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Abstract. Given a society Γ = (M, W, K), where M , W are disjoint sets and K ⊆M×W ,
and a matroid T on M , a T-espousal of Γ is an injective partial function E : M →
W such that E ⊆ K and dom E is spanning in T. The problem of characterizing T-
espousable societies is a generalization of characterizing systems of matroids with disjoint
bases. Wojciechowski [15] formulated a criterion for a society Γ = (M, W, K) to be P(M)-
espousable, where P(M) is the matroid on M consisting of all subsets of M . In this paper,
we generalize this criterion to the case when T is an arbitrary matroid on M , and we prove
that the obtained criterion is necessary for Γ to be T-espousable.

1. Introduction

Let R and X be disjoint sets and, for each r ∈ R, let Mr be a possibly infinite

matroid on the set X. (We assume that infinite matroids have finite character.)

The system M = (Mr)r∈R will be called a system of matroids on X. The system

B = (Br)r∈R of subsets of X is a system of disjoint bases for M if Br is a base of

Mr for each r ∈ R, and Br ∩Br′ = ∅ for every r, r′ ∈ R with r 6= r′.

The problem of finding a necessary and sufficient condition for a system of

matroids to have a system of disjoint bases (known as the packing problem) has a

long history. The first result, which motivated further development in this area,

was a characterization of finite graphs having k edge-disjoint spanning trees proved

independently by Tutte [12] and Nash-Williams [6]. Edmonds [4] generalized this
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result and characterized all finite matroids having k disjoint bases. The following

characterization was proved by Brualdi [2] who generalized its finite version obtained

by Edmonds and Fulkerson [5].

Theorem 1.1. If M = (Mr)r∈R is a finite system of rank-finite matroids or an

arbitrary system of finite matroids on X, then M has a system of disjoint bases if

and only if

(?) for every finite subset A of X we have

|A| ≥
∑
r∈R

ρ(Mr ·A),

where ρ is the rank function and Mr ·A is the contraction of Mr to A.

Unfortunately, condition (?) is not sufficient for the existence of a system of

disjoint bases for M when M is infinite and includes an infinite matroid, even when

all the matroids in M have rank at most one. For example, let M = (Mr)r∈R be

the system of matroid on

X = {i ∈ Z : i ≥ 0},

with

R = {i ∈ Z : i ≥ 1} ∪ {∞},

and

Mr = {{i} : i < r} ∪ {∅},

for every r ∈ R. Then M is countable, contains matroids of rank one, and only one

matroid in M is infinite. Note that condition (?) is satisfied, but there is no system

of disjoint bases for M.

Oxley [9] formulated a sufficient (but not necessary) condition for a system of

matroids to have a system of disjoint bases. Using an idea of Nash-Williams [7],

Wojciechowski [13] formulated a condition which is a generalization of condition (?)

and is necessary for any system of matroids to have a system of disjoint bases. The

condition is also sufficient in the case of countable systems of rank-finite matroids

(see [14]).
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In this paper we consider the following more general problem. A society is an

ordered triple (M,W,K), where M , W are disjoint sets and K ⊆ M ×W . Given a

society Γ = (M,W,K) and a matroid T on M , a T-espousal of Γ is an injective partial

function E : M → W such that E ⊆ K and dom E is spanning in T. The society Γ is

T-espousable if there is a T-espousal of Γ. The problem of characterizing systems of

matroids with disjoint bases can be reduced to characterizing T-espousable societies.

Let M = (Mr)r∈R be a system of matroids on X. The society generated by M

is a society ΓM = (MM,WM,KM) with MM = R×X, WM = X and

KM = {((r, x) , x) : r ∈ R and x ∈ X} .

Let TM be the matroid on MM defined by

TM =

{ ⋃
r∈R

({r} ×Xr) : Xr ∈ Mr for every r ∈ R

}
.

It is easy to see that the system of matroids M has a system of disjoint bases if

and only if the society ΓM is TM-espousable. Indeed, if B = (Br)r∈R is a system

of disjoint bases for M , then

E =
⋃
r∈R

{r} ×Br

is a TM-espousal in ΓM. On the other hand, if E is a TM-espousal in ΓM and E′ is

the restriction of E to a base of TM, then the system B = (Br)r∈R with

Br = {x : (r, x) ∈ dom E′} ,

for every r ∈ R, is a system of disjoint bases for M.

Given a society Γ = (M,W,K), we say that Γ is espousable if it is P(M)-

espousable, where P(M) is the matroid on M consisting of all subsets of M . In the

case of M being countable, four necessary and sufficient criterions have been given

for the society Γ to be espousable. One, conjectured by Nash-Williams, was proved

by Damerell and Milner [3]. Simpler criterions of a similar type were proved by

Nash-Williams [7] (q-admissibility) and by Wojciechowski [15] (µ-admissibility). The
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fourth criterion (c-admissibility), of a different nature, was given by Podewski and

Steffens [11]. The three types of admissibility criterions are actually all equivalent

to each other (see [1] and [15]) and apply in the more general case when we allow M

to be of any cardinality and assume only that K−1〈x〉 is countable for every x ∈ W

(see [8] and [15]).

In this paper, we generalize the criterion of µ-admissibility of a society Γ =

(M,W,K) to the case when T is an arbitrary matroid on M (we say then that

the society Γ is µ-admissible under T), and we prove that this criterion is necessary

for Γ to be T-espousable (Theorem 2.1). We also conjecture the sufficiency of our

criterion in the case when K−1〈x〉 is countable for any x ∈ W and the matroid T is

rank-countable (Conjecture 2.2).

2. Preliminaries

We shall use the following set-theoretic conventions. A relation is a set of

ordered pairs. Given a relation R, a set A, and an element a, we have R〈a〉 =

{y : (a, y) ∈ R}; if |R〈a〉| = 1, then R(a) is the single element of R〈a〉; the set

R [A] is equal to
⋃

a∈A R〈a〉; and R−1 = {(y, x) : (x, y) ∈ R}. The domain of the

relation R is the set dom R = {x : R〈x〉 6= ∅} and the range of R is the set rge R ={
y : R−1〈y〉 6= ∅

}
. A function is a relation f such that |f〈x〉| = 1 for every x ∈

dom f . A function f is injective if
∣∣f−1〈y〉

∣∣ = 1 for every y ∈ rge f . We say that

f : A → X is a partial function if f is a function with dom f ⊆ A and rge f ⊆ X.

An ordinal number α is equal to the set of all ordinal numbers smaller than α and a

cardinal number is an ordinal number α such that any ordinal number smaller than

α has a smaller cardinality. We denote by ω the first infinite ordinal number and

we call a set X countable if |X| ≤ ω.

Let X be a set and let M be a family of subsets of X. We say that M has finite

character if a set A belongs to M if and only if every finite subset I of A belongs to

M. We say that M is a matroid on X if M is non-empty and satisfies the following

conditions:

(i) If A ∈ M and B ⊆ A, then B ∈ M.
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(ii) If I, J ∈ M are finite and |I| = |J |+ 1, then there is an element y ∈ I \ J such

that J ∪ {y} ∈ M.

(iii) M has finite character.

A matroid is finite if it is a finite family of sets or, equivalently, if it is a matroid on

a finite set.

Let M be a matroid on a set X. A subset A of X is independent in M if A ∈ M,

and A is dependent if A /∈ M. A maximal independent set of M is called a base of

M. A subset A of X is spanning in M if it contains a base of M. The cardinality

of any base of M is called the rank of M and is denoted by ρ(M). The matroid

M is said to be rank-finite if M has finite rank, and to be rank-countable if it has

countable rank (ρ(M) ≤ ω). If M is a matroid on the set X and A ⊆ X, then let

M|A be the restriction of M to A, that is, let I ∈ M|A iff I ⊆ A and I ∈ M. The

restriction of M to X \ A will be denoted by M − A. Further, let M · A be the

contraction of M to A, that is, let I ∈ M · A iff I ⊆ A and I ∪ J ∈ M for every

J ∈ M−A.

A society Γ is an ordered triple (M,W,K), where M , W are disjoint sets and

K ⊆ M × W . The elements of M are called men, the elements of W are called

women and if (a, x) ∈ K, then we say that a knows x. Let Γ = (M,W,K) be a

society and T be a matroid on M . A T-espousal of Γ is an injective partial function

E : M → W such that E ⊆ K and dom E is spanning in T. The society Γ is

T-espousable if there is a T-espousal of Γ. If P(M) is the collection of all subsets of

M , then P(M) is clearly a matroid on M . We will call P(M) the discrete matroid

on M . An espousal of Γ is a P(M)-espousal of Γ and Γ is espousable if it is P(M)-

espousable. Throughout this paper we assume that we are discussing a fixed society

Γ = (M,W,K) with a fixed matroid T on M and the symbols Γ, M , W , K, T should

be interpreted accordingly.

A string is an injective function with its domain being an ordinal. In particular,

the empty set ∅ is a string with domain 0 = ∅. A string in X is a string f with

rge f ⊆ X and an α-string is a string g with dom g = α. Given a string f in X and
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Y ⊆ X, let

rgeY f = rge f ∩ Y

and

domY f = dom f ∩ f−1[Y ].

A string in the society Γ is a string in M ∪W .

Let f be a string and β, γ be ordinals with β ≤ γ ≤ dom f . The [β, γ)-segment

f[β,γ) of f is the string defined by

f[β,γ)(θ) = f(β + θ),

for all θ with β + θ < γ, that is, f[β,γ) is obtained from f by restricting it to [β, γ)

and shifting the domain to start at 0. For α ≤ dom f , let fα = f[0,α).

Given a set X ⊆ W of women, let the demand set D(X) of X be the set of men

that know no women outside X, that is, let

D(X) = {a ∈ M : K〈a〉 ⊆ X} ,

and if f is a string in Γ, then let

∆f = D(rgeW f).

Let f be a λ-string in Γ and α ≤ λ. The set ∆fα will be called the demand set of

f at α, and the set

∆αf = ∆fα \ rgeM f[α,λ)

will be called the strong demand set of f at α. Note that the demand set of f at

α depends only on fα but the strong demand set of f at α depends on the whole

of f . The string f is saturated at α if the set of men appearing in fα is a subset

of ∆fα, and f is regular at α if the set of men appearing in fα is independent in

T ·∆αf . Note that if f is regular at α, then f is also saturated at α. We say that

f is saturated (regular) if it is saturated (regular) at every α ≤ λ.

Let Z∞ = Z ∪ {−∞,∞} be the set of quasi-integers. If a1, . . . , an ∈ Z∞, then

let the sum a1 + . . . + an be the usual sum if a1, . . . , an are all integers, let the sum
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be ∞ if at least one of them is ∞, and let it be −∞ if neither of a1, . . . , an is ∞
but at least one of them is −∞. Note that it follows immediately from the above

definition that the operation of addition in Z∞ is commutative and associative. The

difference a− b of two quasi-integers a, b means a+(−b); and likewise, for example,

a − b + c − d means a + (−b) + c + (−d), etc. Let Z∞ be ordered in the obvious

way. Note that if a, b, c, d ∈ Z∞ satisfy a ≤ c and b ≤ d, then a + b ≤ c + d. Given

a set X, let ‖X‖ ∈ Z∞ be the cardinality of X if X is finite, and ‖X‖ = ∞ if X is

infinite.

Assume that f is a string in Γ. The µ-margin µ(f) of f is an element of Z∞

defined by transfinite induction on α = dom f as follows. Let µ(f) = 0 if α = 0, let

µ(f) =
{

µ(fβ) + 1 if f(β) ∈ W ,
µ(fβ)− 1 if f(β) ∈ M ,

when α = β + 1 is a successor ordinal, and

µ(f) = liminf
β→α

µ(fβ)

if α is a limit ordinal. We say that Γ is µ-admissible under T if µ(f) ≥ 0 for every

regular string f in Γ.

The following result will be proved later.

Theorem 2.1. If Γ is T-espousable, then it is µ-admissible under T.

Moreover, we conjecture that the following result is true.

Conjecture 2.2. If the set K−1〈x〉 of men knowing the woman x is countable for

every x ∈ W and the matroid T is rank-countable, then the society Γ is T-espousable

if and only if it is µ-admissible under T.

To present some motivation for our definition of µ-admissibility, we show in

the following example that a certain natural strengthening of the notion of µ-

admissibility leads to a condition that is not necessary for Γ to be T-espousable.

We say that a string f in Γ is weakly regular if the set rgeM fα is independent in

T · ∆fα for every α ≤ dom f . We will show that the condition that µ(f) ≥ 0 for

every weakly regular string f in Γ is not necessary for Γ to be T-espousable.
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Example 2.3. Let G be the graph from Figure 2.1, and let

E =
{

ej
i : i = 1, 2, . . . , j = 1, 2, 3, 4

}
be the set of edges of G. Let M be the cycle matroid of G, that is, a matroid on E

such that A ∈ M if and only if A contains no cycle of G.

◦ ◦ ◦ ◦ ◦ · · ·
e1
1 e1

2 e1
3 e1

4

e2
1 e2

2 e2
3 e2

4 e2
5

◦ ◦ ◦ ◦ ◦ · · ·
e4
1 e4

2 e4
3 e4

4

e3
1 e3

2 e3
3 e3

4

Fig. 2.1. The graph G.

Assume that M = E × {1, 2}, W = E,

K = {((a, b) , a) : a ∈ E, b ∈ {1, 2}} ,

and

T = {A× {1} ∪B × {2} : A,B ∈ M} .

We claim that if Γ and T are as in Example 2.3, then Γ is T-espousable but

there is a weekly regular string f in Γ with µ(f) < 0. Indeed, let

E1 =
{
e3
i : i = 1, 2, . . .

}
∪

{
e2
2i : i = 1, 2, . . .

}
∪

{
e1
2i−1 : i = 1, 2, . . .

}
,

and

E2 =
{
e4
i : i = 1, 2, . . .

}
∪

{
e2
2i−1 : i = 1, 2, . . .

}
∪

{
e1
2i : i = 1, 2, . . .

}
.

Then

F = {((a, b) , a) ∈ M ×W : (a, b) ∈ E1 × {1} ∪ E2 × {2}}
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is a T-espousal of Γ, so Γ is T-espousable.

Consider the following (ω + 1)-string f in Γ. Let the sequence f(0), f(1), . . .

be equal to

e1
1, e

2
1,

(
e1
1, 1

)
,
(
e1
1, 2

)
, e3

1, e
4
1,

(
e3
1, 1

)
,
(
e3
1, 2

)
, e1

2, e
2
2,

(
e1
2, 1

)
,
(
e1
2, 2

)
,

e3
2, e

4
2,

(
e3
2, 1

)
,
(
e3
2, 2

)
, e1

3, e
2
3,

(
e1
3, 1

)
,
(
e1
3, 2

)
, . . .

and let f(ω) =
(
e2
1, 1

)
. Note that the string f is weakly regular (but not regular)

and that µ(f) = −1.

3. Necessity of µ-admissibility

In this section we will prove Theorem 2.1. It is well known that the following

lemmas hold (see Oxley [10]).

Lemma 3.1. If M is a matroid, the set I is independent in M, the set P is spanning

in M, and a ∈ I \ P , then there is b ∈ P \ I such that (I \ {a}) ∪ {b} ∈ M.

Lemma 3.2. If M is a matroid on X, the set A is a subset of X, and the set B is

spanning in M, then A ∩B is spanning in M ·A.

Let f , g be strings in Γ. We say that g is a men replacement of f if domM f =

domM g, domW f = domW g, and f(α) = g(α) for every α ∈ domW f . Note that if

g is a men replacement of f , then µ(f) = µ(g). We will need the following lemma.

Lemma 3.3. Let α, λ be ordinals with α < λ, and let f and g be λ-strings in Γ

such that g is a men replacement of f and

f(δ) = g(δ) whenever α ≤ δ < λ.

If f is regular at every δ with α ≤ δ ≤ λ and g is regular at α, then g is regular at

every δ with α ≤ δ ≤ λ.

Proof. Let δ be such that α < δ ≤ λ. We will show that g is regular at δ, that

is, that rgeM gδ ∈ T · ∆δg. Let X = ∆δf = ∆δg, M = T · X, Y = ∆αf = ∆αg,

B = rgeM fα, C = rgeM gα, and D = rgeM f[α,δ) = rgeM g[α,δ). We have

B ∪D = rgeM fδ ∈ M
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since f is regular at δ, implying that D ∈ M. Since D ∩ Y = ∅, it follows that

D ∈ M− Y . Since g is regular at α, we have C ∈ M · Y , implying that

C ∪D = rgeM gδ ∈ M = T ·∆δg.

Therefore g is regular at δ and the proof is complete.

The following lemma will provide the main step in the proof of Theorem 2.1.

Lemma 3.4. If E is a T-espousal of Γ and f is a regular string in Γ, then there is

a saturated string g in Γ with domM g ⊆ dom E that is a men replacement of f .

Proof. Let λ = dom f . We will show by transfinite induction on α that, for each

α ≤ λ, there is a saturated string gα in Γ such that

(i) gα is a men replacement of f ,

(ii) gα is regular at every δ with α ≤ δ ≤ λ,

(iii) domM gα
α ⊆ dom E (where gα

α = (gα)α),

(iv) gα(δ) = f(δ) for every δ with α ≤ δ < λ, and

(v) gα(δ) = gγ(δ) whenever δ < γ < α.

Taking g = gλ will then complete the proof.

Note that to prove that gα satisfies (i)–(v) it is enough to prove that gα satisfies

(i), (iii)–(v) and

(ii’) gα is regular at α,

since (ii) is implied by the regularity of f , conditions (i), (ii’) and (iv), and Lemma

3.3.

If α = 0, then g0 = f obviously satisfies conditions (i)–(v). Assume that

α = β + 1 ≤ λ is a successor ordinal. If gβ(β) ∈ W or gβ(β) ∈ dom E, then

it follows from the inductive hypothesis that if we take gα = gβ , then conditions

(i)–(v) will be satisfied, so we can assume that gβ(β) ∈ M \dom E. Let A = ∆αgβ .

By condition (ii) of the inductive hypothesis, the string gβ is regular at α implying

that the set I = rgeM gβ
α is independent in T · A. Since dom E is spanning in T, it
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follows from Lemma 3.2 that P = dom E ∩ A is spanning in T · A. Therefore, by

Lemma 3.1, there is

a ∈ P \ I =
(
dom E \ rgeM gβ

)
∩A

such that
(
I \

{
gβ(β)

})
∪ {a} is independent in T ·A. Let gα be defined by

gα(γ) =
{

a if γ = β,
gβ(γ) otherwise,

for every γ < λ. It is clear that gα is a saturated string in Γ satisfying conditions (i)

and (iii)–(v). Moreover, by the choice of a, the set rgeM gα
α =

(
I \

{
gβ(β)

})
∪ {a}

is independent in T · A where A = ∆αgβ = ∆αgα implying that the string gα is

regular at α. Therefore, gα satisfies condition (ii’).

Now assume that α is a limit ordinal. Then for every γ < α we have γ +1 < α.

Let gα be defined by

gα(γ) =
{

gγ+1(γ) if γ < α,
f(γ) otherwise.

It follows from (v) that gα(γ) = gβ(γ) for every β with γ < β < α and that gα

is a string in Γ. It is clear that the string gα is saturated and that conditions (i)

and (iii)—(v) are satisfied. It remains to establish (ii’), that is, that rgeM gα
α is

independent in T ·∆αgα.

To show that rgeM gα
α is independent in T · ∆αgα it suffices to show that any

finite subset A ⊆ rgeM gα
α is independent in T · ∆αgα. Let A ⊆ rgeM gα

α be finite.

Then there is β < α such that

A ⊆ rgeM gα
β = rgeM gβ

β ⊆ rgeM gβ
α.

Since gβ is regular at α, the set rgeM gβ
α is independent in T · ∆αgβ = T · ∆αgα.

Thus A is independent in T ·∆αgα and so the proof is complete.

The following lemma was proved in [15].
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Lemma 3.5. If the society Γ is espousable, then µ(g) ≥ 0 for every saturated

string g in Γ.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let E be a T-espousal of Γ and let Γ′ be the society

Γ′ = (dom E,W,K ′) with K ′ = K ∩ (dom E ×W ). Let f be a regular string in Γ.

We need to show that µ(f) ≥ 0. By Lemma 3.4, there is a saturated string g in Γ

with domM g ⊆ dom E that is a men replacement of f . Then µ(g) = µ(f) and g is

a Γ′-saturated string in Γ′. Since E is an espousal of Γ′, it follows from Lemma 3.5

that µ(g) ≥ 0. Therefore µ(f) ≥ 0 and so the proof is complete.
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