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1. Introduction

Let G be a graph. By a path in G we mean a sequence of distinct vertices of G with every

pair of consecutive vertices being adjacent. A path will be called closed if its first vertex

is adjacent to the last one.

Let P be a path in the graph G. By a chord of P we mean an edge of G joining

two nonconsecutive vertices of P . If P is closed and e is a chord of P , then we say that e

is a proper chord if it is not the edge joining the first vertex of P to its last vertex. Note

that a proper chord of a closed path corresponds to the standard notion of a chord in a

cycle. By a snake we mean a closed path without proper chords, and an open snake is a

path without chords.

Let G and H be graphs. The product G×H of G and H is the graph with V (G)×

V (H) as the vertex set and (g1, h1) adjacent to (g2, h2) if either g1g2 ∈ E(G) and h1 = h2,

or else if g1 = g2 and h1h2 ∈ E(H).

Let Kd
n be the product of d copies of the complete graph Kn, n ≥ 2, d ≥ 1. It

will be convenient to think of the vertices of Kd
n to be the d-tuples of n-ary digits, i.e.

the elements of the set {0, 1, . . . , n− 1}, with edges between any two d-tuples differing at

exactly one coordinate.

Let S(Kd
n) be the length of the longest snake in Kd

n. The problem of estimating the

value of S(Kd
n) has a long history. It was first met by Kautz [9] in the case of n = 2 (known

in the literature as the snake-in-the-box problem) in constructing a type of error-checking

code for a certain analog-to-digital conversion systems. The evaluation of S(Kd
2 ) has proven

to be a notoriously difficult problem and, on the other hand, it has been demonstrated to

be of importance in connection with several applied problems (see for example [10], [11]).

As a consequence several authors became interested in estimating the value of S(Kd
2 ) and a

large literature has evolved (see [5] for a list of references). Subsequently, the general case

of the problem with an arbitrary value of n has been introduced by Abbott and Dierker
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[2] and developed further by Abbott and Katchalski [4], [6], and Wojciechowski [15]. The

following theorem is a result of these investigations.

Theorem 1.1. For any integer n ≥ 2, there is a constant cn > 0 such that

S(Kd
n) ≥ cnnd, (1.1)

for any d ≥ 1.

In the case when n = 2, Theorem 1.1 was first proved by Evdokimov [8]. Other

shorter proofs, in that case, were given by Abbott and Katchalski [3] and Wojciechowski

[13]. The largest value of the constant c2 = 77
256 = 0.300781 . . . was obtained by Abbott

and Katchalski [5].

In the case when n ≡ 0 mod 4, Theorem 1.1 has been proved by Abbott and Katchal-

ski [6]. Actually, they proved the following theorem that allows for this case of Theorem

1.1 to be deduced from the case when n = 2.

Theorem 1.2. If n ≡ 0 mod 4, then

S(Kd
n) ≥

(n

2

)d−1

S(Kd−1
2 ),

for every d ≥ 3.

As remarked by Abbott and Katchalski [6], a modification of their technique can

be used to prove that the following more general theorem holds.

Theorem 1.3. There is a constant λ > 0 such that if n ≥ 2 is an even integer, then

S(Kd
n) ≥ λ

(n

2

)d−1

S(Kd−1
2 ),

for any d ≥ 2.

Theorem 1.3 implies that Theorem 1.1 holds for every even integer n ≥ 2. In

the case of n being odd, Theorem 1.1 was proved by Wojciechowski [15]. He proved the

following result which implies the corresponding case of Theorem 1.1.
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Theorem 1.4. If n ≥ 3 is an odd integer, then

S(Kd
n) ≥ 2(n− 1)nd−4,

for any d ≥ 5.

The constant cn in Theorem 1.1 cannot be made independent of n since Abbott

and Katchalski [4] proved that

S(Kd
n) ≤

(
1 +

1
d− 1

)
nd−1.

However the following conjecture seems plausible.

Conjecture 1.5. There is a constant c > 0 such that

S(Kd
n) ≥ cnd−1, (1.2)

for any n ≥ 2, d ≥ 1.

It follows from Theorems 1.1 and 1.3 that if we restrict the range of values of n to

even integers, then Conjecture 1.5 holds, i.e. the following theorem is true.

Theorem 1.6. There is a constant c > 0 such that if n ≥ 2 is an even integer, then

S(Kd
n) ≥ cnd−1,

for any d ≥ 1.

In the general case, however, Conjecture 1.5 remains still open since in the case of

n being odd, the value of c in (1.2) given by Theorem 1.4 (c = 2(n− 1)/n3) depends on n

and approaches 0 when n tends to infinity.

The main result of this paper is the following generalization of Theorem 1.3 conjec-

tured by Abbott and Katchalski [1].
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Theorem 1.7. For any integer m ≥ 2, there is a constant λm > 0 such that

S(Kd
mn) ≥ λmnd−1S(Kd−1

m ),

for any n ≥ 1 and d ≥ 2.

As a corollary of Theorem 1.7, we get the following generalization of Theorem 1.6

which provides further evidence for Conjecture 1.5 to be true.

Theorem 1.8. Let P be a finite set of primes. Then there is a constant c = c(P ) > 0

such that

S(Kd
n) ≥ cnd−1,

for any integer n that is divisible by an element of P and for any d ≥ 1.

Actually, we prove the following result that implies Theorem 1.7.

Theorem 1.9. Let m,n ≥ 2 and d ≥ 4 be integers. Then

S(Kd
mn) ≥ nd−1

(
S(Kd−1

m ) + 1
)
,

if n is even, and

S(Kd
mn) ≥ (n− 1)nd−2

(
S(Kd−1

m ) + 1
)
,

if n is odd.

The proof of Theorem 1.9 is given in section 3.
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2. Basic Definitions

A k-path in a graph is a path consisting of k vertices, i.e.a path of length k − 1. If P is

a k-path, then we will write k = |P |. A chain C of paths is a sequence (P1, P2, . . . , Pk) of

paths such that each path of C has at least two vertices, and the last vertex of Pi is equal

to the first vertex of Pi+1, i = 1, 2, . . . , k − 1. A k-chain of paths is a chain consisting of

k paths. A chain C = (Pi)k
i=1 of paths will be called closed if the first vertex of P1 is equal

to the last vertex of Pk. If C is a kr-chain of paths, then the r-splitting of C is the sequence

(C1,C2, . . . ,Cr) of k-chains of paths which joined together (juxtaposed) give C.

Let G and H be graphs. Given a k-chain of paths C = (Pi)k
i=1 in G with Pi =

(u1, u2, . . . , uri
) and a k-path Q = (vi)k

i=1 in H, let C ⊗ Q be the
( ∑k

i=1 |Pi|
)
-path

in the graph G × H obtained by juxtaposing the paths P ′
1, P ′

2, . . . , P ′
k, where P ′

i =(
(u1, vi), (u2, vi), . . . , (uri

, vi)
)
, i = 1, 2, . . . , k.

Let d, m, n ≥ 2 be integers. We assume d, m and n to be fixed throughtout the

paper. Given an integer p with 1 ≤ p ≤ d, let Gp be the graph

Gp = Kp
mn ×Kd−p

m .

In particular Gd = Kd
mn. Let p ≥ 1 and q ≥ 1 be integers with p + q ≤ d. If

u = (a1, a2, . . . , ad) is a vertex of the graph Gp (i.e.a1, a2, . . . , ap ∈ {0, 1, . . . ,mn − 1},

ap+1, ap+2, . . . , ad ∈ {0, 1, . . . ,m− 1}) and v = (b1, b2, . . . , bq) is a vertex of the graph Kq
n,

then let u � v be the vertex of Gp+q = Kp+q
mn ×Kd−p−q

m defined by

u � v = (a1, a2, . . . , ap, a
′
p+1, a

′
p+2, . . . , a

′
p+q, ap+q+1, ap+q+2, . . . , ad),

where

a′p+i = ap+i + mbi,

for i = 1, 2, . . . , q. If P = (ui)k
i=1 is a k-path in Gp and v is a vertex in Kq

n, then let

P � v = (u1 � v, u2 � v, . . . , uk � v). Clearly P � v is a k-path in Gp+q.
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Given a k-chain of paths C = (Pi)k
i=1 in the graph Gp and a k-path Q = (vi)k

i=1 in

the graph Kq
n, let C�Q be the

( ∑k
i=1 |Pi|

)
-path in the graph Gp+q obtained by juxtaposing

the paths P ′
1, P ′

2, . . . , P ′
k, where P ′

i = Pi � vi, i = 1, 2, . . . , k. Note that if the chain C is

closed and the path Q is closed, then the path C � Q is also closed.

Given a kr-chain C of paths in Gp with the r-splitting (C1,C2, . . . ,Cr) and an r-chain

D = (Pi)r
i=1 of k-paths in the graph Kq

n, set

C � D = (C1 � P1,C2 � P2, . . . ,Cr � Pr).

Note that for each i ∈ {1, 2, . . . , r − 1} the last vertex of the path Ci � Pi is equal to the

first vertex of the path Ci+1 � Pi+1, hence the sequence C � D is an r-chain of paths in

Gp+q. Note that if the chains C and D are closed, then the chain C � D is also closed. It

is straightforward to verify that the following property holds.

Property 2.1. Let q1, q2 be positive integers with q1 + q2 = q. If C is a kr-chain of paths

in Gp, D is an r-chain of k-paths in Kq1
n and P is a k-path in Kq2

n , then

C � (D⊗ P ) = (C � D) � P.

If v1, v2 are vertices of Gp, then we say that v1 and v2 are apart if they differ either at

one of the first p coordinates or at least at two coordinates. Let P1 and P2 be paths in Gp.

We say that P1 and P2 are apart if for every pair of vertices v1, v2 of P1, P2 respectively,

the vertices v1 and v2 are apart. We say that P1 and P2 are almost apart if they have one

vertex v in common and for every pair of vertices v1, v2 of P1, P2 respectively, such that

at least one of v1, v2 is different than v, the vertices v1 and v2 are apart.

When we refer to a pair si, sj of elements of a sequence (s1, s2, . . . , st), we say that

si and sj are cyclically consecutive if either j = i± 1 or {i, j} = {1, t}.
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Let C = (Pi)k
i=1 be a chain of paths in the graph Gp. We say that C is openly

separated if any two consecutive paths of C are almost apart and any two nonconsecutive

paths are apart. We say that C is closely separated if C is closed, any two cyclically

consecutive paths of C are almost apart and any two cyclically nonconsecutive paths are

apart. The following lemma holds.

Lemma 2.2. Let C be a chain of open snakes in the graph Gp and Q be a path in Kq
n.

(i) If C is openly separated, then the path C � Q is an open snake in the graph Gp+q.

(ii) If C is closely separated and Q is closed, then the path C � Q is a snake in Gp+q.

Proof. Let C = (Pi)k
i=1 and Q = (vi)k

i=1. Then the path R = C � Q is obtained by

juxtaposing the paths P ′
1, P ′

2, . . . , P ′
k, where P ′

i = Pi � vi, i = 1, 2, . . . , k. Let w1, w2 be

vertices of R that are adjacent in Gp+q and assume that w1 = u1 � vi, w2 = u2 � vj where

u1 is a vertex of Pi and u2 is a vertex of Pj , i, j ∈ {1, 2, . . . , k}. If i = j, then the vertices

u1, u2 are adjacent in Gp, hence they must be consecutive in Pi since Pi is an open snake.

Therefore w1, w2 are consecutive in R and so w1w2 is not a chord of R.

Assume now that i 6= j. Since w1w2 ∈ E(Gp+q), the vertices w1, w2 differ at

exactly one coordinate t ∈ {1, 2, . . . , d}. Hence u1, u2 must agree at each coordinate in

{1, 2, . . . , d}r {t}. Since vi 6= vj , it follows that t ∈ {p + 1, p + 2, . . . , p + q}, so u1, u2 are

not apart. Therefore the paths Pi, Pj are not apart.

If C is openly separated, then any two nonconsecutive paths of C are apart, hence

the paths Pi, Pj are consecutive in C (say Pj follows Pi) and they are almost apart in Gp.

Thus u1 = u2 is the last vertex of Pi and the first vertex of Pj , thus w1, w2 are consecutive

in R. Hence w1w2 is not a chord of R, and the proof of (i) is complete.

Similarly, if C is closely separated, then the paths Pi, Pj are cyclically consecutive

in C (say Pj follows Pi) and u1 = u2 must be the last vertex of Pi and the first vertex of

Pj , hence w1, w2 are cyclically consecutive in R. Thus w1w2 is not a proper cord of R and

the proof of (ii), hence of the lemma, is complete.
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If P is a path, then let −P be the path obtained from P by reversing the order

of vertices, and if C = (Pi)r
i=1 is a chain of paths, then let −C = (−Pr,−Pr−1, . . . ,−P1)

be the chain of paths obtained from C by reversing the order of paths and reversing every

path. The expression (−1)iX, where X is a path or a chain of paths, will mean X for i

even and −X for i odd. Obviously, the following property holds.

Property 2.3. If C is an r-chain of paths in the graph Gp and P is an r-path in the graph

Kq
n, then C � (−Q) = −(−C � Q).

Let C be a kr-chain of paths, and let S =
(
C1,C2, . . . ,Cr

)
be the r-splitting of C.

By the alternate matrix of the splitting S we mean the following (r× k)-matrix A of paths:

A =


C1

−C2
...

(−1)r−1Cr

 =


Q1

1 Q2
1 . . . Qk

1

−Q1
2 −Q2

2 . . . −Qk
2

...
...

. . .
...

(−1)r−1Q1
r (−1)r−1Q2

r . . . (−1)r−1Qk
r


where Ci = (Q1

i , Q
2
i , . . . , Q

k
i ) for i odd and Ci = (Qk

i , Qk−1
i , . . . , Q1

i ) for i even, i =

1, 2, . . . , r. The splitting S will be called openly alternating if for any ` ∈ {1, 2, . . . , k}

and for any two distinct paths Q`
i , Q`

j appearing in the `-th column of A, the paths Q`
i ,

Q`
j are almost apart when they are consecutive in C and they are apart otherwise.

Assume now that the chain C is closed and r is even. Then, we say that the splitting

S is closely alternating if for any ` ∈ {1, 2, . . . , k} and for any two distinct paths Q`
i , Q`

j

appearing in the `-th column of A, the paths Q`
i , Q`

j are almost apart when they are

cyclically consecutive in C and they are apart otherwise. The following lemma holds.

Lemma 2.4. Let C be a kr-chain of paths in the graph Gp and P be a k-path in Kq
n.

(i) If the r-splitting of C is openly alternating and D is the r-chain

(P,−P, . . . , (−1)r−1P ), then the r-chain C�D of paths in the graph Gp+q is openly

separated.

(ii) If r is even, the r-splitting of C is closely alternating and D is the closed r-chain
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(P,−P, P,−P, . . . ,−P ), then the closed r-chain C � D of paths in the graph Gp+q

is closely separated.

Proof. Let S = (C1,C2, . . . ,Cr) be the r-splitting of C and let

A =


C1

−C2
...

(−1)r−1Cr

 =


Q1

1 Q2
1 . . . Qk

1

−Q1
2 −Q2

2 . . . −Qk
2

...
...

. . .
...

(−1)r−1Q1
r (−1)r−1Q2

r . . . (−1)r−1Qk
r


be the alternate matrix of S. Then we have

E = C � D = (C1 � P,C2 � (−P ), . . . ,Cr � (−1)r−1P ) = (R1, R2, . . . , Rr).

Let Ri, Rj be distinct paths of E and let u1 be a vertex of the path Ri and u2 be a vertex

of Rj . Assume that u1, u2 are not apart in Gp+q. To complete the proof of (i), we need to

show that the paths Ri, Rj are consecutive in E and that u1 = u2 is their common vertex.

Assume that P = (v`)k
`=1. Then u1 = w1 � vs where w1 is a vertex of the path Qs

i

and u2 = w2 � vt where w2 is a vertex of Qt
j , for some s, t ∈ {1, 2, . . . , k}. Since u1, u2 are

not apart in Gp+q, they agree at each coordinate 1, 2, . . . , p + q, hence vs = vt and s = t.

Thus the paths Qs
i and Qt

j appear in the same column of A. Since u1, u2 are not apart

in Gp+q, it follows that the vertices w1, w2 are not apart in Gp and hence the paths Qs
i

and Qt
j are not apart in Gp. Since S is openly alternating, Qs

i and Qt
j are consecutive in

C and they are almost apart in Gp. It follows that Ri, Rj are consecutive in E and that

w1 = w2. Hence u1 = u2 and the proof of (i) is complete.

The proof of (ii) is similar.

Let 〈n〉 = 2bn
2 c, i.e.let 〈n〉 = n if n is even and 〈n〉 = n − 1 if n is odd. Let t ≥ 1

and C be be an nt-chain of paths in Gp. We say that C is openly well assembled if either

t = 1 and C is an openly separated chain of open snakes, or t ≥ 2, every chain Ci in the

n-splitting S = (C1,C2, . . . ,Cn) of C is openly well assembled and S is openly alternating.
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Let D be an 〈n〉nt-chain of paths in Gp. We say that D is closely well assembled if

every chain Di in the 〈n〉-splitting S′ = (D1,D2, . . . ,D〈n〉) of D is openly well assembled

and S′ is closely alternating. The following property can be proved by a straightforward

induction with respect to t.

Property 2.5. If t ≥ 1, C is an openly well assembled nt-chain of paths in the graph Gp,

then the chain −C is also openly well assembled.

For every t ≥ 1 we are going now to define the nt-path πt
n in Kt

n, and the closed

〈n〉nt−1-path γt
n in Kt

n. These paths will be used in the construction of long snakes. Let

π1
n be the n-path (0, 1, . . . , n− 1) and γ1

n be the closed 〈n〉-path (0, 1, . . . , 〈n〉 − 1) in Kt
n.

Assuming that the path πt
n in Kt

n is defined, let

πt+1
n = (πt

n,−πt
n, πt

n,−πt
n, . . . , (−1)n−1πt

n)⊗ π1
n

and

γt+1
n = (πt

n,−πt
n, πt

n,−πt
n, . . . ,−πt

n)⊗ γ1
n.

The following lemma holds.

Lemma 2.6. If C is an openly well assembled nq-chain of paths in the graph Gp, then the

path C � πq
n is an open snake in the graph Gp+q.

Proof. We are going to use induction with respect to q. For q = 1, the lemma is true by

Lemma 2.2 (i). Assume that p+q+1 ≤ d and C is an openly assembled nq+1-chain of paths

in the graph Gp. We have C�πd+1
n = C� (D⊗π1

n), where D = (πq
n,−πq

n, . . . , (−1)n−1πq
n).

By Property 2.1, the chain C � πq+1
n is equal to (C � D) � π1

n. Let S = (C1,C2, . . . ,Cn) be

the n-splitting of C. Then

C � D =
(
C1 � πq

n,C2 � (−πq
n), . . . ,Cn � (−1)n−1πq

n

)
.
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By Property 2.3,

C � D =
(
C1 � πq

n,−(−C2 � πq
n), . . . , (−1)n−1((−1)n−1Cn � πq

n)
)
.

Since the chain C is openly well assembled, the chains C1, C2, . . . , Cn are also openly well

assembled. By Property 2.5, the chains C1, −C2, . . . , (−1)n−1Cn are openly well assembled,

so by the inductive hypothesis, the paths C1�πq
n, −(−C2�πq

n), . . . , (−1)n−1((−1)n−1Cn �

πq
n) are open snakes in Gp+q. The splitting S is openly alternating, so by Lemma 2.4 (i),

the chain C � D is openly separated. Hence by Lemma 2.2 (i), (C � D) � π1
n = C � πq

n is

an open snake in Gp+q+1, and the proof is complete.

The following lemma will be used in the proof of the main result.

Lemma 2.7. If q ≥ 2 and C is a closely well assembled 〈n〉nq−1-chain of paths in the

graph Gp, then the path C � γq
n is a snake in the graph Gp+q.

Proof. We have C�γq
n = C�(D⊗γ1

n), where D is the 〈n〉-chain (πq−1
n ,−πq−1

n , . . . ,−πq−1
n ).

By Property 2.1, the chain C � γq
n is equal to (C � D) � γ1

n. Let S = (C1,C2, . . . ,C〈n〉) be

the 〈n〉-splitting of C. Then

C � D =
(
C1 � πq−1

n ,C2 � (−πq−1
n ), . . . ,C〈n〉 � (−πq−1

n )
)
.

By Property 2.3,

C � D =
(
C1 � πq−1

n ,−(−C2 � πq−1
n ), . . . ,−(−C〈n〉 � πq−1

n )
)
.

By Property 2.5 and Lemma 2.6, arguing as in the proof of Lemma 2.6, we conclude

that C � D is a chain of open snakes in Gp+q−1. The splitting S is closely alternating

so by Lemma 2.4 (ii), the chain C � D is closely separated. Hence by Lemma 2.2 (ii),

(C � D) � γn = C � γq
n is a snake in Gp+q, and the proof is complete.
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3. Construction of long snakes

Assume that d ≥ 4. Let C be a snake of length S(Kd−1
m ) in Kd−1

m and let C ′ be the open

snake obtained from C by deleting the last vertex. Given any pair u1, u2 of vertices of Kd−1
m

that differ at exactly two coordinates, we can get an open snake in Kd−1
m with endpoints u1,

u2 by permuting the coordinates and permuting the entries at some coordinates of the open

snake C ′. Let a1, a2, a3 and a4 be four vertices in Kd−1
m such that any two of them differ

at exactly two coordinates. For example, let a1 = (10000 . . . , 0), a2 = (01000 . . . 0), a3 =

(00100 . . . 0) and a4 = (11100 . . . 0). Let Cij be an open snake in Kd−1
m with S(Kd−1

m )− 1

vertices such that ai is the first and aj is the last vertex of Cij , i, j ∈ {1, 2, 3, 4}, i 6= j.

For each i ∈ {1, 2, 3, 4} and k ∈ {0, 1, . . . , n− 1}, let ak
i be the vertex of the graph

G1 = Kmn×Kd−1
m obtained from ai by adjoining the digit k as the first coordinate, i.e.let

ak
1 = (k 1 0 0 0 0 . . . 0),

ak
2 = (k 0 1 0 0 0 . . . 0),

ak
3 = (k 0 0 1 0 0 . . . 0),

ak
4 = (k 1 1 1 0 0 . . . 0),

and let A = {ak
i : i ∈ {1, 2, 3, 4}, k ∈ {0, 1, . . . , n− 1}}.

For each i, j ∈ {1, 2, 3, 4} with i 6= j and each r ∈ {0, 1, . . . , n − 1}, let Cr
ij be the

open snake in G1 obtained from the open snake Cij in Kd−1
m by adjoining the digit r + n

to every vertex of Cij as the first coordinate. For example C0
1 2 = ((n 1 0 0 0 0 . . . 0), . . . ,

(n 0 1 0 0 0 . . . 0)).

For each ak
i , a`

j ∈ A with i 6= j and each r ∈ {0, 1, . . . , n− 1}, let C(ak
i , r, a`

j) be the

open snake in G1 with S(Kd−1
m ) + 1 vertices obtained from Cr

ij by adjoining the vertex ak
i

in front and the vertex a`
j at the end. For example, if n ≥ 5, then

C(a3
1, 0, a4

2) = ((3 1 0 0 0 0 . . . 0), (n 1 0 0 0 0 . . . 0), . . . , (n 0 1 0 0 0 . . . 0), (4 0 1 0 0 0 . . . 0)).

Let M = {C(ak
i , r, a`

j) : ak
i , a`

j ∈ A, i 6= j, r ∈ {0, 1, . . . , n−1}} and let Mt = {C(ak
i , r, a`

j) ∈

M : t ∈ {i, j}}, for any t ∈ {1, 2, 3, 4}.
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If C is a chain of paths in a graph H and u1, u2 are vertices of H, then we say that

C joins u1 to u2 if u1 is the first vertex of the first path of C and u2 is the last vertex of the

last path of C. Given M′ ⊆ M, we say that a chain C of paths in G1 is M′-built if every

path of C belongs to M′.

Let C and C′ be M-built nq-chains of paths with

C = (C(u0, r0, u1), C(u1, r1, u2), . . . , C(unq−1, rnq−1, unq )),

and

C′ = (C(u′0, r
′
0, u

′
1), C(u′1, r

′
1, u

′
2), . . . , C(u′nq−1, r

′
nq−1, u

′
nq )),

where ui, u
′
i ∈ A and rj , r

′
j ∈ {0, 1, . . . , n−1}, i = 0, 1, . . . nq, j = 0, 1, . . . , nq −1. Then we

say that C, C′ are internally compatible if ri = r′i for every i = 0, 1, . . . , nq − 1 and ui = u′i

for every i = 1, 2, . . . , nq − 1.

For any t ∈ {0, 1, . . . , n − 1} and for any permutation τ ∈ S4, let σt
τ : M → M be

defined by

σt
τ (C(ak

i , r, a`
j)) = C(ak⊕t

τ(i), r ⊕ t, a`⊕t
τ(j)),

where ⊕ denotes addition mod n. If C is an M-built chain, then let σt
τ (C) be obtained by

applying σt
τ to each path of C. The following property can be proved by a straightforward

induction on s.

Property 3.1. If C is an M-built openly well assembled ns-chain, τ ∈ S4 and t ∈ {0, 1, . . .

. . . , n− 1}, then the chains ±σt
τ (C) are also openly well assembled.

Let M′ = M1 if n is is odd and M′ = M3 if n is even. If 1 ≤ q ≤ d − 2, then a

q-network in G1 is a family Nq of M′-built openly well assembled nq-chains Ck`
q such that

Ck`
q joins ak

1 to a`
2, k ∈ {0, 1}, ` ∈ {0, 1, . . . , n− 1}, and any two chains in Nq are internally

compatible.
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For each q, 1 ≤ q ≤ d − 2, we shall construct now a q-network Nq in G1. Let

N1 = {Ck`
1 : k ∈ {0, 1}, ` ∈ {0, 1, . . . , n− 1}} with

Ck`
1 =(C(ak

1 , 0, a1
i1), C(a1

i1 , 1, a2
i2), C(a2

i2 , 2, a3
i3), . . .

. . . , C(an−2
in−2

, n− 2, an−1
in−1

), C(an−1
in−1

, n− 1, a`
2)),

where is = 1 for s even and is = 3 for s odd, s = 1, 2, . . . , n− 1.

Lemma 3.2. The set N1 is a 1-network in G1.

Proof. It is clear that N1 is a family of M′-built n-chains such that Ck`
1 joins ak

1 to a`
2,

k ∈ {0, 1}, ` ∈ {0, 1, . . . , n − 1}, and any two chains in N1 are internally compatible. It

remains to show that the chains in N1 are openly well assembled, and since the paths in

M are open snakes, it suffices to show that every chain in N1 is openly separated.

Let k ∈ {0, 1}, ` ∈ {0, 1, . . . , n− 1}, let P , P ′ be distinct paths of the chain Ck`
1 and

let u, u′ be vertices of P , P ′ respectively. Assume that u, u′ are not apart. To complete

the proof we need to show that P , P ′ are consecutive in Ck`
1 and that u = u′ is their

common vertex.

Since u, u′ are not apart in G1 the first coordinates of u and u′ are the same. Since

P 6= P ′, it follows immediately from the definition of N1 that

u, u′ ∈ {ak
1 , a1

i1 , a
2
i2 , . . . , a

n−1
in−1

, a`
2}.

Since i1, i2, . . . , in−1 ∈ {1, 3}, k ∈ {0, 1} and i1 = 3, it follows that all the vertices in the

sequence (ak
1 , a1

i1
, a2

i2
, . . . , an−1

in−1
, a`

2) are distinct. Since, clearly, any two distinct vertices of

A are apart in G1, it follows that u = u′ and that the paths P , P ′ are consecutive in Ck`
1

completing the proof.

Assume now that q > 1 and that Nq−1 is a (q− 1)-network in G1. Given k ∈ {0, 1}

and ` ∈ {0, 1, . . . , n− 1}, let Ck`
q be the nq-chain with the n-splitting S defined as follows.
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If n is odd, then let

S = (σ0
τ0

(Ck 1
q−1),−σ1

τ1
(C1 0

q−1), σ
2
τ2

(C0 1
q−1),−σ3

τ3
(C1 0

q−1), . . . ,−σn−2
τn−2

(C1 0
q−1), σ

n−1
τn−1

(C0 `⊕1
q−1 )),

where τi is the transposition (2 3) for i = 0, 1, . . . , n− 2 and τn−1 is the identity permu-

tation. If n is even, then let

S = (−σ0
τ0

(C1 k
q−1), σ

1
τ1

(C0 1
q−1),−σ2

τ2
(C1 0

q−1), σ
3
τ3

(C0 1
q−1), . . . ,−σn−2

τn−2
(C1 0

q−1), σ
n−1
τn−1

(C0 `⊕1
q−1 )),

where τi is the 3-cycle (2 1 4) for i = 0, 1, . . . , n− 2, and τn−1 is the transposition (1 4).

Let Nq = {Ck`
q : k ∈ {0, 1}, ` ∈ {0, 1, . . . , n− 1}}.

The following lemma holds.

Lemma 3.3. For every q ∈ {1, 2, . . . , d− 2} the set Nq is a q-network in G1.

Proof. If q = 1, then N1 is a 1-network in G1 by Lemma 3.2. Assume now that q > 1 and

that Nq−1 is an (q − 1)-network in G1. It is clear that Nq is a family of M-built nq-chains

such that Ck`
q joins ak

1 to a`
2, k ∈ {0, 1}, ` ∈ {0, 1, . . . , n− 1}. Since the chains in Nq−1 are

internally compatible, it immediately follows from the definition of Nq that any two chains

in Nq are internally compatible. Since, in the case of n being odd, the chains in Nq−1 are

M1-built and since 1 is a fixed point of the permutation τi for each i = 0, 1, . . . , n − 1,

it follows that the chains in Nq are M1-built. Similarly, in the case of n being even, the

chains in Nq−1 are M3-built and 3 is a fixed point of τi, i = 0, 1, . . . , n− 1, implying that

the chains in Nq are M3-built. Thus, in general, the chains in Nq are M′-built. It remains

to show that the chains in Nq are openly well assembled.

Let Ck`
q be a chain in Nq. Since each chain in Nq−1 is openly well assembled and

since Property 3.1 holds, it suffices to show that the n-splitting of Ck`
q is openly alternating.
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Assume that n is odd. Let

A =



σ0
τ0

(Ck 1
q−1)

σ1
τ1

(C1 0
q−1)

σ2
τ2

(C0 1
q−1)

...
σn−2

τn−2
(C1 0

q−1)

σn−1
τn−1

(C0 `⊕1
q−1 )


=



σ0
τ0

(C(ak
1 , . . .)) . . . σ0

τ0
(C(. . . , a1

2))

σ1
τ1

(C(a1
1, . . .)) . . . σ1

τ1
(C(. . . , a0

2))

σ2
τ2

(C(a0
1, . . .)) . . . σ2

τ2
(C(. . . , a1

2))
...

. . .
...

σn−2
τn−2

(C(a1
1, . . .)) . . . σn−2

τn−2
(C(. . . , a0

2))

σn−1
τn−1

(C(a0
1, . . .)) . . . σn−1

τn−1
(C(. . . , a`⊕1

2 ))


be the alternate matrix of the n-splitting of Ck`

q . Then

A =



C(ak
1 , . . .) . . . C(. . . , a1

3)

C(a2
1, . . .) . . . C(. . . , a1

3)

C(a2
1, . . .) . . . C(. . . , a3

3)
...

. . .
...

C(an−1
1 , . . .) . . . C(. . . , an−2

3 )

C(an−1
1 , . . .) . . . C(. . . , a`

2)


.

Let j ∈ {1, 2, . . . , nq−1} and let P , P ′ be distinct paths in the j-th column of the matrix

A. We need to show that the paths P , P ′ are almost apart in G1 if they are consecutive

in Ck`
q and that they are apart otherwise. Assume first that 2 ≤ j ≤ nq−1 − 1. Since the

chains in Nq−1 are internally compatible, there is Q = C(au
i , r, au′

i′ ) ∈ M such that

P = σs
τs

(Q) = C(au⊕s
τs(i), r ⊕ s, au′⊕s

τs(i′)),

P ′ = σt
τt

(Q) = C(au⊕t
τt(i)

, r ⊕ t, au′⊕t
τt(i′)

),

for some s, t ∈ {0, 1, . . . , n− 1}, s 6= t. Let w, w′ be vertices of P , P ′ respectively. We will

show that w and w′ are apart. Consider the following three cases:

(i) w = au⊕s
τs(i) and w′ = au′⊕t

τt(i′)
,

(ii) w = au′⊕s
τs(i′) and w′ = au⊕t

τt(i)
,

(iii) neither (i) nor (ii) holds.

If (iii) holds, then the first coordinates of w and w′ are different, hence w, w′ are apart

in G1. If (i) holds, then since the chains in Nq−1 are M1-built, it follows that exactly one

of i, i′ is equal to 1. Since 1 is a fixed point of both τs and τt, it follows that exactly one

17



of τs(i), τt(i′) is equal to 1. Hence w, w′ differ at least at two coordinates, and so they are

apart. Similarly, w, w′ are apart if (ii) holds.

Assume now that j = 1. Since the chains in Nq−1 are internally compatible, we

have
P = σs

τs
(C(au

1 , r, av
i )) = C(au⊕s

1 , r ⊕ s, av⊕s
τs(i)),

P ′ = σt
τt

(C(au′

1 , r, av
i )) = C(au′⊕t

1 , r ⊕ t, av⊕t
τt(i)

),

for some i ∈ {2, 3, 4}, u, u′ ∈ {0, 1} and r, s, t, v ∈ {0, 1, . . . , n − 1} with s 6= t. We can

assume that s < t. Let w, w′ be vertices of P , P ′ respectively and assume that w, w′ are

not apart in G1. We will show that P , P ′ are consecutive in Ck`
q and that w = w′ is their

common vertex. Since the vertices w, w′ are not apart in G1, the first coordinates of w

and w′ must be equal and hence one of the following cases holds:

(i) w = au⊕s
1 and w′ = av⊕t

τt(i)
,

(ii) w = av⊕s
τs(i) and w′ = au′⊕t

1 ,

(iii) w = au⊕s
1 and w′ = au′⊕t

1 .

Since τs(i) 6= 1 and τt(i) 6= 1, we conclude that if (i) or (ii) holds, then w, w′ differ at least

at two coordinates so they are apart. Thus (iii) holds. Since w, w′ are not apart, we have

u⊕ s = u′ ⊕ t, and so w = w′. Since u, u′ ∈ {0, 1}, it follows that t = s + 1 implying that

u = 1 and u′ = 0. Therefore s is odd, and so P , P ′ are consecutive in Ck`
q .

To complete the proof in the case of n being odd, it remains to consider the case

when j = nq. Then

P = σs
τs

(C(au
1 , r, av

2)) = C(au⊕s
1 , r ⊕ s, av⊕s

τs(2)),

P ′ = σt
τt

(C(au
1 , r, av′

2 )) = C(au⊕t
1 , r ⊕ t, av′⊕t

τt(2)
),

for some r, s, t, u, v, v′ ∈ {0, 1, . . . , n− 1}, s 6= t. We can assume that s < t. Let w, w′ be

vertices of P , P ′ respectively and assume that w, w′ are not apart. Arguing as in the case

when j = 1, we conclude that w = av⊕s
τs(2) and w′ = av′⊕t

τt(2)
. Since w, w′ are not apart and

since any two distinct elements of A are apart, it follows that w = w′. Hence v⊕ s = v′⊕ t

and τs(2) = τt(2), implying that t 6= n− 1. Therefore v, v′ ∈ {0, 1} and so t = s + 1. Thus
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v = 1, v′ = 0 implying that s is even. Hence P , P ′ are consecutive in Ck`
q completing the

proof in the case of n being odd.

If n is even and A is the alternate matrix of the n-splitting of Ck`
q , then

A =



−σ0
τ0

(C1 k
q−1)

−σ1
τ1

(C0 1
q−1)

−σ2
τ2

(C1 0
q−1)

...
−σn−2

τn−2
(C1 0

q−1)

−σn−1
τn−1

(C0 `⊕1
q−1 )


=



σ0
τ0

(C(ak
2 , . . .)) . . . σ0

τ0
(C(. . . , a1

1))

σ1
τ1

(C(a1
2, . . .)) . . . σ1

τ1
(C(. . . , a0

1))

σ2
τ2

(C(a0
2, . . .)) . . . σ2

τ2
(C(. . . , a1

1))
...

. . .
...

σn−2
τn−2

(C(a0
2, . . .)) . . . σn−2

τn−2
(C(. . . , a1

1))

σn−1
τn−1

(C(a`⊕1
2 , . . .)) . . . σn−1

τn−1
(C(. . . , a0

1))


.

Hence

A =



C(ak
1 , . . .) . . . C(. . . , a1

4)

C(a2
1, . . .) . . . C(. . . , a1

4)

C(a2
1, . . .) . . . C(. . . , a3

4)
...

. . .
...

C(an−2
1 , . . .) . . . C(. . . , an−1

4 )

C(a`
2, . . .) . . . C(. . . , an−1

4 )


.

Similarly as in the proof in the case of n being odd, we show that if j ∈ {1, 2, . . . , nq−1}

and P , P ′ are distinct paths in the j-th column of the matrix A, then P , P ′ are almost

apart in G1 if they are consecutive in Ck`
q and they are apart otherwise. Therefore the

n-splitting of Ck`
q is openly alternating and the proof is complete.

Assume that q = d− 2. By Lemma 3.3, the set Nq is a q-network in G1. Define D

to be the M-built 〈n〉nq-chain with the 〈n〉-splitting

(−σ0(C1 0
q ), σ1(C0 1

q ),−σ2(C1 0
q ), . . . ,−σ〈n〉−2(C1 0

q ), σ〈n〉−1(C0 n−〈n〉+1
q )),

where σi = σi
τ with τ being the identity permutation, i = 0, 1, . . . , 〈n〉 − 1. The following

lemma together with Lemma 2.7 will allow us to construct long snakes in Kd
mn.

Lemma 3.4. D is a closely well assembled 〈n〉nd−2-chain of paths in G1.

Proof. Since each chain in Nq is openly well assembled and since Property 3.1 holds, it
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suffices to show that the 〈n〉-splitting of D is closely alternating. Let

A =



−σ0(C1 0
q )

−σ1(C0 1
q )

−σ2(C1 0
q )

...
−σ〈n〉−2(C1 0

q )

−σ〈n〉−1(C0 n−〈n〉+1
q )


=



σ0(C(a0
2, . . .)) . . . σ0(C(. . . , a1

1))

σ1(C(a1
2, . . .)) . . . σ1(C(. . . , a0

1))

σ2(C(a0
2, . . .)) . . . σ2(C(. . . , a1

1))
...

. . .
...

σ〈n〉−2(C(a0
2, . . .)) . . . σ〈n〉−2(C(. . . , a1

1))

σ〈n〉−1(C(an−〈n〉+1
2 , . . .)) . . . σ〈n〉−1(C(. . . , a0

1))


be the alternate matrix of the 〈n〉-splitting of D. Then

A =



C(a0
2, . . .) . . . C(. . . , a1

1)

C(a2
2, . . .) . . . C(. . . , a1

1)

C(a2
2, . . .) . . . C(. . . , a3

1)
...

. . .
...

C(a〈n〉−2
2 , . . .) . . . C(. . . , a〈n〉−1

1 )

C(a0
2, . . .) . . . C(. . . , a〈n〉−1

1 )


.

Similarly as in the proof of Lemma 3.3, we show that if j ∈ {1, 2, . . . , nq} and P , P ′ are

distinct paths in the j-th column of the matrix A, then P , P ′ are almost apart in G1 if they

are cyclically consecutive in D and they are apart otherwise. Therefore the 〈n〉-splitting

of D is closely alternating and the proof is complete.

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. It follows from Lemma 2.7 and Lemma 3.4 that C = D � γd−1
n

is a snake in Gd = Kd
mn. It is clear that the length of C is equal to 〈n〉nd−2(S(Kd−1

m ) + 1)

so the proof is complete.
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4. Concluding remarks

The assumption that d ≥ 4 in Theorem 1.9 can be slighty relaxed. If we assume either

that m ≥ 3 and n is odd, or that m ≥ 4, then it suffices to require that d ≥ 3. Indeed, if

m ≥ 4, then we can use the vertices a1 = (0000 . . . 0), a2 = (1100 . . . 0), a3 = (2200 . . . 0),

a4 = (3300 . . . 0) in our construction. If n is odd, then the vertex a4 is not needed so the

construction works for m ≥ 3.

Although Theorem 1.8 is a significant strengthening of Theorem 1.6, Conjecture 1.5

remains still open. We would like to formulate some more conjectures that are generaliza-

tions of the result of Wojciechowski [14] saying that for any d ≥ 2, the hypercube Kd
2 can

be vertex-covered by at most 16 vertex-disjoint snakes.

Conjecture 4.1. For any integer n ≥ 2 there is an integer rn such that the graph Kd
n can

be vertex-covered by at most rn vertex-disjoint snakes for any d ≥ 2.

In the case of n being odd, a weaker version of Conjecture 4.1 (without requiring that

the snakes are vertex-disjoint) has been recently proved by Alsardary [7]. The following

conjecture implies both Conjecture 4.1 and Conjecture 1.5.

Conjecture 4.2. There is a constant c such that for any n ≥ 2 and any d ≥ 1, the graph

Kd
n can be vertex-covered by at most cn vertex-disjoint snakes.

The best upper bound on S(Kd
2 ) has been given by Snevily [12].
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