Espousable societies and infinite matroids

JERZY WOJCIECHOWSKI

Department of Mathematics, West Virginia University, PO BOX 6310, Morgantown, WV 26506-6310, USA

Abstract. Given a society $\Gamma = (M, W, K)$, where M, W are disjoint sets and $K \subseteq M \times W$, and a matroid \mathcal{T} on M, a \mathcal{T} -espousal of Γ is an injective partial function $E : M \to W$ such that $E \subseteq K$ and dom E is spanning in \mathcal{T} . The problem of characterizing \mathcal{T} espousable societies is a generalization of characterizing systems of matroids with disjoint bases. Wojciechowski [15] formulated a criterion for a society $\Gamma = (M, W, K)$ to be $\mathcal{P}(M)$ espousable, where $\mathcal{P}(M)$ is the matroid on M consisting of all subsets of M. In this paper, we generalize this criterion to the case when \mathcal{T} is an arbitrary matroid on M, and we prove that the obtained criterion is necessary for Γ to be \mathcal{T} -espousable.

1. Introduction

Let R and X be disjoint sets and, for each $r \in R$, let \mathcal{M}_r be a possibly infinite matroid on the set X. (We assume that infinite matroids have finite character.) The system $\mathfrak{M} = (\mathcal{M}_r)_{r \in R}$ will be called a *system of matroids* on X. The system $\mathfrak{B} = (B_r)_{r \in R}$ of subsets of X is a *system of disjoint bases* for \mathfrak{M} if B_r is a base of \mathcal{M}_r for each $r \in R$, and $B_r \cap B_{r'} = \emptyset$ for every $r, r' \in R$ with $r \neq r'$.

The problem of finding a necessary and sufficient condition for a system of matroids to have a system of disjoint bases (known as the *packing problem*) has a long history. The first result, which motivated further development in this area, was a characterization of finite graphs having k edge-disjoint spanning trees proved independently by Tutte [12] and Nash-Williams [6]. Edmonds [4] generalized this

result and characterized all finite matroids having k disjoint bases. The following characterization was proved by Brualdi [2] who generalized its finite version obtained by Edmonds and Fulkerson [5].

Theorem 1.1. If $\mathfrak{M} = (\mathfrak{M}_r)_{r \in R}$ is a finite system of rank-finite matroids or an arbitrary system of finite matroids on X, then \mathfrak{M} has a system of disjoint bases if and only if

 (\star) for every finite subset A of X we have

$$|A| \ge \sum_{r \in R} \rho(\mathfrak{M}_r \cdot A),$$

where ρ is the rank function and $\mathcal{M}_r \cdot A$ is the contraction of \mathcal{M}_r to A.

Unfortunately, condition (\star) is not sufficient for the existence of a system of disjoint bases for \mathfrak{M} when \mathfrak{M} is infinite and includes an infinite matroid, even when all the matroids in \mathfrak{M} have rank at most one. For example, let $\mathfrak{M} = (\mathcal{M}_r)_{r \in R}$ be the system of matroid on

$$X = \{ i \in \mathbb{Z} : i \ge 0 \},\$$

with

$$R = \{i \in \mathbb{Z} : i \ge 1\} \cup \{\infty\},\$$

and

$$M_r = \{\{i\} : i < r\} \cup \{\emptyset\},\$$

for every $r \in R$. Then \mathfrak{M} is countable, contains matroids of rank one, and only one matroid in \mathfrak{M} is infinite. Note that condition (\star) is satisfied, but there is no system of disjoint bases for \mathfrak{M} .

Oxley [9] formulated a sufficient (but not necessary) condition for a system of matroids to have a system of disjoint bases. Using an idea of Nash-Williams [7], Wojciechowski [13] formulated a condition which is a generalization of condition (\star) and is necessary for any system of matroids to have a system of disjoint bases. The condition is also sufficient in the case of countable systems of rank-finite matroids (see [14]).

In this paper we consider the following more general problem. A *society* is an ordered triple (M, W, K), where M, W are disjoint sets and $K \subseteq M \times W$. Given a society $\Gamma = (M, W, K)$ and a matroid \mathcal{T} on M, a \mathcal{T} -*espousal* of Γ is an injective partial function $E: M \to W$ such that $E \subseteq K$ and dom E is spanning in \mathcal{T} . The society Γ is \mathcal{T} -*espousable* if there is a \mathcal{T} -espousal of Γ . The problem of characterizing systems of matroids with disjoint bases can be reduced to characterizing \mathcal{T} -espousable societies.

Let $\mathfrak{M} = (\mathfrak{M}_r)_{r \in R}$ be a system of matroids on X. The society generated by \mathfrak{M} is a society $\Gamma_{\mathfrak{M}} = (M_{\mathfrak{M}}, W_{\mathfrak{M}}, K_{\mathfrak{M}})$ with $M_{\mathfrak{M}} = R \times X$, $W_{\mathfrak{M}} = X$ and

$$K_{\mathfrak{M}} = \{ ((r, x), x) : r \in R \text{ and } x \in X \}.$$

Let $\mathcal{T}_{\mathfrak{M}}$ be the matroid on $M_{\mathfrak{M}}$ defined by

$$\mathfrak{T}_{\mathfrak{M}} = \left\{ \bigcup_{r \in R} \left(\{r\} \times X_r \right) : X_r \in \mathfrak{M}_r \text{ for every } r \in R \right\}.$$

It is easy to see that the system of matroids \mathfrak{M} has a system of disjoint bases if and only if the society $\Gamma_{\mathfrak{M}}$ is $\mathfrak{T}_{\mathfrak{M}}$ -espousable. Indeed, if $\mathfrak{B} = (B_r)_{r \in R}$ is a system of disjoint bases for \mathfrak{M} , then

$$E = \bigcup_{r \in R} \{r\} \times B_r$$

is a $\mathcal{T}_{\mathfrak{M}}$ -espousal in $\Gamma_{\mathfrak{M}}$. On the other hand, if E is a $\mathcal{T}_{\mathfrak{M}}$ -espousal in $\Gamma_{\mathfrak{M}}$ and E' is the restriction of E to a base of $\mathcal{T}_{\mathfrak{M}}$, then the system $\mathfrak{B} = (B_r)_{r \in R}$ with

$$B_r = \left\{ x : (r, x) \in \operatorname{dom} E' \right\},\$$

for every $r \in R$, is a system of disjoint bases for \mathfrak{M} .

Given a society $\Gamma = (M, W, K)$, we say that Γ is *espousable* if it is $\mathcal{P}(M)$ espousable, where $\mathcal{P}(M)$ is the matroid on M consisting of all subsets of M. In the case of M being countable, four necessary and sufficient criterions have been given for the society Γ to be espousable. One, conjectured by Nash-Williams, was proved by Damerell and Milner [3]. Simpler criterions of a similar type were proved by Nash-Williams [7] (*q*-admissibility) and by Wojciechowski [15] (μ -admissibility). The

fourth criterion (*c*-admissibility), of a different nature, was given by Podewski and Steffens [11]. The three types of admissibility criterions are actually all equivalent to each other (see [1] and [15]) and apply in the more general case when we allow Mto be of any cardinality and assume only that $K^{-1}\langle x \rangle$ is countable for every $x \in W$ (see [8] and [15]).

In this paper, we generalize the criterion of μ -admissibility of a society $\Gamma = (M, W, K)$ to the case when \mathcal{T} is an arbitrary matroid on M (we say then that the society Γ is μ -admissible under \mathcal{T}), and we prove that this criterion is necessary for Γ to be \mathcal{T} -espousable (Theorem 2.1). We also conjecture the sufficiency of our criterion in the case when $K^{-1}\langle x \rangle$ is countable for any $x \in W$ and the matroid \mathcal{T} is rank-countable (Conjecture 2.2).

2. Preliminaries

We shall use the following set-theoretic conventions. A relation is a set of ordered pairs. Given a relation R, a set A, and an element a, we have $R\langle a \rangle = \{y : (a, y) \in R\}$; if $|R\langle a \rangle| = 1$, then R(a) is the single element of $R\langle a \rangle$; the set R[A] is equal to $\bigcup_{a \in A} R\langle a \rangle$; and $R^{-1} = \{(y, x) : (x, y) \in R\}$. The domain of the relation R is the set dom $R = \{x : R\langle x \rangle \neq \emptyset\}$ and the range of R is the set rge $R = \{y : R^{-1}\langle y \rangle \neq \emptyset\}$. A function is a relation f such that $|f\langle x \rangle| = 1$ for every $x \in$ dom f. A function f is injective if $|f^{-1}\langle y \rangle| = 1$ for every $y \in$ rge f. We say that $f : A \to X$ is a partial function if f is a function with dom $f \subseteq A$ and rge $f \subseteq X$. An ordinal number α is equal to the set of all ordinal numbers smaller than α and a cardinal number is an ordinal number α such that any ordinal number smaller than α has a smaller cardinality. We denote by ω the first infinite ordinal number and we call a set X countable if $|X| \leq \omega$.

Let X be a set and let \mathcal{M} be a family of subsets of X. We say that \mathcal{M} has *finite* character if a set A belongs to \mathcal{M} if and only if every finite subset I of A belongs to \mathcal{M} . We say that \mathcal{M} is a matroid on X if \mathcal{M} is non-empty and satisfies the following conditions:

(i) If $A \in \mathcal{M}$ and $B \subseteq A$, then $B \in \mathcal{M}$.

- (ii) If $I, J \in \mathcal{M}$ are finite and |I| = |J| + 1, then there is an element $y \in I \setminus J$ such that $J \cup \{y\} \in \mathcal{M}$.
- (iii) \mathcal{M} has finite character.

A matroid is *finite* if it is a finite family of sets or, equivalently, if it is a matroid on a finite set.

Let \mathcal{M} be a matroid on a set X. A subset A of X is *independent* in \mathcal{M} if $A \in \mathcal{M}$, and A is *dependent* if $A \notin \mathcal{M}$. A maximal independent set of \mathcal{M} is called a *base* of \mathcal{M} . A subset A of X is *spanning* in \mathcal{M} if it contains a base of \mathcal{M} . The cardinality of any base of \mathcal{M} is called the *rank* of \mathcal{M} and is denoted by $\rho(\mathcal{M})$. The matroid \mathcal{M} is said to be *rank-finite* if \mathcal{M} has finite rank, and to be *rank-countable* if it has countable rank ($\rho(\mathcal{M}) \leq \omega$). If \mathcal{M} is a matroid on the set X and $A \subseteq X$, then let $\mathcal{M}|A$ be the *restriction* of \mathcal{M} to A, that is, let $I \in \mathcal{M}|A$ iff $I \subseteq A$ and $I \in \mathcal{M}$. The restriction of \mathcal{M} to $X \setminus A$ will be denoted by $\mathcal{M} - A$. Further, let $\mathcal{M} \cdot A$ be the *contraction* of \mathcal{M} to A, that is, let $I \in \mathcal{M} \cdot A$ iff $I \subseteq A$ and $I \cup J \in \mathcal{M}$ for every $J \in \mathcal{M} - A$.

A society Γ is an ordered triple (M, W, K), where M, W are disjoint sets and $K \subseteq M \times W$. The elements of M are called *men*, the elements of W are called *women* and if $(a, x) \in K$, then we say that a knows x. Let $\Gamma = (M, W, K)$ be a society and \mathcal{T} be a matroid on M. A \mathcal{T} -espousal of Γ is an injective partial function $E: M \to W$ such that $E \subseteq K$ and dom E is spanning in \mathcal{T} . The society Γ is \mathcal{T} -espousable if there is a \mathcal{T} -espousal of Γ . If $\mathcal{P}(M)$ is the collection of all subsets of M, then $\mathcal{P}(M)$ is clearly a matroid on M. We will call $\mathcal{P}(M)$ the discrete matroid on M. An espousable of Γ is a $\mathcal{P}(M)$ -espousal of Γ and Γ is espousable if it is $\mathcal{P}(M)$ -espousable. Throughout this paper we assume that we are discussing a fixed society $\Gamma = (M, W, K)$ with a fixed matroid \mathcal{T} on M and the symbols $\Gamma, M, W, K, \mathcal{T}$ should be interpreted accordingly.

A string is an injective function with its domain being an ordinal. In particular, the empty set \emptyset is a string with domain $0 = \emptyset$. A string in X is a string f with rge $f \subseteq X$ and an α -string is a string g with dom $g = \alpha$. Given a string f in X and

5

 $Y \subseteq X$, let

$$\operatorname{rge}_Y f = \operatorname{rge} f \cap Y$$

and

$$\operatorname{dom}_Y f = \operatorname{dom} f \cap f^{-1}[Y].$$

A string in the society Γ is a string in $M \cup W$.

Let f be a string and β , γ be ordinals with $\beta \leq \gamma \leq \text{dom } f$. The $[\beta, \gamma)$ -segment $f_{[\beta, \gamma)}$ of f is the string defined by

$$f_{[\beta,\gamma)}(\theta) = f(\beta + \theta),$$

for all θ with $\beta + \theta < \gamma$, that is, $f_{[\beta,\gamma)}$ is obtained from f by restricting it to $[\beta,\gamma)$ and shifting the domain to start at 0. For $\alpha \leq \text{dom } f$, let $f_{\alpha} = f_{[0,\alpha)}$.

Given a set $X \subseteq W$ of women, let the *demand set* D(X) of X be the set of men that know no women outside X, that is, let

$$D(X) = \{ a \in M : K \langle a \rangle \subseteq X \},\$$

and if f is a string in Γ , then let

$$\Delta f = D(\operatorname{rge}_W f).$$

Let f be a λ -string in Γ and $\alpha \leq \lambda$. The set Δf_{α} will be called the *demand set* of f at α , and the set

$$\Delta^{\alpha} f = \Delta f_{\alpha} \setminus \operatorname{rge}_{M} f_{[\alpha,\lambda)}$$

will be called the strong demand set of f at α . Note that the demand set of f at α depends only on f_{α} but the strong demand set of f at α depends on the whole of f. The string f is saturated at α if the set of men appearing in f_{α} is a subset of Δf_{α} , and f is regular at α if the set of men appearing in f_{α} is independent in $\mathfrak{T} \cdot \Delta^{\alpha} f$. Note that if f is regular at α , then f is also saturated at α . We say that f is saturated (regular) if it is saturated (regular) at every $\alpha \leq \lambda$.

Let $\mathbb{Z}^{\infty} = \mathbb{Z} \cup \{-\infty, \infty\}$ be the set of *quasi-integers*. If $a_1, \ldots, a_n \in \mathbb{Z}^{\infty}$, then let the sum $a_1 + \ldots + a_n$ be the usual sum if a_1, \ldots, a_n are all integers, let the sum

be ∞ if at least one of them is ∞ , and let it be $-\infty$ if neither of a_1, \ldots, a_n is ∞ but at least one of them is $-\infty$. Note that it follows immediately from the above definition that the operation of addition in \mathbb{Z}^{∞} is commutative and associative. The difference a - b of two quasi-integers a, b means a + (-b); and likewise, for example, a - b + c - d means a + (-b) + c + (-d), etc. Let \mathbb{Z}^{∞} be ordered in the obvious way. Note that if $a, b, c, d \in \mathbb{Z}^{\infty}$ satisfy $a \leq c$ and $b \leq d$, then $a + b \leq c + d$. Given a set X, let $||X|| \in \mathbb{Z}^{\infty}$ be the cardinality of X if X is finite, and $||X|| = \infty$ if X is infinite.

Assume that f is a string in Γ . The μ -margin $\mu(f)$ of f is an element of \mathbb{Z}^{∞} defined by transfinite induction on $\alpha = \text{dom } f$ as follows. Let $\mu(f) = 0$ if $\alpha = 0$, let

$$\mu(f) = \begin{cases} \mu(f_{\beta}) + 1 & \text{if } f(\beta) \in W, \\ \mu(f_{\beta}) - 1 & \text{if } f(\beta) \in M, \end{cases}$$

when $\alpha = \beta + 1$ is a successor ordinal, and

$$\mu(f) = \liminf_{\beta \to \alpha} \mu(f_\beta)$$

if α is a limit ordinal. We say that Γ is μ -admissible under \mathcal{T} if $\mu(f) \geq 0$ for every regular string f in Γ .

The following result will be proved later.

Theorem 2.1. If Γ is \mathcal{T} -espousable, then it is μ -admissible under \mathcal{T} .

Moreover, we conjecture that the following result is true.

Conjecture 2.2. If the set $K^{-1}\langle x \rangle$ of men knowing the woman x is countable for every $x \in W$ and the matroid T is rank-countable, then the society Γ is T-espousable if and only if it is μ -admissible under T.

To present some motivation for our definition of μ -admissibility, we show in the following example that a certain natural strengthening of the notion of μ admissibility leads to a condition that is not necessary for Γ to be \mathcal{T} -espousable. We say that a string f in Γ is *weakly regular* if the set $\operatorname{rge}_M f_\alpha$ is independent in $\mathcal{T} \cdot \Delta f_\alpha$ for every $\alpha \leq \operatorname{dom} f$. We will show that the condition that $\mu(f) \geq 0$ for every weakly regular string f in Γ is not necessary for Γ to be \mathcal{T} -espousable.

Example 2.3. Let G be the graph from Figure 2.1, and let

$$E = \left\{ e_i^j : i = 1, 2, \dots, \quad j = 1, 2, 3, 4 \right\}$$

be the set of edges of G. Let \mathfrak{M} be the cycle matroid of G, that is, a matroid on E such that $A \in \mathfrak{M}$ if and only if A contains no cycle of G.

e_1^1	e_2^1	e_3^1	e_4^1	····
e_{1}^{2}	e_{2}^{2}	e_{3}^{2}	e_4^2	e_5^2
e_1^3	e_2^3	e_3^3	e_4^3	····
e_1^4	e_2^4	e_3^4	e_{4}^{4}	

Fig. 2.1. The graph G.

Assume that $M = E \times \{1, 2\}, W = E$,

$$K = \{ ((a, b), a) : a \in E, b \in \{1, 2\} \},\$$

and

$$\mathfrak{T} = \left\{ A \times \{1\} \cup B \times \{2\} : A, B \in \mathfrak{M} \right\}.$$

We claim that if Γ and \mathfrak{T} are as in Example 2.3, then Γ is \mathfrak{T} -espousable but there is a weekly regular string f in Γ with $\mu(f) < 0$. Indeed, let

$$E_1 = \left\{ e_i^3 : i = 1, 2, \ldots \right\} \cup \left\{ e_{2i}^2 : i = 1, 2, \ldots \right\} \cup \left\{ e_{2i-1}^1 : i = 1, 2, \ldots \right\},\$$

and

$$E_2 = \left\{ e_i^4 : i = 1, 2, \ldots \right\} \cup \left\{ e_{2i-1}^2 : i = 1, 2, \ldots \right\} \cup \left\{ e_{2i}^1 : i = 1, 2, \ldots \right\}.$$

Then

$$F = \{((a, b), a) \in M \times W : (a, b) \in E_1 \times \{1\} \cup E_2 \times \{2\}\}$$
8

is a \mathcal{T} -espousal of Γ , so Γ is \mathcal{T} -espousable.

Consider the following $(\omega + 1)$ -string f in Γ . Let the sequence $f(0), f(1), \ldots$ be equal to

$$e_{1}^{1}, e_{1}^{2}, (e_{1}^{1}, 1), (e_{1}^{1}, 2), e_{1}^{3}, e_{1}^{4}, (e_{1}^{3}, 1), (e_{1}^{3}, 2), e_{2}^{1}, e_{2}^{2}, (e_{2}^{1}, 1), (e_{2}^{1}, 2), e_{2}^{3}, e_{2}^{3}, (e_{2}^{3}, 1), (e_{2}^{3}, 2), e_{3}^{1}, e_{3}^{2}, (e_{3}^{1}, 1), (e_{3}^{1}, 2), \dots$$

and let $f(\omega) = (e_1^2, 1)$. Note that the string f is weakly regular (but not regular) and that $\mu(f) = -1$.

3. Necessity of μ -admissibility

In this section we will prove Theorem 2.1. It is well known that the following lemmas hold (see Oxley [10]).

Lemma 3.1. If \mathcal{M} is a matroid, the set I is independent in \mathcal{M} , the set P is spanning in \mathcal{M} , and $a \in I \setminus P$, then there is $b \in P \setminus I$ such that $(I \setminus \{a\}) \cup \{b\} \in \mathcal{M}$.

Lemma 3.2. If \mathcal{M} is a matroid on X, the set A is a subset of X, and the set B is spanning in \mathcal{M} , then $A \cap B$ is spanning in $\mathcal{M} \cdot A$.

Let f, g be strings in Γ . We say that g is a *men replacement* of f if $\operatorname{dom}_M f = \operatorname{dom}_M g$, $\operatorname{dom}_W f = \operatorname{dom}_W g$, and $f(\alpha) = g(\alpha)$ for every $\alpha \in \operatorname{dom}_W f$. Note that if g is a men replacement of f, then $\mu(f) = \mu(g)$. We will need the following lemma.

Lemma 3.3. Let α , λ be ordinals with $\alpha < \lambda$, and let f and g be λ -strings in Γ such that g is a men replacement of f and

$$f(\delta) = g(\delta)$$
 whenever $\alpha \leq \delta < \lambda$.

If f is regular at every δ with $\alpha \leq \delta \leq \lambda$ and g is regular at α , then g is regular at every δ with $\alpha \leq \delta \leq \lambda$.

Proof. Let δ be such that $\alpha < \delta \leq \lambda$. We will show that g is regular at δ , that is, that $\operatorname{rge}_M g_{\delta} \in \mathfrak{T} \cdot \Delta^{\delta} g$. Let $X = \Delta^{\delta} f = \Delta^{\delta} g$, $\mathfrak{M} = \mathfrak{T} \cdot X$, $Y = \Delta^{\alpha} f = \Delta^{\alpha} g$, $B = \operatorname{rge}_M f_{\alpha}$, $C = \operatorname{rge}_M g_{\alpha}$, and $D = \operatorname{rge}_M f_{[\alpha,\delta)} = \operatorname{rge}_M g_{[\alpha,\delta)}$. We have

$$B \cup D = \operatorname{rge}_M f_\delta \in \mathcal{M}$$

since f is regular at δ , implying that $D \in \mathcal{M}$. Since $D \cap Y = \emptyset$, it follows that $D \in \mathcal{M} - Y$. Since g is regular at α , we have $C \in \mathcal{M} \cdot Y$, implying that

$$C \cup D = \operatorname{rge}_M g_\delta \in \mathcal{M} = \mathcal{T} \cdot \Delta^\delta g.$$

Therefore g is regular at δ and the proof is complete.

The following lemma will provide the main step in the proof of Theorem 2.1.

Lemma 3.4. If E is a \mathcal{T} -espousal of Γ and f is a regular string in Γ , then there is a saturated string g in Γ with dom_M $g \subseteq \text{dom } E$ that is a men replacement of f.

Proof. Let $\lambda = \text{dom } f$. We will show by transfinite induction on α that, for each $\alpha \leq \lambda$, there is a saturated string g^{α} in Γ such that

(i) g^{α} is a men replacement of f,

(ii) g^{α} is regular at every δ with $\alpha \leq \delta \leq \lambda$,

(iii) dom_M $g^{\alpha}_{\alpha} \subseteq$ dom E (where $g^{\alpha}_{\alpha} = (g^{\alpha})_{\alpha}$),

(iv) $g^{\alpha}(\delta) = f(\delta)$ for every δ with $\alpha \leq \delta < \lambda$, and

(v) $g^{\alpha}(\delta) = g^{\gamma}(\delta)$ whenever $\delta < \gamma < \alpha$.

Taking $g = g^{\lambda}$ will then complete the proof.

Note that to prove that g^{α} satisfies (i)–(v) it is enough to prove that g^{α} satisfies (i), (iii)–(v) and

(ii') g^{α} is regular at α ,

since (ii) is implied by the regularity of f, conditions (i), (ii') and (iv), and Lemma 3.3.

If $\alpha = 0$, then $g^0 = f$ obviously satisfies conditions (i)–(v). Assume that $\alpha = \beta + 1 \leq \lambda$ is a successor ordinal. If $g^{\beta}(\beta) \in W$ or $g^{\beta}(\beta) \in \text{dom } E$, then it follows from the inductive hypothesis that if we take $g^{\alpha} = g^{\beta}$, then conditions (i)–(v) will be satisfied, so we can assume that $g^{\beta}(\beta) \in M \setminus \text{dom } E$. Let $A = \Delta^{\alpha} g^{\beta}$. By condition (ii) of the inductive hypothesis, the string g^{β} is regular at α implying that the set $I = \text{rge}_M g^{\beta}_{\alpha}$ is independent in $\mathfrak{T} \cdot A$. Since dom E is spanning in \mathfrak{T} , it

follows from Lemma 3.2 that $P = \operatorname{dom} E \cap A$ is spanning in $\mathfrak{T} \cdot A$. Therefore, by Lemma 3.1, there is

$$a \in P \setminus I = (\operatorname{dom} E \setminus \operatorname{rge}_M g^\beta) \cap A$$

such that $(I \setminus \{g^{\beta}(\beta)\}) \cup \{a\}$ is independent in $\mathfrak{T} \cdot A$. Let g^{α} be defined by

$$g^{\alpha}(\gamma) = \begin{cases} a & \text{if } \gamma = \beta, \\ g^{\beta}(\gamma) & \text{otherwise,} \end{cases}$$

for every $\gamma < \lambda$. It is clear that g^{α} is a saturated string in Γ satisfying conditions (i) and (iii)–(v). Moreover, by the choice of a, the set $\operatorname{rge}_M g^{\alpha}_{\alpha} = (I \setminus \{g^{\beta}(\beta)\}) \cup \{a\}$ is independent in $\mathcal{T} \cdot A$ where $A = \Delta^{\alpha} g^{\beta} = \Delta^{\alpha} g^{\alpha}$ implying that the string g^{α} is regular at α . Therefore, g^{α} satisfies condition (ii').

Now assume that α is a limit ordinal. Then for every $\gamma < \alpha$ we have $\gamma + 1 < \alpha$. Let g^{α} be defined by

$$g^{\alpha}(\gamma) = \begin{cases} g^{\gamma+1}(\gamma) & \text{if } \gamma < \alpha, \\ f(\gamma) & \text{otherwise} \end{cases}$$

It follows from (v) that $g^{\alpha}(\gamma) = g^{\beta}(\gamma)$ for every β with $\gamma < \beta < \alpha$ and that g^{α} is a string in Γ . It is clear that the string g^{α} is saturated and that conditions (i) and (iii)—(v) are satisfied. It remains to establish (ii'), that is, that $\operatorname{rge}_M g^{\alpha}_{\alpha}$ is independent in $\mathcal{T} \cdot \Delta^{\alpha} g^{\alpha}$.

To show that $\operatorname{rge}_M g^{\alpha}_{\alpha}$ is independent in $\mathfrak{T} \cdot \Delta^{\alpha} g^{\alpha}$ it suffices to show that any finite subset $A \subseteq \operatorname{rge}_M g^{\alpha}_{\alpha}$ is independent in $\mathfrak{T} \cdot \Delta^{\alpha} g^{\alpha}$. Let $A \subseteq \operatorname{rge}_M g^{\alpha}_{\alpha}$ be finite. Then there is $\beta < \alpha$ such that

$$A \subseteq \operatorname{rge}_M g_\beta^\alpha = \operatorname{rge}_M g_\beta^\beta \subseteq \operatorname{rge}_M g_\alpha^\beta.$$

Since g^{β} is regular at α , the set $\operatorname{rge}_{M} g^{\beta}_{\alpha}$ is independent in $\mathfrak{T} \cdot \Delta^{\alpha} g^{\beta} = \mathfrak{T} \cdot \Delta^{\alpha} g^{\alpha}$. Thus A is independent in $\mathfrak{T} \cdot \Delta^{\alpha} g^{\alpha}$ and so the proof is complete.

The following lemma was proved in [15].

Lemma 3.5. If the society Γ is espousable, then $\mu(g) \geq 0$ for every saturated string g in Γ .

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let E be a \mathfrak{T} -espousal of Γ and let Γ' be the society $\Gamma' = (\operatorname{dom} E, W, K')$ with $K' = K \cap (\operatorname{dom} E \times W)$. Let f be a regular string in Γ . We need to show that $\mu(f) \geq 0$. By Lemma 3.4, there is a saturated string g in Γ with $\operatorname{dom}_M g \subseteq \operatorname{dom} E$ that is a men replacement of f. Then $\mu(g) = \mu(f)$ and g is a Γ' -saturated string in Γ' . Since E is an espousal of Γ' , it follows from Lemma 3.5 that $\mu(g) \geq 0$. Therefore $\mu(f) \geq 0$ and so the proof is complete. \Box

12

References

- 1. AHARONI, R., On the equivalence of two conditions for the existence of transversals, J. Combin. Theory Ser. A 34 (1983), 202–214.
- BRUALDI, R. A., On families of finite independence structures, Proc. London Math. Soc. 22 (1971), 265–293.
- DAMERELL, R. M. and MILNER E. C., Necessary and sufficient conditions for transversals of countable set systems, J. Combin. Theory Ser. A 17 (1974), 350–374.
- 4. EDMONDS, J., Lehman's switching game and a theorem of Tutte and Nash-Williams, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 73–77.
- 5. EDMONDS, J. and FULKERSON, D. R., Transversals and matroid partition, J. Res. Nat. Bur. Standards 69B (1965), 147–153.
- NASH-WILLIAMS, C. ST. J. A., Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
- 7. NASH-WILLIAMS, C. ST. J. A., Another criterion for marriage in denumerable societies, Annals of Discrete Mathematics 3 (1978), 165–179.
- 8. NASH-WILLIAMS, C. ST. J. A., Marriage in infinite societies in which each woman knows countably many men, in *Proceedings, Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing* (1979), 103–115..
- 9. OXLEY J. G., On a packing problem for infinite graphs and independence spaces, J. Comb. Theory Ser. B 26 (1979), 123–130.
- 10. OXLEY J. G., Infinite matroids, in *Matroids applications* (ed. N. White) 73–90, Cambridge University Press, Cambridge (1992)..
- 11. PODEWSKI, K. P. and STEFFENS, K. S., Injective choice functions for countable families, J. Combin. Theory Ser. B 21 (1976), 40–46.
- 12. TUTTE W. T., On the problem of decomposing a graph into *n* connected factors, J. London Math. Soc. **36** (1961), 221–230.
- 13. WOJCIECHOWSKI, J., A necessary condition for the existence of disjoint bases of a family of infinite matroids, *Congressus Numerantium* **105** (1994), 97–115.
- 14. WOJCIECHOWSKI, J., Disjoint bases for a countable family of rank-finite matroids, *Proc. London Math. Soc. (3)* **71** (1995), 501–523.
- 15. WOJCIECHOWSKI, J., A criterion for the existence of transversals of set systems, J. London Math. Soc., to appear.

13