ are also openly well assembled. By Property 2.5 , the chains $\mathcal{C}_{1},-\mathcal{C}_{2}, \ldots,(-1)^{n-1} \mathcal{C}_{n}$ are openly well assembled, so by the inductive hypothesis, the paths $\mathcal{C}_{1} \boxtimes \pi_{n}^{q},-\left(-\mathcal{C}_{2} \boxtimes \pi_{n}^{q}\right), \ldots,(-1)^{n-1}\left((-1)^{n-1} \mathcal{C}_{n} \boxtimes\right.$ π_{n}^{q}) are open snakes in G_{p+q}. The splitting \mathcal{S} is openly alternating, so by Lemma 2.4 (i), the chain $\mathcal{C} \boxtimes \mathcal{D}$ is openly separated. Hence by Lemma $2.2(\mathrm{i}),(\mathcal{C} \boxtimes \mathcal{D}) \boxtimes \pi_{n}^{1}=\mathcal{C} \boxtimes \pi_{n}^{q}$ is an open snake in G_{p+q+1}, and the proof is complete.

The following lemma will be used in the proof of the main result.

Lemma 2.7. If $q \geq 2$ and \mathcal{C} is a closely well assembled $\langle n\rangle n^{q-1}$-chain of paths in the graph G_{p}, then the path $\mathcal{C} \boxtimes \gamma_{n}^{q}$ is a snake in the graph G_{p+q}.

Proof. We have $\mathcal{C} \boxtimes \gamma_{n}^{q}=\mathcal{C} \boxtimes\left(\mathcal{D} \otimes \gamma_{n}^{1}\right)$, where \mathcal{D} is the $\langle n\rangle$-chain $\left(\pi_{n}^{q-1},-\pi_{n}^{q-1}, \ldots,-\pi_{n}^{q-1}\right)$. By Property 2.1, the chain $\mathcal{C} \boxtimes \gamma_{n}^{q}$ is equal to $(\mathcal{C} \boxtimes \mathcal{D}) \boxtimes \gamma_{n}^{1}$. Let $\mathcal{S}=\left(\mathcal{C}_{1}, \mathfrak{C}_{2}, \ldots, \mathfrak{C}_{\langle n\rangle}\right)$ be the $\langle n\rangle$-splitting of \mathcal{C}. Then

$$
\mathcal{C} \boxtimes \mathcal{D}=\left(\mathcal{C}_{1} \boxtimes \pi_{n}^{q-1}, \mathcal{C}_{2} \boxtimes\left(-\pi_{n}^{q-1}\right), \ldots, \mathcal{C}_{\langle n\rangle} \boxtimes\left(-\pi_{n}^{q-1}\right)\right) .
$$

By Property 2.3,

$$
\mathcal{C} \boxtimes \mathcal{D}=\left(\mathcal{C}_{1} \boxtimes \pi_{n}^{q-1},-\left(-\mathcal{C}_{2} \boxtimes \pi_{n}^{q-1}\right), \ldots,-\left(-\mathcal{C}_{\langle n\rangle} \boxtimes \pi_{n}^{q-1}\right)\right)
$$

By Property 2.5 and Lemma 2.6, arguing as in the proof of Lemma 2.6, we conclude that $\mathcal{C} \boxtimes \mathcal{D}$ is a chain of open snakes in G_{p+q-1}. The splitting \mathcal{S} is closely alternating so by Lemma 2.4 (ii), the chain $\mathcal{C} \boxtimes \mathcal{D}$ is closely separated. Hence by Lemma 2.2 (ii), $(\mathcal{C} \boxtimes \mathcal{D}) \boxtimes \gamma_{n}=\mathcal{C} \boxtimes \gamma_{n}^{q}$ is a snake in G_{p+q}, and the proof is complete.

3. Construction of long snakes

Assume that $d \geq 4$. Let C be a snake of length $S\left(K_{m}^{d-1}\right)$ in K_{m}^{d-1} and let C^{\prime} be the open snake obtained from C by deleting the last vertex. Given any pair u_{1}, u_{2} of vertices of K_{m}^{d-1} that differ at exactly two coordinates, we can get an open snake in K_{m}^{d-1} with endpoints u_{1}, u_{2} by permuting the coordinates and permuting the entries at some coordinates of the open snake C^{\prime}. Let a_{1}, a_{2}, a_{3} and a_{4} be four vertices in K_{m}^{d-1} such that any two of them differ at exactly two coordinates. For example, let $a_{1}=(10000 \ldots, 0), a_{2}=(01000 \ldots 0), a_{3}=$ $(00100 \ldots 0)$ and $a_{4}=(11100 \ldots 0)$. Let $C_{i j}$ be an open snake in K_{m}^{d-1} with $S\left(K_{m}^{d-1}\right)-1$ vertices such that a_{i} is the first and a_{j} is the last vertex of $C_{i j}, i, j \in\{1,2,3,4\}, i \neq j$.

For each $i \in\{1,2,3,4\}$ and $k \in\{0,1, \ldots, n-1\}$, let a_{i}^{k} be the vertex of the graph $G_{1}=K_{m n} \times K_{m}^{d-1}$ obtained from a_{i} by adjoining the digit k as the first coordinate, i.e.let

$$
\begin{aligned}
a_{1}^{k} & =(k 10000 \ldots 0), \\
a_{2}^{k} & =(k 01000 \ldots 0), \\
a_{3}^{k} & =(k 00100 \ldots 0), \\
a_{4}^{k} & =(k 11100 \ldots 0),
\end{aligned}
$$

and let $A=\left\{a_{i}^{k}: i \in\{1,2,3,4\}, k \in\{0,1, \ldots, n-1\}\right\}$.
For each $i, j \in\{1,2,3,4\}$ with $i \neq j$ and each $r \in\{0,1, \ldots, n-1\}$, let $C_{i j}^{r}$ be the open snake in G_{1} obtained from the open snake $C_{i j}$ in K_{m}^{d-1} by adjoining the digit $r+n$ to every vertex of $C_{i j}$ as the first coordinate. For example $C_{12}^{0}=((n 10000 \ldots 0), \ldots$, ($n 01000 \ldots 0)$).

For each $a_{i}^{k}, a_{j}^{\ell} \in A$ with $i \neq j$ and each $r \in\{0,1, \ldots, n-1\}$, let $C\left(a_{i}^{k}, r, a_{j}^{\ell}\right)$ be the open snake in G_{1} with $S\left(K_{m}^{d-1}\right)+1$ vertices obtained from $C_{i j}^{r}$ by adjoining the vertex a_{i}^{k} in front and the vertex a_{j}^{ℓ} at the end. For example, if $n \geq 5$, then

$$
C\left(a_{1}^{3}, 0, a_{2}^{4}\right)=((310000 \ldots 0),(n 10000 \ldots 0), \ldots,(n 01000 \ldots 0),(401000 \ldots 0))
$$

Let $\mathcal{M}=\left\{C\left(a_{i}^{k}, r, a_{j}^{\ell}\right): a_{i}^{k}, a_{j}^{\ell} \in A, i \neq j, r \in\{0,1, \ldots, n-1\}\right\}$ and let $\mathcal{M}_{t}=\left\{C\left(a_{i}^{k}, r, a_{j}^{\ell}\right) \in\right.$ $\mathcal{M}: t \in\{i, j\}\}$, for any $t \in\{1,2,3,4\}$.

If \mathcal{C} is a chain of paths in a graph H and u_{1}, u_{2} are vertices of H, then we say that \mathcal{C} joins u_{1} to u_{2} if u_{1} is the first vertex of the first path of \mathcal{C} and u_{2} is the last vertex of the last path of \mathcal{C}. Given $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, we say that a chain \mathcal{C} of paths in G_{1} is \mathcal{M}^{\prime}-built if every path of \mathcal{C} belongs to \mathcal{N}^{\prime}.

Let \mathcal{C} and \mathfrak{C}^{\prime} be \mathcal{M}-built n^{q}-chains of paths with

$$
\mathcal{C}=\left(C\left(u_{0}, r_{0}, u_{1}\right), C\left(u_{1}, r_{1}, u_{2}\right), \ldots, C\left(u_{n^{q}-1}, r_{n^{q}-1}, u_{n^{q}}\right)\right),
$$

and

$$
\mathfrak{C}^{\prime}=\left(C\left(u_{0}^{\prime}, r_{0}^{\prime}, u_{1}^{\prime}\right), C\left(u_{1}^{\prime}, r_{1}^{\prime}, u_{2}^{\prime}\right), \ldots, C\left(u_{n^{q}-1}^{\prime}, r_{n^{q}-1}^{\prime}, u_{n^{q}}^{\prime}\right)\right),
$$

where $u_{i}, u_{i}^{\prime} \in A$ and $r_{j}, r_{j}^{\prime} \in\{0,1, \ldots, n-1\}, i=0,1, \ldots n^{q}, j=0,1, \ldots, n^{q}-1$. Then we say that $\mathcal{C}, \mathfrak{C}^{\prime}$ are internally compatible if $r_{i}=r_{i}^{\prime}$ for every $i=0,1, \ldots, n^{q}-1$ and $u_{i}=u_{i}^{\prime}$ for every $i=1,2, \ldots, n^{q}-1$.

For any $t \in\{0,1, \ldots, n-1\}$ and for any permutation $\tau \in S_{4}$, let $\sigma_{\tau}^{t}: \mathcal{M} \rightarrow \mathcal{M}$ be defined by

$$
\sigma_{\tau}^{t}\left(C\left(a_{i}^{k}, r, a_{j}^{\ell}\right)\right)=C\left(a_{\tau(i)}^{k \oplus t}, r \oplus t, a_{\tau(j)}^{\ell \oplus t}\right)
$$

where \oplus denotes addition $\bmod n$. If \mathcal{C} is an \mathcal{M}-built chain, then let $\sigma_{\tau}^{t}(\mathcal{C})$ be obtained by applying σ_{τ}^{t} to each path of \mathcal{C}. The following property can be proved by a straightforward induction on s.

Property 3.1. If \mathcal{C} is an \mathcal{M}-built openly well assembled n^{s}-chain, $\tau \in S_{4}$ and $t \in\{0,1, \ldots$ $\ldots, n-1\}$, then the chains $\pm \sigma_{\tau}^{t}(\mathcal{C})$ are also openly well assembled.

Let $\mathcal{M}^{\prime}=\mathcal{M}_{1}$ if n is is odd and $\mathcal{M}^{\prime}=\mathcal{M}_{3}$ if n is even. If $1 \leq q \leq d-2$, then a q-network in G_{1} is a family \mathcal{N}_{q} of \mathcal{N}^{\prime}-built openly well assembled n^{q}-chains $\mathcal{C}_{q}^{k \ell}$ such that $\mathcal{C}_{q}^{k \ell}$ joins a_{1}^{k} to $a_{2}^{\ell}, k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}$, and any two chains in \mathcal{N}_{q} are internally compatible.

For each $q, 1 \leq q \leq d-2$, we shall construct now a q-network \mathcal{N}_{q} in G_{1}. Let $\mathcal{N}_{1}=\left\{\mathcal{C}_{1}^{k \ell}: k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}\right\}$ with

$$
\begin{aligned}
& \mathcal{C}_{1}^{k \ell}=\left(C\left(a_{1}^{k}, 0, a_{i_{1}}^{1}\right), C\left(a_{i_{1}}^{1}, 1, a_{i_{2}}^{2}\right), C\left(a_{i_{2}}^{2}, 2, a_{i_{3}}^{3}\right), \ldots\right. \\
& \left.\quad \ldots, C\left(a_{i_{n-2}}^{n-2}, n-2, a_{i_{n-1}}^{n-1}\right), C\left(a_{i_{n-1}}^{n-1}, n-1, a_{2}^{\ell}\right)\right)
\end{aligned}
$$

where $i_{s}=1$ for s even and $i_{s}=3$ for s odd, $s=1,2, \ldots, n-1$.

Lemma 3.2. The set \mathcal{N}_{1} is a 1-network in G_{1}.

Proof. It is clear that \mathcal{N}_{1} is a family of \mathcal{N}^{\prime}-built n-chains such that $\mathcal{C}_{1}^{k \ell}$ joins a_{1}^{k} to a_{2}^{ℓ}, $k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}$, and any two chains in \mathcal{N}_{1} are internally compatible. It remains to show that the chains in \mathcal{N}_{1} are openly well assembled, and since the paths in \mathcal{M} are open snakes, it suffices to show that every chain in \mathcal{N}_{1} is openly separated.

Let $k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}$, let P, P^{\prime} be distinct paths of the chain $\mathcal{C}_{1}^{k \ell}$ and let u, u^{\prime} be vertices of P, P^{\prime} respectively. Assume that u, u^{\prime} are not apart. To complete the proof we need to show that P, P^{\prime} are consecutive in $\mathcal{C}_{1}^{k \ell}$ and that $u=u^{\prime}$ is their common vertex.

Since u, u^{\prime} are not apart in G_{1} the first coordinates of u and u^{\prime} are the same. Since $P \neq P^{\prime}$, it follows immediately from the definition of \mathcal{N}_{1} that

$$
u, u^{\prime} \in\left\{a_{1}^{k}, a_{i_{1}}^{1}, a_{i_{2}}^{2}, \ldots, a_{i_{n-1}}^{n-1}, a_{2}^{\ell}\right\}
$$

Since $i_{1}, i_{2}, \ldots, i_{n-1} \in\{1,3\}, k \in\{0,1\}$ and $i_{1}=3$, it follows that all the vertices in the sequence $\left(a_{1}^{k}, a_{i_{1}}^{1}, a_{i_{2}}^{2}, \ldots, a_{i_{n-1}}^{n-1}, a_{2}^{\ell}\right)$ are distinct. Since, clearly, any two distinct vertices of A are apart in G_{1}, it follows that $u=u^{\prime}$ and that the paths P, P^{\prime} are consecutive in $\mathcal{C}_{1}^{k \ell}$ completing the proof.

Assume now that $q>1$ and that \mathcal{N}_{q-1} is a $(q-1)$-network in G_{1}. Given $k \in\{0,1\}$ and $\ell \in\{0,1, \ldots, n-1\}$, let $\mathcal{C}_{q}^{k \ell}$ be the n^{q}-chain with the n-splitting \mathcal{S} defined as follows.

If n is odd, then let

$$
\mathcal{S}=\left(\sigma_{\tau_{0}}^{0}\left(\mathfrak{C}_{q-1}^{k 1}\right),-\sigma_{\tau_{1}}^{1}\left(\mathcal{C}_{q-1}^{10}\right), \sigma_{\tau_{2}}^{2}\left(\mathfrak{C}_{q-1}^{01}\right),-\sigma_{\tau_{3}}^{3}\left(\mathcal{C}_{q-1}^{10}\right), \ldots,-\sigma_{\tau_{n-2}}^{n-2}\left(\mathcal{C}_{q-1}^{10}\right), \sigma_{\tau_{n-1}}^{n-1}\left(\mathfrak{C}_{q-1}^{0 \ell \oplus 1}\right)\right)
$$

where τ_{i} is the transposition (2 3) for $i=0,1, \ldots, n-2$ and τ_{n-1} is the identity permutation. If n is even, then let

$$
\mathcal{S}=\left(-\sigma_{\tau_{0}}^{0}\left(\mathcal{C}_{q-1}^{1 k}\right), \sigma_{\tau_{1}}^{1}\left(\mathfrak{C}_{q-1}^{01}\right),-\sigma_{\tau_{2}}^{2}\left(\mathcal{C}_{q-1}^{10}\right), \sigma_{\tau_{3}}^{3}\left(\mathfrak{C}_{q-1}^{01}\right), \ldots,-\sigma_{\tau_{n-2}}^{n-2}\left(\mathcal{C}_{q-1}^{10}\right), \sigma_{\tau_{n-1}}^{n-1}\left(\mathfrak{C}_{q-1}^{0 \ell \oplus 1}\right)\right),
$$

where τ_{i} is the 3 -cycle $\left(\begin{array}{lll}2 & 1 & 4\end{array}\right)$ for $i=0,1, \ldots, n-2$, and τ_{n-1} is the transposition (1 4). Let $\mathcal{N}_{q}=\left\{\mathfrak{C}_{q}^{k \ell}: k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}\right\}$.

The following lemma holds.

Lemma 3.3. For every $q \in\{1,2, \ldots, d-2\}$ the set \mathcal{N}_{q} is a q-network in G_{1}.

Proof. If $q=1$, then \mathcal{N}_{1} is a 1-network in G_{1} by Lemma 3.2. Assume now that $q>1$ and that \mathcal{N}_{q-1} is an $(q-1)$-network in G_{1}. It is clear that \mathcal{N}_{q} is a family of \mathcal{N}-built n^{q}-chains such that $\mathcal{C}_{q}^{k \ell}$ joins a_{1}^{k} to $a_{2}^{\ell}, k \in\{0,1\}, \ell \in\{0,1, \ldots, n-1\}$. Since the chains in \mathcal{N}_{q-1} are internally compatible, it immediately follows from the definition of \mathcal{N}_{q} that any two chains in \mathcal{N}_{q} are internally compatible. Since, in the case of n being odd, the chains in \mathcal{N}_{q-1} are \mathcal{M}_{1}-built and since 1 is a fixed point of the permutation τ_{i} for each $i=0,1, \ldots, n-1$, it follows that the chains in \mathcal{N}_{q} are \mathcal{N}_{1}-built. Similarly, in the case of n being even, the chains in \mathcal{N}_{q-1} are \mathcal{N}_{3}-built and 3 is a fixed point of $\tau_{i}, i=0,1, \ldots, n-1$, implying that the chains in \mathcal{N}_{q} are \mathcal{M}_{3}-built. Thus, in general, the chains in \mathcal{N}_{q} are \mathcal{M}^{\prime}-built. It remains to show that the chains in \mathcal{N}_{q} are openly well assembled.

Let $\mathcal{C}_{q}^{k \ell}$ be a chain in \mathcal{N}_{q}. Since each chain in \mathcal{N}_{q-1} is openly well assembled and since Property 3.1 holds, it suffices to show that the n-splitting of $\mathcal{C}_{q}^{k \ell}$ is openly alternating.

Assume that n is odd. Let

$$
\mathcal{A}=\left(\begin{array}{c}
\sigma_{\tau_{0}}^{0}\left(\mathcal{C}_{q-1}^{k 1}\right) \\
\sigma_{\tau_{1}}^{1}\left(\mathcal{C}_{q-1}^{10}\right) \\
\sigma_{\tau_{2}}^{2}\left(\mathcal{C}_{q-1}^{01}\right) \\
\vdots \\
\sigma_{\tau_{n-2}}^{n-2}\left(\mathcal{C}_{q-1}^{10}\right) \\
\sigma_{\tau_{n-1}}^{n-1}\left(\mathcal{C}_{q-1}^{0 \ell \oplus 1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\sigma_{\tau_{0}}^{0}\left(C\left(a_{1}^{k}, \ldots\right)\right) & \ldots & \sigma_{\tau_{0}}^{0}\left(C\left(\ldots, a_{2}^{1}\right)\right) \\
\sigma_{\tau_{1}}^{1}\left(C\left(a_{1}^{1}, \ldots\right)\right) & \ldots & \sigma_{\tau_{1}}^{1}\left(C\left(\ldots, a_{2}^{0}\right)\right) \\
\sigma_{\tau_{2}}^{2}\left(C\left(a_{1}^{0}, \ldots\right)\right) & \ldots & \sigma_{\tau_{2}}^{2}\left(C\left(\ldots, a_{2}^{1}\right)\right) \\
\vdots & \ddots & \vdots \\
\sigma_{\tau_{n-2}}^{n-2}\left(C\left(a_{1}^{1}, \ldots\right)\right) & \ldots & \sigma_{\tau_{n-2}}^{n-2}\left(C\left(\ldots, a_{2}^{0}\right)\right) \\
\sigma_{\tau_{n-1}}^{n-1}\left(C\left(a_{1}^{0}, \ldots\right)\right) & \ldots & \sigma_{\tau_{n-1}}^{n-1}\left(C\left(\ldots, a_{2}^{\ell \oplus 1}\right)\right)
\end{array}\right)
$$

be the alternate matrix of the n-splitting of $\mathcal{C}_{q}^{k \ell}$. Then

$$
\mathcal{A}=\left(\begin{array}{ccc}
C\left(a_{1}^{k}, \ldots\right) & \ldots & C\left(\ldots, a_{3}^{1}\right) \\
C\left(a_{1}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{3}^{1}\right) \\
C\left(a_{1}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{3}^{3}\right) \\
\vdots & \ddots & \vdots \\
C\left(a_{1}^{n-1}, \ldots\right) & \ldots & C\left(\ldots, a_{3}^{n-2}\right) \\
C\left(a_{1}^{n-1}, \ldots\right) & \ldots & C\left(\ldots, a_{2}^{\ell}\right)
\end{array}\right) .
$$

Let $j \in\left\{1,2, \ldots, n^{q-1}\right\}$ and let P, P^{\prime} be distinct paths in the j-th column of the matrix \mathcal{A}. We need to show that the paths P, P^{\prime} are almost apart in G_{1} if they are consecutive in $\mathcal{C}_{q}^{k \ell}$ and that they are apart otherwise. Assume first that $2 \leq j \leq n^{q-1}-1$. Since the chains in \mathcal{N}_{q-1} are internally compatible, there is $Q=C\left(a_{i}^{u}, r, a_{i^{\prime}}^{u^{\prime}}\right) \in \mathcal{M}$ such that

$$
\begin{aligned}
& P=\sigma_{\tau_{s}}^{s}(Q) \\
&=C\left(a_{\tau_{s}(i)}^{u \oplus s}, r \oplus s, a_{\tau_{s}\left(i^{\prime}\right)}^{u u^{\prime} \oplus s}\right), \\
& P^{\prime}=\sigma_{\tau_{t}}^{t}(Q)=C\left(a_{\tau_{t}(i)}^{u \oplus t}, r \oplus t, a_{\tau_{t}\left(i^{\prime}\right)}^{u^{\prime} \oplus t}\right),
\end{aligned}
$$

for some $s, t \in\{0,1, \ldots, n-1\}, s \neq t$. Let w, w^{\prime} be vertices of P, P^{\prime} respectively. We will show that w and w^{\prime} are apart. Consider the following three cases:
(i) $w=a_{\tau_{s}(i)}^{u \oplus s}$ and $w^{\prime}=a_{\tau_{t}\left(i^{\prime}\right)}^{u^{\prime} \oplus t}$,
(ii) $w=a_{\tau_{s}\left(i^{\prime}\right)}^{u^{\prime} \oplus s}$ and $w^{\prime}=a_{\tau_{t}(i)}^{u \oplus t}$,
(iii) neither (i) nor (ii) holds.

If (iii) holds, then the first coordinates of w and w^{\prime} are different, hence w, w^{\prime} are apart in G_{1}. If (i) holds, then since the chains in \mathcal{N}_{q-1} are \mathcal{M}_{1}-built, it follows that exactly one of i, i^{\prime} is equal to 1 . Since 1 is a fixed point of both τ_{s} and τ_{t}, it follows that exactly one
of $\tau_{s}(i), \tau_{t}\left(i^{\prime}\right)$ is equal to 1 . Hence w, w^{\prime} differ at least at two coordinates, and so they are apart. Similarly, w, w^{\prime} are apart if (ii) holds.

Assume now that $j=1$. Since the chains in \mathcal{N}_{q-1} are internally compatible, we have

$$
\begin{gathered}
P=\sigma_{\tau_{s}}^{s}\left(C\left(a_{1}^{u}, r, a_{i}^{v}\right)\right)=C\left(a_{1}^{u \oplus s}, r \oplus s, a_{\tau_{s}(i)}^{v \oplus s}\right), \\
P^{\prime}=\sigma_{\tau_{t}}^{t}\left(C\left(a_{1}^{u^{\prime}}, r, a_{i}^{v}\right)\right)=C\left(a_{1}^{u^{\prime} \oplus t}, r \oplus t, a_{\tau_{t}(i)}^{v \oplus t}\right)
\end{gathered}
$$

for some $i \in\{2,3,4\}, u, u^{\prime} \in\{0,1\}$ and $r, s, t, v \in\{0,1, \ldots, n-1\}$ with $s \neq t$. We can assume that $s<t$. Let w, w^{\prime} be vertices of P, P^{\prime} respectively and assume that w, w^{\prime} are not apart in G_{1}. We will show that P, P^{\prime} are consecutive in $\mathcal{C}_{q}^{k \ell}$ and that $w=w^{\prime}$ is their common vertex. Since the vertices w, w^{\prime} are not apart in G_{1}, the first coordinates of w and w^{\prime} must be equal and hence one of the following cases holds:
(i) $w=a_{1}^{u \oplus s}$ and $w^{\prime}=a_{\tau_{t}(i)}^{v \oplus t}$,
(ii) $w=a_{\tau_{s}(i)}^{v \oplus s}$ and $w^{\prime}=a_{1}^{u^{\prime} \oplus t}$,
(iii) $w=a_{1}^{u \oplus s}$ and $w^{\prime}=a_{1}^{u^{\prime} \oplus t}$.

Since $\tau_{s}(i) \neq 1$ and $\tau_{t}(i) \neq 1$, we conclude that if (i) or (ii) holds, then w, w^{\prime} differ at least at two coordinates so they are apart. Thus (iii) holds. Since w, w^{\prime} are not apart, we have $u \oplus s=u^{\prime} \oplus t$, and so $w=w^{\prime}$. Since $u, u^{\prime} \in\{0,1\}$, it follows that $t=s+1$ implying that $u=1$ and $u^{\prime}=0$. Therefore s is odd, and so P, P^{\prime} are consecutive in $\mathcal{C}_{q}^{k \ell}$.

To complete the proof in the case of n being odd, it remains to consider the case when $j=n^{q}$. Then

$$
\begin{gathered}
P=\sigma_{\tau_{s}}^{s}\left(C\left(a_{1}^{u}, r, a_{2}^{v}\right)\right)=C\left(a_{1}^{u \oplus s}, r \oplus s, a_{\tau_{s}(2)}^{v \oplus s}\right), \\
P^{\prime}=\sigma_{\tau_{t}}^{t}\left(C\left(a_{1}^{u}, r, a_{2}^{v^{\prime}}\right)\right)=C\left(a_{1}^{u \oplus t}, r \oplus t, a_{\tau_{t}(2)}^{v^{\prime} \oplus t}\right),
\end{gathered}
$$

for some $r, s, t, u, v, v^{\prime} \in\{0,1, \ldots, n-1\}, s \neq t$. We can assume that $s<t$. Let w, w^{\prime} be vertices of P, P^{\prime} respectively and assume that w, w^{\prime} are not apart. Arguing as in the case when $j=1$, we conclude that $w=a_{\tau_{s}(2)}^{v \oplus s}$ and $w^{\prime}=a_{\tau_{t}(2)}^{v^{\prime} \oplus t}$. Since w, w^{\prime} are not apart and since any two distinct elements of A are apart, it follows that $w=w^{\prime}$. Hence $v \oplus s=v^{\prime} \oplus t$ and $\tau_{s}(2)=\tau_{t}(2)$, implying that $t \neq n-1$. Therefore $v, v^{\prime} \in\{0,1\}$ and so $t=s+1$. Thus
$v=1, v^{\prime}=0$ implying that s is even. Hence P, P^{\prime} are consecutive in $\mathcal{C}_{q}^{k \ell}$ completing the proof in the case of n being odd.

If n is even and \mathcal{A} is the alternate matrix of the n-splitting of $\mathcal{C}_{q}^{k \ell}$, then

$$
\mathcal{A}=\left(\begin{array}{c}
-\sigma_{\tau_{0}}^{0}\left(\mathcal{C}_{q-1}^{1 k}\right) \\
-\sigma_{\tau_{1}}^{1}\left(\mathcal{C}_{q-1}^{01}\right) \\
-\sigma_{\tau_{2}}^{2}\left(\mathcal{C}_{q-1}^{10}\right) \\
\vdots \\
-\sigma_{\tau_{n-2}}^{n-2}\left(\mathfrak{C}_{q-1}^{10}\right) \\
-\sigma_{\tau_{n-1}}^{n-1}\left(\mathcal{C}_{q-1}^{0 \ell \oplus 1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\sigma_{\tau_{0}}^{0}\left(C\left(a_{2}^{k}, \ldots\right)\right) & \ldots & \sigma_{\tau_{0}}^{0}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\sigma_{\tau_{1}}^{1}\left(C\left(a_{2}^{1}, \ldots\right)\right) & \ldots & \sigma_{\tau_{1}}^{1}\left(C\left(\ldots, a_{1}^{0}\right)\right) \\
\sigma_{\tau_{2}}^{2}\left(C\left(a_{2}^{0}, \ldots\right)\right) & \ldots & \sigma_{\tau_{2}}^{2}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\vdots & \ddots & \vdots \\
\sigma_{\tau_{n-2}}^{n-2}\left(C\left(a_{2}^{0}, \ldots\right)\right) & \ldots & \sigma_{\tau_{n-2}}^{n-2}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\sigma_{\tau_{n-1}}^{n-1}\left(C\left(a_{2}^{\ell \oplus 1}, \ldots\right)\right) & \ldots & \sigma_{\tau_{n-1}}^{n-1}\left(C\left(\ldots, a_{1}^{0}\right)\right)
\end{array}\right) .
$$

Hence

$$
\mathcal{A}=\left(\begin{array}{ccc}
C\left(a_{1}^{k}, \ldots\right) & \ldots & C\left(\ldots, a_{4}^{1}\right) \\
C\left(a_{1}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{4}^{1}\right) \\
C\left(a_{1}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{4}^{3}\right) \\
\vdots & \ddots & \vdots \\
C\left(a_{1}^{n-2}, \ldots\right) & \ldots & C\left(\ldots, a_{4}^{n-1}\right) \\
C\left(a_{2}^{\ell}, \ldots\right) & \ldots & C\left(\ldots, a_{4}^{n-1}\right)
\end{array}\right)
$$

Similarly as in the proof in the case of n being odd, we show that if $j \in\left\{1,2, \ldots, n^{q-1}\right\}$ and P, P^{\prime} are distinct paths in the j-th column of the matrix \mathcal{A}, then P, P^{\prime} are almost apart in G_{1} if they are consecutive in $\mathcal{C}_{q}^{k \ell}$ and they are apart otherwise. Therefore the n-splitting of $\mathcal{C}_{q}^{k \ell}$ is openly alternating and the proof is complete.

Assume that $q=d-2$. By Lemma 3.3, the set \mathcal{N}_{q} is a q-network in G_{1}. Define \mathcal{D} to be the \mathcal{M}-built $\langle n\rangle n^{q}$-chain with the $\langle n\rangle$-splitting

$$
\left(-\sigma^{0}\left(\mathfrak{C}_{q}^{10}\right), \sigma^{1}\left(\mathcal{C}_{q}^{01}\right),-\sigma^{2}\left(\mathcal{C}_{q}^{10}\right), \ldots,-\sigma^{\langle n\rangle-2}\left(\mathcal{C}_{q}^{10}\right), \sigma^{\langle n\rangle-1}\left(\mathcal{C}_{q}^{0 n-\langle n\rangle+1}\right)\right)
$$

where $\sigma^{i}=\sigma_{\tau}^{i}$ with τ being the identity permutation, $i=0,1, \ldots,\langle n\rangle-1$. The following lemma together with Lemma 2.7 will allow us to construct long snakes in $K_{m n}^{d}$.

Lemma 3.4. \mathcal{D} is a closely well assembled $\langle n\rangle n^{d-2}$-chain of paths in G_{1}.

Proof. Since each chain in \mathcal{N}_{q} is openly well assembled and since Property 3.1 holds, it
suffices to show that the $\langle n\rangle$-splitting of \mathcal{D} is closely alternating. Let

$$
\mathcal{A}=\left(\begin{array}{c}
-\sigma^{0}\left(\mathfrak{C}_{q}^{10}\right) \\
-\sigma^{1}\left(\mathfrak{C}_{q}^{01}\right) \\
-\sigma^{2}\left(\mathfrak{C}_{q}^{10}\right) \\
\vdots \\
-\sigma^{\langle n\rangle-2}\left(\mathfrak{C}_{q}^{10}\right) \\
-\sigma^{\langle n\rangle-1}\left(\mathfrak{C}_{q}^{0 n-\langle n\rangle+1}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\sigma^{0}\left(C\left(a_{2}^{0}, \ldots\right)\right) & \ldots & \sigma^{0}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\sigma^{1}\left(C\left(a_{2}^{1}, \ldots\right)\right) & \ldots & \sigma^{1}\left(C\left(\ldots, a_{1}^{0}\right)\right) \\
\sigma^{2}\left(C\left(a_{2}^{0}, \ldots\right)\right) & \ldots & \sigma^{2}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\vdots & \ddots & \vdots \\
\sigma^{\langle n\rangle-2}\left(C\left(a_{2}^{0}, \ldots\right)\right) & \ldots & \sigma^{\langle n\rangle-2}\left(C\left(\ldots, a_{1}^{1}\right)\right) \\
\sigma^{\langle n\rangle-1}\left(C\left(a_{2}^{n-\langle n\rangle+1}, \ldots\right)\right) & \ldots & \sigma^{\langle n\rangle-1}\left(C\left(\ldots, a_{1}^{0}\right)\right)
\end{array}\right)
$$

be the alternate matrix of the $\langle n\rangle$-splitting of \mathcal{D}. Then

$$
\mathcal{A}=\left(\begin{array}{ccc}
C\left(a_{2}^{0}, \ldots\right) & \ldots & C\left(\ldots, a_{1}^{1}\right) \\
C\left(a_{2}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{1}^{1}\right) \\
C\left(a_{2}^{2}, \ldots\right) & \ldots & C\left(\ldots, a_{1}^{3}\right) \\
\vdots & \ddots & \vdots \\
C\left(a_{2}^{\langle n\rangle-2}, \ldots\right) & \ldots & C\left(\ldots, a_{1}^{\langle n\rangle-1}\right) \\
C\left(a_{2}^{0}, \ldots\right) & \ldots & C\left(\ldots, a_{1}^{\langle n\rangle-1}\right)
\end{array}\right) .
$$

Similarly as in the proof of Lemma 3.3, we show that if $j \in\left\{1,2, \ldots, n^{q}\right\}$ and P, P^{\prime} are distinct paths in the j-th column of the matrix \mathcal{A}, then P, P^{\prime} are almost apart in G_{1} if they are cyclically consecutive in \mathcal{D} and they are apart otherwise. Therefore the $\langle n\rangle$-splitting of \mathcal{D} is closely alternating and the proof is complete.

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. It follows from Lemma 2.7 and Lemma 3.4 that $C=\mathcal{D} \boxtimes \gamma_{n}^{d-1}$ is a snake in $G_{d}=K_{m n}^{d}$. It is clear that the length of C is equal to $\langle n\rangle n^{d-2}\left(S\left(K_{m}^{d-1}\right)+1\right)$ so the proof is complete.

4. Concluding remarks

The assumption that $d \geq 4$ in Theorem 1.9 can be slighty relaxed. If we assume either that $m \geq 3$ and n is odd, or that $m \geq 4$, then it suffices to require that $d \geq 3$. Indeed, if $m \geq 4$, then we can use the vertices $a_{1}=(0000 \ldots 0), a_{2}=(1100 \ldots 0), a_{3}=(2200 \ldots 0)$, $a_{4}=(3300 \ldots 0)$ in our construction. If n is odd, then the vertex a_{4} is not needed so the construction works for $m \geq 3$.

Although Theorem 1.8 is a significant strengthening of Theorem 1.6, Conjecture 1.5 remains still open. We would like to formulate some more conjectures that are generalizations of the result of Wojciechowski [14] saying that for any $d \geq 2$, the hypercube K_{2}^{d} can be vertex-covered by at most 16 vertex-disjoint snakes.

Conjecture 4.1. For any integer $n \geq 2$ there is an integer r_{n} such that the graph K_{n}^{d} can be vertex-covered by at most r_{n} vertex-disjoint snakes for any $d \geq 2$.

In the case of n being odd, a weaker version of Conjecture 4.1 (without requiring that the snakes are vertex-disjoint) has been recently proved by Alsardary [7]. The following conjecture implies both Conjecture 4.1 and Conjecture 1.5.

Conjecture 4.2. There is a constant c such that for any $n \geq 2$ and any $d \geq 1$, the graph K_{n}^{d} can be vertex-covered by at most cn vertex-disjoint snakes.

The best upper bound on $S\left(K_{2}^{d}\right)$ has been given by Snevily [12].

References

[1] Abbott, H. L., private communication.
[2] Abbott, H. L., Dierker, P. F., Snakes in powers of complete graphs, SIAM J. Appl. Math. 32 (1977), 347-355.
[3] Abbott, H. L., Katchalski, M., On the snake in the box problem, J. Comb. Theory Ser. B 45 (1988), 13-24.
[4] Abbott, H. L., Katchalski, M., Snakes and pseudo snakes in powers of complete graphs, Discrete Math. 68 (1988), 1-8.
[5] Abbott, H. L., Katchalski, M., On the construction of snake in the box codes, Utilitas Mathematica 40 (1991), 97-116.
[6] Abbott, H. L., Katchalski, M., Further results on snakes in powers of complete graphs, Discrete Math. 91 (1991), 111-120.
[7] Alsardary, S. Y., Covering the powers of the complete graph with an odd number of vertices with a bounded number of snakes, submitted.
[8] Evdokimov, A. A., The maximal length of a chain in the unit n-dimensional cube. Mat. Zametki 6 (1969), 309-319. English translation in Math. Notes 6 (1969), 642-648.
[9] Kautz, W. H., Unit-distance error-checking codes, IRE Trans. Electronic Computers 3 (1958), 179-180.
[10] Klee, V., A method for constructing circuit codes, J. Assoc. Comput. Mach. 14 (1967), 520-538.
[11] Klee, V., What is the maximum lenght of a d-dimensional snake?, Amer. Math. Monthly 77 (1970), 63-65.
[12] Snevily, H. S., The snake-in-the-box problem: a new upper bound, Discrete Math. 133 (1994), 307-314.
[13] Wojciechowski, J., A new lower bound for snake-in-the-box codes, Combinatorica 9 (1) (1989), 91-99.
[14] Wojciechowski, J., Covering the hypercube with a bounded number of disjoint snakes, Combinatorica 14 (4) (1994), 1-6.
[15] Wojciechowski, J., Long snakes in powers of the complete graph with an odd number of vertices, J. London Math. Soc. (2) 50 (1994), 465-476.

