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Abstract. Nash-Williams [6] formulated a condition that is necessary and sufficient for a count-

able family A = (Ai)i∈I of sets to have a transversal. In [7] he proved that his criterion applies

also when we allow the set I to be arbitrary and require only that
⋂

i∈J Ai = ∅ for any uncount-

able J ⊆ I. In this paper, we formulate another criterion of a similar nature, and prove that it

is equivalent to the criterion of Nash-Williams for any family A. We also present a self-contained

proof that if
⋂

i∈J Ai = ∅ for any uncountable J ⊆ I, then our condition is necessary and sufficient

for the family A to have a transversal.

1. Introduction

Let A = (Ai)i∈I be a family of sets. A subset T ⊆
⋃

i∈I Ai is a transversal of A if there is a

bijection f : I → T with f(i) ∈ Ai, i ∈ I. P. Hall [3] proved that if the set I is finite, then A has a

transversal if and only if ∣∣∣∣∣⋃
i∈J

Ai

∣∣∣∣∣ ≥ |J |

for any J ⊆ I. M. Hall [4] showed that in the case when I is arbitrary but Ai is finite for every

i ∈ I, essentially the same criterion applies, namely that A has a transversal if and only if the above

inequality holds for any finite J ⊆ I. The well-known “playboy” example (where I = {0, 1, 2, . . . },
with A0 = {1, 2, . . . } and Ai = {i} for i = 1, 2, . . . ) shows that this criterion fails if we allow the

family to be infinite and to contain at least one infinite member.

In the case of I being countable, three necessary and sufficient criterions have been given for A

to possess a transversal. One, conjectured by Nash-Williams, was proved by Damerell and Milner

[2]. Later, a simpler criterion (q-admissibility) of a similar type was proved by Nash-Williams [6].

The third criterion (c-admissibility), of a different nature, was given by Podewski and Steffens [8].

Subsequently, Nash-Williams [7] generalized his theorem and proved that his criterion applies also

in the case when I is arbitrary but
⋂

i∈J Ai = ∅ for any uncountable J ⊆ I (call such a family

countably repetitive). Aharoni [1] proved later that the criteria of Nash-Williams and of Podewski
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and Steffens are equivalent, that is, for every family A of sets, the family A is q-admissible if and

only if it is c-admissible.

The criterion of Podewski and Steffens is simple. The family A is c-admissible if there do not exist

a subset J ⊆ I and j ∈ I\J with Aj ⊆
⋃

i∈J Ai such that the subfamily B = (Ai)i∈J of A has exactly

one transversal T =
⋃

i∈J Ai. However, this criterion has the philosophical defect of being circular

in the sense that in the criterion itself we require that a certain subfamily of A has a transversal

(nevertheless, this defect does not prevent the criterion to be very useful). The criterion of Nash-

Williams (see Section 6 for the definition) does not have this defect of being circular, however, it is

more complicated than the criterion of Podewski and Steffens.

In this paper, we formulate another criterion (we call it µ-admissibility) for a family of sets to

have a transversal. Our criterion is of similar nature as the criterion of Nash-Williams (in particular

it is not circular). We prove that for any family A, it is µ-admissible if and only if it is q-admissible

(hence also c-admissible). Therefore, in particular, the criterion provides a necessary and sufficient

condition for A to have a transversal in the case when A is countably repetitive. However, we will

present a direct self-contained proof of this result. That will provide an alternative proof of the

result of Nash-Williams [7] (see Section 7).

The paper is structured in the following way: In Section 2, we formulate our criterion using the

terminology of espousals in societies and state our first main result of this paper (Theorem 2.1). In

Section 3, we prove the preliminary lemmas required for the proof of Theorem 2.1 given in Section

4. In Sections 5 and 6, we prove the second main result of this paper (Theorem 6.2).

2. µ-admissible societies

We are going now to reformulate the concept of transversals for families of sets using the language

of espousals in societies appearing in [1], [6] and [7].

We shall use the following set-theoretic conventions. A relation is a set of ordered pairs. Given

a relation R, a set A, and an element a, we have R 〈a〉 = {y : (a, y) ∈ R}; if |R 〈a〉| = 1, then R(a)

is the single element of R 〈a〉; the set R [A] is equal to
⋃

a∈A R 〈a〉; and R−1 = {(y, x) : (x, y) ∈ R}.
The domain of the relation R is the set dom R = {x : R 〈x〉 6= ∅} and the range of R is the set

rge R =
{
y : R−1 〈y〉 6= ∅

}
. A function is a relation f such that |f 〈x〉| = 1 for every x ∈ dom f . An

ordinal number α is equal to the set of all ordinal numbers smaller than α and a cardinal number

is an ordinal number α such that any ordinal number smaller than α has a smaller cardinality. We

denote by ω the first infinite ordinal number and we call a set X countable if |X| ≤ ω.

A society Γ is an ordered triple (M,W,K), where M , W are disjoint sets and K ⊆ M ×W . The

elements of M are called men, the elements of W are called women and if (a, x) ∈ K, then we say

that a knows x. An espousal of Γ is an injective function E : M → W with E ⊆ K. The society Γ
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is espousable if there is an espousal of Γ. Throughout this paper we assume that we are discussing

a fixed society Γ = (M,W,K) and the symbols Γ, M , W , K should be interpreted accordingly.

Assume that A ⊆ M ∪ W , AM = A ∩ M and AW = A ∩ W . Let Γ [A] be the society

(AM , AW ,K ∩ (AM ×AW )) and let Γ − A = Γ [(M ∪W ) \A]. A saturated subsociety of Γ is a

society of the form Γ [A] for some A ⊆ M ∪W with K[AM ] ⊆ AW .

A string is an injective function with its domain being an ordinal. In particular, the empty set ∅
is a string with domain 0 = ∅. A string in S is a string f with rge f ⊆ S and an α-string is a string

g with dom g = α. A string in the society Γ is a string in M ∪W .

Let f be a string and β, γ be ordinals with β ≤ γ ≤ dom f . The [β, γ)-segment f[β,γ) of f is the

string defined by

f[β,γ)(θ) = f(β + θ),

for all θ with β + θ < γ, that is, f[β,γ) is obtained from f by restricting it to [β, γ) and shifting the

domain to start at 0. For α ≤ dom f , let fα = f[0,α). If f and g are strings in Γ with domains α and

β respectively, then the concatenation f ∗g of f and g is defined to be the (α + β)-string h such that

hα = f and h[α,α+β) = g. For u ∈ M ∪W , let [u] be the 1-string f with f(0) = u. A saturated string

in Γ is a string in Γ such that Γ[rge fα] is a saturated subsociety of Γ for every α ≤ dom f , that is,

if for every man a appearing in f all the women that he knows (all the elements of K〈a〉) appear in

f before him. Note that if dom f is a limit ordinal and fα is saturated for every α < dom f , then f

is saturated as well.

Let Z∞ = Z ∪ {−∞,∞} be the set of quasi-integers. If a1, . . . , an ∈ Z∞, then let the sum

a1 + · · ·+ an be the usual sum if a1, . . . , an are all integers, let the sum be ∞ if at least one of them

is ∞, and let it be −∞ if neither of a1, . . . , an is ∞ but at least one of them is −∞. Note that it

follows immediately from the above definition that the operation of addition in Z∞ is commutative

and associative. The difference a − b of two quasi-integers a, b means a + (−b); and likewise, for

example, a− b + c− d means a + (−b) + c + (−d), etc. Let Z∞ be ordered in the obvious way. Note

that if a, b, c, d ∈ Z∞ satisfy a ≤ c and b ≤ d, then a + b ≤ c + d. Given a set S, let ‖S‖ ∈ Z∞ be

the cardinality of S if S is finite, and ‖S‖ = ∞ if S is infinite.

Assume that f is a string in Γ. Let rgeM f = (rge f) ∩ M and rgeW f = (rge f) ∩ W . The

µ-margin µ(f) of f is an element of Z∞ defined by transfinite induction on α = dom f as follows.

Let µ(f) = 0 if α = 0, let

µ(f) =

 µ(fβ) + 1 if f(β) ∈ W ,

µ(fβ)− 1 if f(β) ∈ M ,

when α = β + 1 is a successor ordinal, and

µ(f) = liminf
β→α

µ(fβ)
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if α is a limit ordinal. We say that Γ is µ-admissible if µ(f) ≥ 0 for every saturated string f in Γ.

The following theorem is implied by Theorem 6.2, proved in Section 6, and a result (Theorem

7.1) of Nash-Williams [7]. We will present here (see Section 4) a self-contained proof of Theorem

2.1 because it provides an alternative proof of Theorem 7.1.

Theorem 2.1. If K−1 〈x〉 is countable for every x ∈ W , then Γ is espousable if and only if it is

µ-admissible.

3. Preliminary results

The following lemma implies that, in general, µ-admissibility is a necessary condition for the

society Γ to be espousable.

Lemma 3.1. If E is an espousal of Γ and f is a saturated string in Γ, then

(1) ‖ rgeW f \ E[rgeM f ]‖ ≤ µ(f).

Proof. We show that (1) holds using transfinite induction on α = dom f . If α = 0, then both sides

of (1) are equal to 0.

Assume that α > 0 and that (1) holds when dom f < α. Assume also first that α = β + 1 is a

successor ordinal. If f(β) ∈ W , then it follows from the inductive hypothesis that

µ(f) = µ(fβ) + 1

≥ ‖rgeW fβ \ E [rgeM fβ ]‖+ 1

= ‖(rgeW fβ \ E [rgeM fβ ]) ∪ {f(β)}‖

= ‖rgeW f \ E[rgeM f ]‖ .

The last equality holds since fβ is saturated which implies that f(β) /∈ E[rgeM fβ ] = E [rgeM f ].

If f(β) ∈ M , then E(f(β)) ∈ rgeW f = rgeW fβ since f is saturated. Therefore

‖ rgeW f \ E[rgeM f ]‖ = ‖ rgeW fβ \ E[rgeM fβ ]‖ − 1,

and using the inductive hypothesis, we conclude that (1) holds as in the case above.

Assume now that α is a limit ordinal. Let

Sβ = rgeW fβ \ E[rgeM f ]

for every β ≤ α. Then (Sβ : β < α) is an ascending sequence of subsets of Sα and

Sα =
⋃

β<α

Sβ .

Hence

‖Sα‖ = liminf
β→α

‖Sβ‖.
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Moreover, for any β < α we have

‖Sβ‖ ≤ ‖rgeW fβ \ E[rgeM fβ ]‖ ≤ µ(fβ),

where the first inequality is obvious and the second follows from the inductive hypothesis. Hence

‖rgeW f \ E[rgeM f ]‖ = ‖Sα‖

= liminf
β→α

‖Sβ‖

≤ liminf
β→α

µ(fβ) = µ(f),

and the proof is complete.

The following corollary follows immediately from Lemma 3.1.

Corollary 3.2. If Γ is espousable, then it is µ-admissible.

The following lemma holds.

Lemma 3.3. Let α be a limit ordinal and (tβ)β<α, (dβ)β<α be transfinite sequences in Z∞. Then

(2) liminf
β→α

(tβ − dβ) ≤ liminf
β→α

tβ − liminf
β→α

dβ .

Moreover

(3) liminf
β→α

(tβ + dβ) ≥ liminf
β→α

tβ + liminf
β→α

dβ

unless liminfβ→α tβ and liminfβ→α dβ are infinite with opposite signs.

Proof. Clearly, we have

inf {tθ − dθ : φ1 ≤ θ < α} ≤ tδ − inf {dθ : φ2 ≤ θ < α}

for any φ1 ≤ φ2 ≤ δ < α. Therefore

inf {tθ − dθ : φ1 ≤ θ < α} ≤ liminf
β→α

tβ − inf {dθ : φ2 ≤ θ < α}

for any φ1 ≤ φ2 < α. Hence

inf {tθ − dθ : φ1 ≤ θ < α} ≤ liminf
β→α

tβ − liminf
β→α

dβ

for every φ1 < α. It follows that (2) holds.

Assume now that it is not true that liminfβ→α tβ and liminfβ→α dβ are infinite with opposite

signs. We will show that (3) holds. If liminfβ→α dβ = ∞, then liminfβ→α(tβ + dβ) = ∞ since

liminfβ→α tβ > −∞, and hence (3) holds. If liminfβ→α dβ = −∞, then the right hand side of (3)
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is equal to −∞ since liminfβ→α tβ < ∞, and again (3) holds. It remains to consider the case when

liminfβ→α dβ is finite. Let sβ = tβ + dβ for every β < α. It follows from (2) that

liminf
β→α

(sβ − dβ) ≤ liminf
β→α

sβ − liminf
β→α

dβ .

Since liminfβ→α dβ is finite and addition in Z∞ is associative, we conclude that

liminf
β→α

(sβ − dβ) + liminf
β→α

dβ ≤ liminf
β→α

sβ − liminf
β→α

dβ + liminf
β→α

dβ

= liminf
β→α

sβ

Since sβ − dβ = tβ + dβ − dβ ≥ tβ for every β < α, it follows that (3) holds, and hence the proof is

complete.

The following lemma is obvious.

Lemma 3.4. Let Γ [A] be a saturated subsociety of Γ. Then any saturated subsociety of Γ [A] is a

saturated subsociety of Γ. In particular, any saturated string in Γ [A] is saturated in Γ and if Γ is

µ-admissible, then Γ [A] is µ-admissible.

Let f , g be strings with domains α, β respectively. We say that g is a substring of f if rge g ⊆ rge f

and for any x, y ∈ rge g with g−1(x) < g−1(y) we have f−1(x) < f−1(y), that is, g is a substring of

f if all the elements appearing in g appear in f and they appear in f in the same order as in g.

Assume that g is a substring of f . For every θ ≤ α = dom f , there is the unique ordinal

φ ≤ β = dom g such that rge gφ = (rge g) ∩ (rge fθ). The ordinal φ will be called the f-projection of

θ onto g.

Lemma 3.5. Let f be an α-string in Γ and g be a substring of f . If α is a limit ordinal and θg is

the f-projection of θ onto g for every θ < α, then

(4) liminf
θ→α

µ(gθg ) = µ(g).

Proof. Let β = dom g. If θg = β for some θ < α, then (4) is obvious. Otherwise, for every θ < α we

have θg < β. Hence β is a limit ordinal and

{µ(gτ ) : θg ≤ τ < β} =
{

µ(gξg
) : θ ≤ ξ < α

}
for every θ < α. Therefore

liminf
θ→α

µ(gθg ) = liminf
δ→β

µ(gδ) = µ(g)

and the proof is complete.

Let f be a string and g, h be substrings of f . We say that the string f is a shuffle of g and h if the

ranges of g and h form a partition of rge f , that is, if (rge g)∩(rge h) = ∅ and rge f = (rge g)∪(rge h).
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Note that if an α-string f is a shuffle of strings g and h and θg, θh are the f -projections of some

θ ≤ α onto g and h respectively, then fθ is a shuffle of gθg and hθh
.

Lemma 3.6. Let f , g and h be strings in the society Γ with f being a shuffle of g and h. If

µ(g), µ(h) > −∞, then

(5) µ(f) ≥ µ(g) + µ(h).

Proof. Let f , g and h have domains α, β and γ respectively. To show that (5) holds we use transfinite

induction on α. If α = 0, then β = γ = 0 and the inequality (5) holds since both its sides are equal

to 0.

Suppose that α > 0 and that (5) holds when dom f < α. Assume first that α = δ + 1 is a

successor ordinal. Let θ and φ be the f -projections of δ onto g and h respectively. If f(δ) ∈ rge g,

then β = θ + 1 and φ = γ. If moreover f(δ) ∈ W , then g(θ) = f(δ) ∈ W and, using the inductive

hypothesis, we get

µ(f) = µ(fδ) + 1

≥ µ(gθ) + µ(h) + 1

= µ(g) + µ(h).

To complete the proof in the case of α being a successor ordinal it remains to consider the following

three cases: f(δ) ∈ rgeM g, f(δ) ∈ rgeW h, and f(δ) ∈ rgeM h. All these cases can be handled

similarly as the case f(δ) ∈ rgeW g considered above.

Assume now that α is a limit ordinal. For every δ < α, let δg and δh be the f -projections of δ

onto g and h respectively. Then

µ(f) = liminf
δ→α

µ(fδ)

≥ liminf
δ→α

(µ(gδg ) + µ(hδh
))

≥ liminf
δ→α

µ(gδg
) + liminf

δ→α
µ(hδh

)

= µ(g) + µ(h),

where the first inequality follows from the inductive hypothesis, the second equality follows from

Lemma 3.3, and the last equality follows from Lemma 3.5. Thus the proof is complete.

Let T be the set of all strings in Γ and let � be the relation on T such that g � f if g = fβ for

some β ≤ dom f . Clearly � is a partial order on T. Let R be the subset of T consisting of saturated

strings f in Γ such that µ(fβ) ≥ 0 for every β ≤ dom f and µ(f) = 0.

Lemma 3.7. The set R contains a maximal element with respect to �.
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Proof. We are going to use Zorn lemma. Since the empty string belongs to R, the set R is nonempty.

Let B be a nonempty chain in R. We show that there is an upper bound for B in R.

Let Θ = {dom g : g ∈ B} and α = sup Θ. We are going to define an α-string f in Γ that belongs to

R and is an upper bound for B. If β < α, then there is g ∈ B with β < dom g. Define f(β) = g(β).

Since B is a chain, the value of f(β) does not depend on the choice of g. It is clear that g � f for

every g ∈ B so f is an upper bound for B.

We show that f ∈ R. Since B ⊆ R, we can assume that f /∈ B. Then α is a limit ordinal. If β < α,

then fβ = gβ for some g ∈ B so µ(fβ) = µ(gβ) ≥ 0. Moreover, the society Γ [rge fβ ] = Γ [rge gβ ] is

a saturated subsociety of Γ for every β < α, hence f is a saturated string in Γ. Since α is a limit

ordinal and since µ(fβ) ≥ 0 for every β < α, we have

µ(f) = liminf
β→α

µ(fβ) ≥ 0.

Since α = sup Θ and since µ(fβ) = 0 for every β ∈ Θ, it follows that µ(f) = 0. Therefore f ∈ R

and so B has an upper bound in R.

Since B was an arbitrary nonempty chain in R, it follows from Zorn lemma that R contains a

maximal element with respect to �, and hence the proof is complete.

Lemma 3.8. Assume that the society Γ is µ-admissible. If a ∈ M , then there is x ∈ W such that

(a, x) ∈ K and the society Γ− {a, x} is µ-admissible.

Proof. Let a ∈ M and R′ be the subset of T consisting of saturated strings f in Γ− {a} such that

µ(fβ) ≥ 0 for every β ≤ dom f and µ(f) = 0. By Lemma 3.7, there is a maximal element f in R′

with respect to �. Since Γ is µ-admissible and

µ(f ∗ [a]) = µ(f)− 1 = −1 < 0,

it follows that f ∗ [a] is not saturated in Γ. Since f is saturated in Γ − {a}, there is x ∈ W \ rge f

with (a, x) ∈ K. We will show that Γ− {a, x} is µ-admissible.

First, we show that Γ − ({a, x} ∪ rge f) is µ-admissible. Suppose, by the way of contradiction,

that there is a saturated string g in Γ− ({a, x} ∪ rge f) with µ(g) < 0. Let h = f ∗ [x] ∗ g. We will

show that h ∈ R′, contradicting our assumption that f is maximal in R′.

Since f is saturated in Γ and g is saturated in Γ− ({a, x} ∪ rge f), it follows that h is saturated

in Γ and in Γ − {a}. Since Γ is µ-admissible, we have µ(h) ≥ 0. Moreover, for every δ ≤ dom h,

the string hδ is saturated in Γ implying that µ(hδ) ≥ 0. Since µ(f) = 0, it follows that µ(h) =

µ([x] ∗ g) = µ(g) + 1. Since µ(g) < 0, we conclude that µ(h) = 0, and so h ∈ R′. The obtained

contradiction implies that Γ− ({a, x} ∪ rge f) is µ-admissible.

Now we show that Γ−{a, x} is µ-admissible. Let ϕ be any saturated string in Γ−{a, x}. We will

show that µ(ϕ) ≥ 0. Let g be the string in Γ− ({a, x} ∪ rge f) and h be the string in Γ [rge f ] such
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that ϕ is the shuffle of g and h. Since ϕ is saturated in Γ− {a, x}, it follows that g is saturated in

Γ− ({a, x} ∪ rge f) and h is saturated in Γ [rge f ]. Since f is saturated in Γ, if follows from Lemma

3.4 that h is saturated in Γ. Since both societies Γ − ({a, x} ∪ rge f) and Γ are µ-admissible, it

follows that µ(g) ≥ 0 and µ(h) ≥ 0. By Lemma 3.6, µ(ϕ) ≥ 0 completing the proof.

4. Proof of Theorem 2.1

Assume that K−1〈x〉 is countable for every x ∈ W . By Corollary 3.2, if Γ is espousable, then it

is µ-admissible. Assume that Γ is µ-admissible, we will show that it is espousable.

We define a partial order ≤ on the product ω×ω by setting (i, j) ≤ (k, `) if either i+ j < k + ` or

i + j = k + ` and i ≤ k. If x ∈ W , then let ρ0(x), ρ1(x), . . . be a fixed (possibly finite) enumeration

of the countable set K−1 〈x〉. Let f be a fixed string in M with rge f = M .

We are going to prove that for some ordinal number α there are α-strings g and h in M and

W respectively with rge g = M , such that (g(β), h(β)) ∈ K for every β < α. It is clear that the

existence of the strings g and h satisfying the above conditions implies that Γ is espousable.

We define the strings g and h using transfinite induction on ξ to specify the values of the initial

segments gξ and hξ. Given an ordinal number ξ, we say that g and h are ξ-defined if the values of

gξ and hξ are known (with (g(δ), h(δ)) ∈ K for every δ < ξ) and the society Γ− (rge gξ ∪ rge hξ) is

µ-admissible. Since Γ is µ-admissible, at the beginning of the construction (when no values of g and

h have been specified) the strings g and h are 0-defined.

Assume that ξ is an ordinal and that the strings g and h are β-defined for every β < ξ, that is,

the values g(δ), h(δ) are known for any δ < β with β < ξ and the society Γ − (rge gβ ∪ rge hβ) is

µ-admissible for every β < ξ. If ξ = β + 1 is a successor ordinal and rge gβ 6= M , then we show that

the values g(β), h(β) can be defined in such a way that g and h become ξ-defined. If ξ is a limit

ordinal, then we show that g and h are already ξ-defined.

Assume first that ξ = β + 1 is a successor ordinal. Then g and h are β-defined. We can assume

that rge gβ 6= M since otherwise α = β and the definition of g and h is complete. Clearly, we can

express β = γ + i where i < ω and γ is either a limit ordinal or is equal to 0. Consider the set

Aβ =
{
(j, k) : 0 ≤ j < i,

∣∣K−1 〈h(γ + j)〉
∣∣ ≥ k, and ρk(h(γ + j)) /∈ rge gβ

}
If Aβ = ∅ (in particular, this is the case if β is a limit ordinal), let g(β) be equal to f(θ) where θ

is the minimum ordinal number with f(θ) /∈ rge gβ . If Aβ 6= ∅, then let g(β) = ρk(h(γ + j)) where

(j, k) is the minimum element in Aβ . By Lemma 3.8, there is x ∈ W such that (g(β), x) ∈ K and

the society (Γ− (rge gβ ∪ rge hβ))− {g(β), x} is µ-admissible. Let h(β) = x. It follows immediately

from the definition of g(β) and h(β) that g and h are ξ-defined.
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Assume now that ξ is a limit ordinal. Since for every β < ξ the strings g and h are β-defined, it

follows that the values of gξ and hξ are known (with (g(δ), h(δ)) ∈ K for every δ < ξ). To show that

g and h are ξ-defined it remains to show that the society Γξ = Γ− (rge gξ ∪ rge hξ) is µ-admissible.

Because of Lemma 3.4, it suffices to show that Γξ is a saturated subsociety of Γ.

Let Γξ = (Mξ,Wξ,Kξ) and suppose, by the way of contradiction, that there is (a, x) ∈ K with

a ∈ Mξ and x /∈ Wξ. Then x ∈ rge hξ so x = h(δ) for some δ < ξ. Let δ = γ +j where j < ω and γ is

either equal to zero or is a limit ordinal. Since (a, x) ∈ K, it follows that a = ρk(x) for some k < ω.

Since ξ is a limit ordinal, we have γ+i < ξ for every i < ω. Since a = ρk(h(γ+j)) ∈ Mξ = M \rge gξ,

we conclude that (j, k) ∈ Aγ+i for every i with j < i < ω. Let

Bi = {(`,m) ∈ Aγ+i : (`,m) ≤ (j, k)}

for every i with j+k < i < ω. Then the set Bi is finite and (j, k) ∈ Bi for every i with j+k < i < ω.

Defining g(γ + i) we delete the least element of Aγ+i and hence of Bi. Defining h(γ + i) we may

add some elements (i, m) to Aγ+i but these new elements (i,m) are not in Bi+1 since the inequality

i > j +k implies that (i, m) > (j, k). Therefore Bi+1 = Bi \ {minBi} for every i with j +k < i < ω.

Since the sets Bi are finite, we have a contradiction. Thus Γξ is saturated and the proof is complete.

5. A deferment of a string in Γ

Let f be a string in Γ. Then there are unique strings h′ and h in M and W respectively such that f

is a shuffle of h′ and h. The string h′ will be called the men substring of f and h the woman substring

of f . Let λ = dom h. If α ≤ λ, then the f-lift of α is the unique ordinal α′ ∈ f−1[W ] ∪ {dom f}
such that α is the f -projection of α′ onto h, that is, such that rgeW fα′ = rge hα. Note that

α′ =

 f−1(h(α)) if α < dom h,

dom f if α = dom h.

For every limit ordinal α ≤ λ, let α = sup
{
β′ : β < α

}
(where β′ denotes the f -lift of β). Clearly,

α is a limit ordinal with α ≤ α′.

Lemma 5.1. If α ≤ λ is a limit ordinal, then

liminf
θ→α

µ(fθ) = liminf
β→α

µ(fβ′).

Proof. Clearly, if θ < α and ζ is the smallest ordinal with ζ ≥ θ and f(ζ) ∈ W , then µ(fθ) ≥ µ(fζ).

Therefore

(6) inf {µ(fθ) : γ′ ≤ θ < α} = inf
{
µ(fβ′) : γ ≤ β < α

}
for every γ < α. Since the values of inf {µ(fθ) : φ ≤ θ < α} do not decrease as φ increases, we have

(7) sup {inf {µ(fθ) : φ ≤ θ < α} : φ < α} = sup {inf {µ(fθ) : γ′ ≤ θ < α} : γ < α} .
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It follows from (6) and (7) that

liminf
θ→α

µ(fθ) = sup {inf {µ(fθ) : φ ≤ θ < α} : φ < α}

= sup {inf {µ(fθ) : γ′ ≤ θ < α} : γ < α}

= sup
{
inf

{
µ(fβ′) : γ ≤ β < α

}
: γ < α

}
= liminf

β→α
µ(fβ′).

completing the proof.

Let g be another string in Γ with the same women substring as f . For every ordinal α ≤ λ = dom h

let α′′ be the g-lift of α. We say that g is a deferment of f if for every α ≤ λ we have

rgeM gα′′ ⊆ rgeM fα′ .

Informally, g is a deferment of f if each man appearing in f either does not appear at all in g or

appears in the same or a later segment determined by the appearance of women.

Assume that g is a deferment of f . If α ≤ λ is a limit ordinal, then let

α = sup
{
β′′ : β < α

}
.

Lemma 5.2. If α ≤ λ is a limit ordinal, then

liminf
β→α

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥ ≥ ‖rgeM fα \ rgeM gα‖ .

Proof. Let α ≤ λ and for each β < α let Aβ = rgeM fβ′\rgeM gα. Clearly (Aβ)β<α is a nondecreasing

transfinite sequence of subsets of rgeM fα \ rgeM gα with

rgeM fα \ rgeM gα =
⋃

β<α

Aβ .

Hence

‖rgeM fα \ rgeM gα‖ = liminf
β→α

‖Aβ‖ .

Since Aβ ⊆ rge fβ′ \ rge gβ′′ for every β < α, it follows that

liminf
β→α

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥ ≥ liminf

β→α
‖Aβ‖ .

Therefore

liminf
β→α

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥ ≥ ‖rgeM fα \ rgeM gα‖

completing the proof.

A corollary of the following lemma is the main result of this section.

Lemma 5.3. For every ordinal α ≤ λ we have

(8) µ(fα′) ≤ µ(gα′′)− ‖rgeM fα′ \ rgeM gα′′‖
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Proof. We use transfinite induction on α. Let α = 0. Since µ(f0′) is the negative of the size of the

set of men appearing before the first woman in f , we have

µ(f0′) = −‖rgeM f0′‖ .

Similarly

µ(g0′′) = −‖rgeM g0′′‖ .

If the set rgeM f0′ is infinite, then µ(f0′) = −∞ and so (8) is obvious. Assume that rgeM f0′ is finite.

Since g is a deferment of f , it follows that rgeM g0′′ ⊆ rgeM f0′ . Therefore the set rgeM g0′′ is also

finite and (8) holds.

Now assume that α = β + 1 is a successor ordinal. Then we have

µ(fα′) = µ(fβ′) + 1−
∥∥rgeM fα′ \ rgeM fβ′

∥∥ ,

µ(gα′′) = µ(gβ′′) + 1−
∥∥rgeM gα′′ \ rgeM gβ′′

∥∥ .

Using the inductive hypothesis and the following obvious equalities

−
∥∥rgeM fα′ \ rgeM gβ′′

∥∥ = −
∥∥rgeM fβ′ \ rgeM gβ′′

∥∥− ∥∥rgeM fα′ \ rgeM fβ′
∥∥

= −
∥∥rgeM gα′′ \ rgeM gβ′′

∥∥− ‖rgeM fα′ \ rgeM gα′′‖

and remembering that addition in Z∞ is commutative and associative, we conclude that

µ(fα′) = µ(fβ′) + 1−
∥∥rgeM fα′ \ rgeM fβ′

∥∥
≤ µ(gβ′′)−

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥ + 1−

∥∥rgeM fα′ \ rgeM fβ′
∥∥

= µ(gβ′′) + 1−
∥∥rgeM fα′ \ rgeM gβ′′

∥∥
= µ(gβ′′) + 1−

∥∥rgeM gα′′ \ rgeM gβ′′
∥∥− ‖rgeM fα′ \ rgeM gα′′‖

= µ(gα′′)− ‖rgeM fα′ \ rgeM gα′′‖ ,

implying that (8) holds.

Finally, assume that α is a limit ordinal. First, we show that

(9) µ(fα) ≤ µ(gα)− ‖rgeM fα \ rgeM gα‖

By Lemma 5.1, we have

µ(fα) = liminf
θ→α

µ(fθ) = liminf
β→α

µ(fβ′).

By the inductive hypothesis

µ(fα) ≤ liminf
β→α

(
µ(gβ′′)−

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥)

.
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Using Lemma 3.3, then Lemma 5.2 and finally Lemma 5.1 again, we conclude that

µ(fα) ≤ liminf
β→α

µ(gβ′′)− liminf
β→α

∥∥rgeM fβ′ \ rgeM gβ′′
∥∥

≤ liminf
β→α

µ(gβ′′)− ‖rgeM fα \ rgeM gα‖

= liminf
θ→α

µ(gθ)− ‖rgeM fα \ rgeM gα‖

= µ(gα)− ‖rgeM fα \ rgeM gα‖

completing the proof of (9).

Since f(β) ∈ M for every β with α ≤ β < α′, we have

µ(fα′) = µ(fα)− ‖rgeM fα′ \ rgeM fα‖ .

Similarly

µ(gα′′) = µ(gα)− ‖rgeM gα′′ \ rgeM gα‖ .

Since addition in Z∞ is associative, using the above two equalities and the equality (9) we conclude

that

µ(fα′) = µ(fα)− ‖rgeM fα′ \ rgeM fα‖

≤ µ(gα)− ‖rgeM fα \ rgeM gα‖ − ‖rgeM fα′ \ rgeM fα‖

= µ(gα)− ‖rgeM fα′ \ rgeM gα‖

= µ(gα)− ‖rgeM gα′′ \ rgeM gα‖ − ‖rgeM fα′ \ rgeM gα′′‖

= µ(gα′′)− ‖rgeM fα′ \ rgeM gα′′‖

completing the proof of the lemma.

Lemma 5.3 implies immediately the following corollary.

Corollary 5.4. Let f and g be strings in Γ that have the same women substring. If g is a deferment

of f , then

µ(f) ≤ µ(g).

Proof. Let λ be the domain of the women substring of f (and of g). Taking α = λ in (8) gives

µ(f) ≤ µ(g)− ‖rgeM f \ rgeM g‖ .

Since ‖rgeM f \ rgeM g‖ ≥ 0, the desired inequality follows.
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6. q-admissible societies

In this section we are going to present the definition of a q-admissible society and prove that the

society Γ is q-admissible if and only if it is µ-admissible. The concept of q-admissible societies was

introduced by Nash-Williams [6].

Given a set X ⊆ W of women, let D(X) = {a ∈ M : K 〈a〉 ⊆ X} be the set of men that know

no women outside X. If f is a string in W , then let ∆(f) = D(rge f). The q-margin q(f) of f is

the element of Z∞ defined by transfinite induction on α = dom f as follows. Let q(f) = −‖D(∅)‖
if α = 0, let

q(f) = q(fβ) + 1− ‖∆(f) \∆(fβ)‖

when α = β + 1 is a successor ordinal, and

q(f) = liminf
β→α

q(fβ)−

∥∥∥∥∥∥∆(f) \
⋃

β<α

∆(fβ)

∥∥∥∥∥∥
if α is a limit ordinal. The society Γ is q-admissible if q(f) ≥ 0 for every string f in W .

Let f be a saturated string in Γ, h be the women substring of f and λ = dom h. For each α ≤ λ

let α′ be the f -lift of α. We say that f is prompt if for every α ≤ λ we have

rgeM fα′ = ∆(hα),

that is, if for every β ∈ f−1[W ] ∪ {dom f} the set of men appearing in fβ is as large as possible

without violating the condition that f is saturated. Note that if f is prompt and g is a saturated

string in Γ with the same women substring as f , then g is a deferment of f .

The following lemma will be used to prove that q-admissibility is equivalent to µ-admissibility.

Lemma 6.1. Let f be a prompt string in Γ and h be the women substring of f . Then

µ(f) = q(h).

Proof. Let λ = dom h. For each α ≤ λ let α′ be the f -lift of α. We will use transfinite induction on

α to show that

(10) µ(fα′) = q(hα)

holds for every α ≤ λ. Since f is prompt, we have

µ(f0′) = −‖rgeM f0′‖ = −‖∆(h0)‖ = −‖D(∅)‖ = q(h0)

showing that (10) holds for α = 0.

Assume that α = β + 1 is a successor ordinal. Then

µ(fα′) = µ(fβ′) + 1−
∥∥rgeM fα′ \ rgeM fβ′

∥∥ .
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Since f is prompt, we have

rgeM fα′ \ rgeM fβ′ = ∆(hα) \∆(hβ).

Using the inductive hypothesis, we conclude that

µ(fα′) = q(fβ) + 1− ‖∆(hα) \∆(hβ)‖ = q(gα)

Now assume that α is a limit ordinal. Let

α = sup
{
β′ : β < α

}
.

By Lemma 5.1, we have

µ(fα) = liminf
θ→α

µ(fθ) = liminf
β→α

µ(fβ′).

Using the inductive hypothesis, we get

µ(fα) = liminf
β→α

q(hβ)

Since f(β) ∈ M for every β with α ≤ β < α′, we conclude that

µ(fα′) = µ(fα)− ‖rgeM fα′ \ rgeM fα‖

= liminf
β→α

q(hβ)− ‖rgeM fα′ \ rgeM fα‖ .

Since the string f is prompt, rgeM fβ′ = ∆(hβ) for every β ≤ α. Therefore

rgeM fα =
⋃

β<α

rgeM fβ′ =
⋃

β<α

∆(hβ)

and

rgeM fα′ \ rgeM fα = ∆(hα) \
⋃

β<α

∆(hβ).

It follows that

µ(fα′) = liminf
β→α

q(hβ)−

∥∥∥∥∥∥∆(hα) \
⋃

β<α

∆(hβ)

∥∥∥∥∥∥ = q(hα)

completing the proof.

The following theorem is the main result of this section.

Theorem 6.2. The society Γ is q-admissible if and only if it is µ-admissible.

Proof. Assume that Γ is q-admissible. Let g be any saturated string in Γ, h be the woman substring

of g and f be a prompt string in Γ with woman substring h. Then g is a deferment of f and it

follows from Corollary 5.4 that

µ(g) ≥ µ(f).
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By Lemma 6.1

µ(f) = q(h).

Since Γ is q-admissible, we have q(h) ≥ 0. Hence µ(g) ≥ 0 and so Γ is µ-admissible.

Now assume that Γ is µ-admissible. Let h be any string in W and f be any prompt string in Γ

with h being its women substring. Since Γ is µ-admissible and f is saturated, we have µ(f) ≥ 0. It

follows from Lemma 6.1 that

q(h) = µ(f) ≥ 0.

Therefore Γ is q-admissible and the proof is complete.

7. Concluding Remarks

The following theorem was proved by Nash-Williams [7].

Theorem 7.1. If K−1 〈x〉 is countable for every x ∈ W , then Γ is espousable if and only if it is

q-admissible.

The proof given by Nash-Williams is based on a result of Milner and Shelah [5] and a weaker

version of Theorem 7.1 (proved by Nash-Williams [6]) saying that espousability is equivalent to

q-admissibility for societies Γ with M being countable. Our proofs of Theorems 2.1 and 6.2 provide

an alternative self-contained proof of Theorem 7.1.

Aharoni [1] (Lemmas 11 and 12) proved the following properties of q-admissibility.

Theorem 7.2. Let Q ⊆ K and let Γ′ be the society (M,W,Q). Then, if Γ′ is q-admissible so is

also Γ.

Theorem 7.3. Suppose that M = A∪B, A∩B = ∅ and W = X ∪Y , X ∩Y = ∅. If Γ1 = Γ[A∪X]

and Γ2 = Γ[B ∪ Y ] are q-admissible, then Γ is also q-admissible.

Note that if we replace q-admissibility by µ-admissibility in Theorem 7.2, then the obtained

statement is trivial since any saturated string in Γ is also a saturated string in Γ′. Therefore

Theorem 6.2 implies Theorem 7.2.

To prove Theorem 7.3, Aharoni used the equivalence between q-admissibility and c-admissibility.

Note that Theorem 7.3 can be alternatively proved using the equivalence between q-admissibility

and µ-admissibility. Indeed, if f is a string in Γ, then there are uniquely determined strings h1 and

h2 in Γ1 and Γ2 respectively (using the notation from Theorem 7.3) such that f is a shuffle of h1

and h2. Moreover, if the string f is saturated in Γ, then the strings h1 and h2 are saturated in Γ1

and Γ2 respectively. Therefore, Lemma 3.6 implies that if Γ1 and Γ2 are µ-admissible, then so is Γ.

This establishes the analog of Theorem 7.3 with q-admissibility replaced by µ-admissibility which,

by Theorem 6.2, implies Theorem 7.3 itself.

\bibitem{ahar:equiv}On the equivalence of two conditions for the existence of
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transversals

R.˜Aharoni, {\em },
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