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Abstract. Let M = (Mr)r∈R be a system of matroids on a set S. For every transfinite sequence
f of distinct elements of S, we define a number η(f). In [12] we proved that the condition that
η(f) ≥ 0 for every possible choice of f is necessary for M to have a system of mutually disjoint
bases. Further, we showed that this condition is sufficient if R is countable and Mr is a rank-finite
transversal matroid for every r ∈ R. In this paper, we prove that our condition is also sufficient
in the much more general case of countable systems of arbitrary rank-finite matroids.
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1. Introduction.

Let S be a set and let M be a family of subsets of S. We say that M has finite character if

a set A belongs to M if and only if every finite subset I of A belongs to M . We say that

M is a matroid on S if M is non-empty and satisfies the following conditions:

(1.1) If A ∈ M and B ⊆ A, then B ∈ M .

(1.2) If I, J ∈ M are finite and |I| = |J |+1, then there is an element y ∈ I rJ such that

J ∪ {y} ∈ M .

(1.3) M has finite character.

Obviously, if M is a matroid on S and S ⊆ S′, then M is a matroid on S′. A matroid

is finite if it is a finite family of sets or, equivalently, if it is a matroid on a finite set. A

maximal element of M is called a base of M , and the cardinality ρ(M) of any base of M

is called the rank of M . The matroid M is said to be rank-finite if M has finite rank, and

to be rank-countable if it has countable rank (ρ(M) ≤ ℵ0).

Let R and S be disjoint sets and, for each r ∈ R, let Mr be a matroid on the

set S. The system M = (Mr)r∈R will be called a system of matroids on S. M will be said

to be countable if R is countable (|R| ≤ ℵ0), and to be finite if R is finite. The system

B = (Br)r∈R of subsets of S will be called a system of disjoint bases for M if Br is a base

of Mr, r ∈ R, and Br ∩Br′ = ∅ for every r, r′ ∈ R such that r 6= r′.

If M is a matroid on the set S and A ⊆ S, then let M |A be the restriction of M

to A, i.e. let I ∈ M |A iff I ⊆ A and I ∈ M . Further, let M �A be the contraction of M

to A, i.e. let I ∈ M �A iff I ⊆ A and I ∪ J ∈ M for every J ∈ M |(S r A).

The problem of finding a necessary and sufficient condition for a system of matroids

to have a system of disjoint bases (known as the packing problem) has a long history. The

first result, which motivated further development in this area, was a characterization of

finite graphs having k edge-disjoint spanning trees proved independently by Tutte [10]

and Nash-Williams [6]. Edmonds [3] generalized this result and characterized all finite
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matroids having k disjoint bases. Edmonds and Fulkerson [4] proved the following basic

packing theorem for finite systems of finite matroids.

Theorem 1.1. If M is a finite system of finite matroids, then M has a system of disjoint

bases iff for every A ⊆ S we have

|A| ≥
∑
r∈R

ρ(Mr�A).

Brualdi [2] used Rado’s selection principle to generalize Theorem 1.1. He proved

the following theorem.

Theorem 1.2. If M is a finite system of rank-finite matroids or an arbitrary system of

finite matroids, then M has a system of disjoint bases iff

(1.4) for every finite subset A of S we have

|A| ≥
∑
r∈R

ρ(Mr�A).

Unfortunately, condition (1.4) is not sufficient for the existence of a system of dis-

joint bases of M when M is infinite and includes an infinite matroid, even when all the

matroids in M have rank at most one.

Example 1.3. Let R = {i ∈ Z : i ≥ 1} ∪ {∞}, S = {i ∈ Z : i ≥ 0}, and let M = (Mr)r∈R

be the system of matroids on S such that

Mr = {{i} : i < r} ∪ {∅},

for every r ∈ R.

In the above example, M is countable, contains matroids of rank one, and only one
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matroid in M is infinite. Clearly condition (1.4) is satisfied, but there is no system of

disjoint bases for M.

Oxley [8] formulated a sufficient (but not necessary) condition for a system of ma-

troids to have a system of disjoint bases.

In [12], we formulated a condition which is a generalization of condition (1.4) and is

necessary for any system of matroids to have a system of disjoint bases (see Theorem 1.4).

Our condition is an adaptation of the necessary and sufficient condition for a countable

family of sets to have a transversal that was proved by Nash-Williams [7].

Given a family A = (Ar)r∈R of nonempty subsets of S, we can form the correspond-

ing family of matroids MA = (Mr)r∈R on S by taking

Mr = {{a} : a ∈ Ar} ∪ {∅},

for every r ∈ R. Since any transversal of A corresponds to a system of disjoint bases of

MA, the theorem of Nash-Williams [7] can be interpreted as a result about the existence

of a system of disjoint bases for a countable system of matroids of rank at most one (see

Theorem 1.7).

Before we can formulate our condition, we need to introduce some more terminology.

Let Z∗ = Z∪ {∞,−∞} be the set of quasi-integers. The arithmetic and inequalities on Z∗

follow the obvious rules with the additional rule that ∞−∞ = ∞ (see [7] for details). If

A is a set, then the size ‖A‖ of A is the cardinality |A| if A is finite, and ‖A‖ = ∞ if A is

infinite.

Assume that ordinals are defined in such a way that an ordinal α is the set of all

ordinals less than α. A transfinite sequence is a function with its domain being an ordinal.

Let us assume now that M = (Mr)r∈R is a fixed system of matroids on S. If r ∈ R,

A1, A2 ∈ Mr, A1 ⊆ A2, B1 is a base of Mr�A1, and B2 is a base of Mr�A2 containing B1,

then let

γr(A1, A2) = ‖B2 r B1‖.
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The function γr is well-defined, i.e. the value of γr(A1, A2) does not depend on the choice

of B1 and B2 (see [12]).

Suppose that r ∈ R and that A = (Aα)α<λ, B = (Bα)α<λ are transfinite sequences

of subsets of S such that

(1.5) Aδ ⊆ Aθ and Bδ ⊆ Bθ, for δ ≤ θ < λ,

(1.6) Bδ is a base of Mr�Aδ, for δ < λ,

and suppose that B is a base of Mr�(
⋃

α<λ Aα) such that

⋃
α<λ

Bα ⊆ B.

Then we say that the pair (B, B) is a proper Mr-choice of bases for A.

If A = (Aα)α<λ is a transfinite sequence of subsets of S and λ is a limit ordinal,

then let

Γr(A) = min
{∥∥∥∥B r

⋃
α<λ

Bα

∥∥∥∥ : ((Bα)α<λ, B) is a proper Mr-choice of bases for A

}
.

By a queue we mean a countable injective transfinite sequence, i.e. an injective

transfinite sequence whose domain is a countable ordinal. If f is a queue, then dom f is

the domain of f and rge f is the range of f . If dom f = λ and α ≤ λ, then fα will denote

the restriction of f to α. A queue in S is a queue whose range is a subset of S, and a

λ-queue is a queue with domain λ.

With a λ-queue f in S we associate a quasi-integer η(f), called the M-margin of f .

Let η(f) = 0 if λ = 0. Suppose now that λ > 0 and that q(f ′) has been defined for every

queue f ′ in S such that dom f ′ < λ. If λ = θ + 1 is a successor ordinal, then let

η(f) = η(fθ) + 1−
∑
r∈R

γr(rge fθ, rge f).

If λ is a limit ordinal, then let

η(f) = lim inf
θ→λ

η(fθ)−
∑
r∈R

Γr((rge fα)α<λ).
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We say that the system M is good if η(f) ≥ 0 for every queue f in S.

Note that condition (1.4) is equivalent to saying that η(f) ≥ 0 for every finite queue

f in S. Also note that in Example 1.3, we have η(f) = −1, where f is the ω-queue given

by f(i) = i. In general, the following theorem was proved in [12].

Theorem 1.4. If M has a system of disjoint bases, then M is good.

The proof of Theorem 1.4 is relatively easy. A much more interesting problem is

when the converse of it holds. It is not hard to see that the exact converse of Theorem 1.4

is false. Consider the following example of an uncountable family of matroids.

Example 1.5. Let R = ω1 be the first uncountable ordinal, S = ω be the first infinite

ordinal, and let M = (Mr)r∈R be the system of matroids on S such that

Mr = {{i} : i ∈ S} ∪ {∅},

for every r ∈ R.

It can be easily seen that in the above example η(f) is equal to ‖rge f‖ for any finite

queue, hence η(f) = ∞ for any infinite queue. Therefore M is good but, obviously, there

is no system of disjoint bases for M.

The following partial converse of Theorem 1.4 is a corollary of Theorem 1.2 obtained

by using the equivalence between condition (1.4) and the condition that η(f) ≥ 0 for every

finite queue f in S.

Corollary 1.6. Let M be a finite system of rank-finite matroids or an arbitrary system

of finite matroids. If M is good, then M has a system of disjoint bases.

The first partial converse of Theorem 1.4 not restricted by the assumption that

either M or all its components are finite is the following theorem proved implicitly by
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Nash-Williams [7].

Theorem 1.7. If M is a good countable system of matroids of rank at most one, then M

has a system of disjoint bases.

Using Theorem 1.7, we proved in [12] the following theorem.

Theorem 1.8. If M is a good countable system of rank-finite transversal matroids on S,

then M has a system of disjoint bases.

Since any matroid of rank at most one is a transversal matroid, Theorem 1.8 is

a generalization of Theorem 1.7. In general, the assumption that a given matroid is a

transversal matroid is quite restrictive. In this paper we show that it can be removed. We

shall prove the following theorem.

Theorem 1.9. If M is a good countable system of rank-finite matroids on S, then M has

a system of disjoint bases.

Our proof of Theorem 1.9 (broken down into several lemmas and completed in

section 6) is an adaptation of the technique used by Nash-Williams [7]. We strongly

believe that a further refinement of this method is possible, so that it can be used to prove

the following general conjecture, formulated first in [12].

Conjecture 1.10. If M is a good countable system of rank-countable matroids on S, then

M has a system of disjoint bases.

Furthermore, settling Conjecture 1.10 should allow us to characterize countable

graphs with k edge-disjoint spanning trees, and to prove a result about detachments of

countable graphs. (See [12] for details.)
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2. Preliminaries.

From now on, we assume that all the matroids considered are rank-finite. Let

{S1, S2, . . . , Sk} be a finite partition of the set S. If Mi is a matroid on Si, i = 1, 2, . . . , k,

then the direct sum M1 ⊕M2 ⊕ . . .⊕Mk of M1, M2, . . . , Mk is the family M0 of subsets

of S defined by

M0 =
{ k⋃

i=1

Ii : Ii ∈ Mi, i = 1, 2, . . . , k

}
.

It is easy to verify that M0 is a matroid on S, and that B ⊆ S is a base of M0 iff

B =
k⋃

i=1

Bi,

for some bases B1, B2, . . . Bk of M1, M2, . . . , Mk, respectively. Therefore

ρ(M0) =
k∑

i=1

ρ(Mi).

If, moreover, M is a matroid on S such that M0 ⊆ M and

ρ(M) = ρ(M0) =
k∑

i=1

ρ(Mi),

then we say that (M1,M2, . . . ,Mk) is a decomposition of M .

Let M be a matroid on S. If X ⊆ S, then let

M\X = M |(S r X).

Lemma 2.1. Let X ⊆ S and B be any base of M\X. Then I ∈ M �X iff I ⊆ X and

I ∪B ∈ M .

Proof. See [1] Lemma 2.2.

Immediately from Lemma 2.1, we get the following corollary.
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Corollary 2.2. If X ⊆ S, then (M\X, M �X) is a decomposition of M .

Lemma 2.3. If X ⊆ Y ⊆ S, then

(M\X)�Y = (M �Y )\X.

Proof. Let B be a base of M\Y = (M\X)\Y . Assume that I ∈ (M\X)�Y . By Lemma 2.1,

we have I ⊆ Y and I ∪ B ∈ M\X. Thus I ⊆ Y r X and I ∪ B ∈ M . Therefore

I ∈ (M �Y )\X.

Now assume that I ∈ (M �Y )\X. Then I ∈ M �Y and I ⊆ S r X. Thus I ⊆ Y r X

and I ∪B ∈ M . Therefore I ∪B ∈ M\X, and so I ∈ (M\X)�Y .

If u ∈ S, then let M −u = M\{u} and M ∼ u = M �(S r {u}). If f is a queue in S,

then let M\f = M\rge f and M �f = M �rge f .

Let F be the set of all queues in S and let F be the subset of F such that f ∈ F if

the domain of f is a limit ordinal. Suppose ζ : F → Z∗ and that the limit limθ→λ ζ(fθ)

exists for every limit ordinal λ and every λ-queue f . Then the function ζ : F → Z∗ defined

by

ζ(f) = lim
θ→λ

ζ(fθ),

where λ = dom f , will be called the limit of ζ.

Define the M -reserve µ to be the function from F to Z such that µ(f) = ρ(M\f).

Note that if f is a λ-queue in S and θ ≤ γ ≤ λ, then µ(fθ) ≥ µ(fγ). Therefore, the limit

µ of µ exists, and

µ(f) = min{µ(fθ) : θ < dom f},

for any f ∈ F.

If f1, f2, . . . , fk are queues with mutually disjoint ranges, and if dom fi = λi, then

let f1 ∗ . . . ∗ fk be the queue g such that dom g = λ1 + . . . + λk, and

g(λ1 + . . . + λi−1 + θ) = fi(θ), i = 1, 2, . . . , k, θ < λi.
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Informally, the queue f1 ∗ . . . ∗ fk is the juxtaposition of the queues f1, f2, . . . , fk.

Let the empty queue ε be the 0-queue, and if u ∈ S, then let [u] be the 1-queue f

such that f(0) = u.

Lemma 2.4. Let u ∈ S, h be a λ-queue in S r {u}, and g = [u] ∗ h. If θ ≤ λ, h′ = hθ,

and g′ = [u] ∗ h′, then

µ(g′)− µ(g) ≥ µ(h′)− µ(h).

Proof. Let B be a base of M\g, let D be a base of M\h such that B ⊆ D, and let D′ be

a base of M\h′ such that D ⊆ D′. If u 6∈ D, then D ∪ {u} 6∈ M and so u 6∈ D′. Therefore

u 6∈ D′rD, and hence B∪ (D′rD) ⊆ S r rge g′. Since obviously B∪ (D′rD) ⊆ D′ ∈ M ,

we conclude that

B ∪ (D′ r D) ∈ M\g′.

Let B′ be a base of M\g′ such that B ∪ (D′ r D) ⊆ B′. Since B ∩ (D′ r D) = ∅, we have

D′ r D ⊆ B′ r B. Therefore

µ(g′)− µ(g) = ‖B′ r B‖ ≥ ‖D′ r D‖ = µ(h′)− µ(h),

and the proof is complete.

Lemma 2.5. Let u ∈ S, M ′ = M ∼ u, and let µ′ be the M ′-reserve. If {u} ∈ M , and f

is a queue in S r {u}, then

µ′(f) = µ(f)− 1.

Proof. Let B′ be a base of M ′\f . Then B′ ∈ M ′ and since {u} ∈ M , we conclude that

B′ ∪ {u} ∈ M , and so there is a base B of M\f such that B′ ∪ {u} ⊆ B. Clearly,

B = B′ ∪ {u} and u 6∈ B′. Therefore

µ′(f) = ‖B′‖ = ‖B‖ − 1 = µ(f)− 1,

and the proof is complete.
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Let ν be the function from F to Z such that ν(ε) = 0 and if f is a nonempty queue

in S with u = f(0), then let

ν(f) =
{

0 if {u} ∈ M r M �f ,
1 otherwise.

The function ν will be called the M -character . Note that if f is a λ-queue in S and

θ ≤ γ ≤ λ, then ν(fθ) ≤ ν(fγ). Therefore the limit ν of ν exists, and

ν(f) = max{ν(fθ) : θ < dom f},

for any f ∈ F.

Lemma 2.6. Let u ∈ S, M ′ = M ∼ u, and let µ′ be the M ′-reserve. If f is a nonempty

queue in S such that u = f(0), then

µ′(f) = µ(f) + ν(f)− 1.

Proof. Assume first that ν(f) = 1. If {u} 6∈ M , then M ′ = M and so µ′ = µ. If {u} ∈ M �f

and if B is a base of M\f , then B ∪ {u} ∈ M and so B ∈ M ′. Thus B is a base of M ′\f ,

and hence µ′(f) = µ(f).

Now assume that ν(f) = 0. Let B be a base of M\f . Since {u} 6∈ M �f , we have

B ∪ {u} 6∈ M . Let B′ be a base of M ′\f such that B′ ⊆ B. Then B′ ∈ M ′ and since

{u} ∈ M , we conclude that B′ ∪ {u} ∈ M . Therefore B′ is a proper subset of B. Clearly

‖B′‖ = ‖B‖ − 1, so µ′(f) = µ(f)− 1, and the proof is complete.

We say that an element u of S is M -essential if there is a countable set X ⊆ S such

that {u} ∈ M �X.

Lemma 2.7. Let u ∈ S, M ′′ = M − u, and let µ′′ be the M ′′-reserve. If u is not

M -essential, and f is a queue in S r {u}, then

µ′′(f) = µ(f).
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Proof. Let X = rge f ∪ {u}. We have

µ′′(f) = ρ(M ′′\f) = ρ(M\X).

Let B be a base of M\X. Since u is not M -essential and X is countable, we have

{u} 6∈ M �X.

Therefore B ∪ {u} 6∈ M and so B is a base of M\f . It follows that µ′′(f) = µ(f), and the

proof is complete.

Lemma 2.8. The set of M -essential elements in S is countable.

Proof. We shall use induction on the rank of M . If ρ(M) = 0, then the set of M -essential

elements in S is empty hence countable.

Suppose that ρ(M) > 0 and that u is an M -essential element in S. Let X be a

countable subset of S such that {u} ∈ M �X, and let M0 = M\X. Then ρ(M0) < ρ(M)

and so, by the inductive hypothesis, there are only countably many M0-essential elements.

We claim that if y ∈ S r X is M -essential, then y is also M0-essential. Indeed,

let y be an M -essential element in S r X and let Y ⊆ S be a countable set such that

{y} ∈ M �Y . Let B be a base of M0\Y = M\(X ∪ Y ) and let B′ be a base of M\Y such

that B ⊆ B′. Since {y} ∈ M �Y , we have B′ ∪ {y} ∈ M . Therefore B ∪ {y} ∈ M and so

B ∪ {y} ∈ M0 since B ∪ {y} ⊆ S r X. Thus {y} ∈ M0�Y , and the claim is proved.

From our claim it follows that there are only countably many M -essential elements

in S rX. Since X is countable, there are only countably many M -essential elements in S,

and the proof is complete.

Lemma 2.9. Let X ⊆ S and µX be the M �X-reserve. If f is a λ-queue in X, and θ ≤ λ,

then

µ(fθ)− µ(f) = µX(fθ)− µX(f).

12



Proof. Let D be a base of M\X = (M\f)\X. Let B be a base of (M �X)\f , and B′ be a

base of (M �X)\fθ such that B ⊆ B′. By Lemma 2.3, we have (M �X)\f = (M\f)�X and

(M �X)\fθ = (M\fθ)�X. By Lemma 2.1, the set B ∪D is a base of M\f and B′ ∪D is a

base of M\fθ. Therefore

µ(fθ)− µ(f) = ‖B′ r B‖ = µX(fθ)− µX(f),

and the proof is complete.

Lemma 2.10. If g is a queue in S, f is a queue in S r rge g, and µ̂ is the M\g-reserve,

then

µ(g ∗ f) = µ̂(f).

Proof. We have
µ̂(f) = ρ((M\g)\f)

= ρ(M\g ∗ f)

= µ(g ∗ f),

and the proof is complete.

13



3. Weighted matroids.

For technical reasons we need to generalize the notion of a rank-finite matroid. We define

a weighted matroid on S to be a pair N = (M,m), where M is a rank-finite matroid on S

and m is an integer such that m ≥ ρ(M). If m = ρ(M), then N will be called normal . If M

is a rank-finite matroid on S, then M will denote the normal weighted matroid (M,ρ(M)).

Let N = (M,m) be a weighted matroid on S and let X ⊆ S. Set

ζ(N,X) = m− ρ(M\X).

Note that if N is normal, then ζ(N,X) = ρ(M �X).

Let

N\X = M\X,

and

N �X = (M �X, ζ(N,X)).

Clearly, N\X is a weighted matroid on S r X, and N �X is a weighted matroid on X.

Assume now that the set R is countable and that, for each r ∈ R, Nr = (Mr,mr)

is a weighted matroid on S. The system N = (Nr)r∈R will be called a system of weighted

matroids on S. We say that N is normal if Nr is normal for every r ∈ R.

If X ⊆ S, then let N�X = (Nr�X)r∈R and N\X = (Nr\X)r∈R, and if f is a queue

in S, then let N�f = N�rge f and N\f = N\rge f .

Let µr be the Mr-reserve and µr be the limit of µr, r ∈ R. Define the N-margin

ξ(f) of f in the following way:

(3.1) ξ(f) =
∑

r∈R(ρ(Mr)−mr) if λ = 0,

(3.2) ξ(f) = ξ(fθ) + 1−
∑

r∈R(µr(fθ)− µr(f)) if λ = θ + 1,

(3.3) ξ(f) = lim infθ→λ ξ(fθ)−
∑

r∈R(µr(f)− µr(f)) if λ is a limit ordinal.

We say that N is good if ξ(f) ≥ 0 for every queue f in S.

Let M = (Mr)r∈R be the system of matroids corresponding to the system N, and

let η be the M-margin.
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Lemma 3.1. If N is normal, then

η(f) = ξ(f),

for every queue f in S.

Proof. Let λ = dom f . We shall use transfinite induction on λ. If λ = 0, then since N is

normal, we have η(f) = ξ(f) = 0.

If λ = θ + 1 for some ordinal θ, then

η(f) = η(fθ) + 1−
∑
r∈R

γr(rge fθ, rge f),

and

ξ(f) = ξ(fθ) + 1−
∑
r∈R

(µr(fθ)− µr(f)).

We claim that

γr(rge fθ, rge f) = µr(fθ)− µr(f), (3.4)

for every r ∈ R. Indeed, let r ∈ R, B1 be a base of Mr�fθ, and B2 be a base of Mr�f

containing B1. Further, let D1 be a base of Mr\fθ and D2 be a base of Mr\f such that

D2 ⊆ D1. Then B1 ∪D1 and B2 ∪D2 are bases of Mr and hence

γr(rge fθ, rge f) = ‖B2 r B1‖ = ‖D1 r D2‖ = µr(fθ)− µr(f).

Therefore our claim is proved. From (3.4) and the inductive hypothesis it follows that

η(f) = ξ(f).

Now assume that λ is a limit ordinal. Let A = (rge fα)α<λ. Then

η(f) = lim inf
θ→λ

η(fθ)−
∑
r∈R

Γr(A),

and

ξ(f) = lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µr(f)− µr(f)).
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We claim that

Γr(A) = µr(f)− µr(f), (3.5)

for every r ∈ R. Indeed, let r ∈ R, and (B, B) be a proper Mr-choice of bases for A,

where B = (Bα)α<λ. Since Mr is a rank-finite matroid, there is an ordinal δ < λ such that

Bα = Bδ for every α satisfying δ ≤ α < λ. Then Γr(A) = ‖B r Bδ‖. Let D be a base of

Mr\f and let Dδ be the base of Mr\fδ such that Dδ ⊆ D. Clearly, we have ‖Dδ‖ = µr(f).

Since B ∪D and Bδ ∪Dδ are bases of Mr, we get

Γr(A) = ‖B r Bδ‖ = ‖Dδ r D‖ = µr(f)− µr(f),

and so our claim is proved. From (3.5) and the inductive hypothesis it follows that η(f) =

ξ(f) so the proof is complete.

The following corollary follows immediately from Lemma 3.1.

Corollary 3.2. If N is normal, then N is good if and only if M is good.

The following lemmas will be needed later.

Lemma 3.3. If u ∈ S, then

ξ([u]) =
∑
r∈R

(µr([u])−mr) + 1.

Proof. Since mr − ρ(Mr) ≥ 0 and ρ(Mr)− µr([u]) ≥ 0 for every r ∈ R, we have∑
r∈R

(mr − ρ(Mr)) +
∑
r∈R

(ρ(Mr)− µr([u])) =
∑
r∈R

(mr − µr([u])).

Therefore
ξ([u]) = ξ(ε) + 1−

∑
r∈R

(µr(ε)− µr([u]))

=
∑
r∈R

(ρ(Mr)−mr) + 1−
∑
r∈R

(ρ(Mr)− µr([u]))

=
∑
r∈R

(µr([u])−mr) + 1.
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Lemma 3.4. If u ∈ S, h is a queue in S r {u}, and g = [u] ∗ h, then

ξ(g) ≤ ξ(h) + 1.

Proof. Let λ = dom h and γ = dom g. We shall use transfinite induction on λ. If λ = 0,

then γ = 1 and h = ε. Since µr(ε)− µr(g) ≥ 0 for every r ∈ R, we have

ξ(g) = ξ(ε) + 1−
∑
r∈R

(µr(ε)− µr(g)) ≤ ξ(h) + 1.

If λ = θ + 1 for some ordinal θ, then γ = δ + 1 for some ordinal δ and

gθ = [u] ∗ hδ.

By Lemma 2.4, we have

µr(gθ)− µr(g) ≥ µr(hδ)− µr(h),

for any r ∈ R. Thus, by the inductive hypothesis, we get

ξ(g) = ξ(gθ) + 1−
∑
r∈R

(µr(gθ)− µr(g))

≤ ξ(hδ) + 1 + 1−
∑
r∈R

(µr(hδ)− µr(h))

= ξ(h) + 1.

If λ is a limit ordinal, then γ = λ. We have

ξ(g) = lim inf
θ→λ

η(gθ)−
∑
r∈R

(µr(g)− µr(g)),

and

ξ(h) = lim inf
θ→λ

η(hθ)−
∑
r∈R

(µr(h)− µr(h)).
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By the inductive hypothesis, we have

lim inf
θ→λ

ξ(gθ) ≤ lim inf
θ→λ

ξ(hθ) + 1.

To conclude the proof of the lemma it suffices to show that

µr(g)− µr(g) ≥ µr(h)− µr(h), (3.6)

for every r ∈ R. But for every r ∈ R, since Mr is rank-finite, there is an ordinal θr < λ

such that

µr(h) = µr(hθr
),

and

µr(g) = µr([u] ∗ hθr ).

Therefore (3.6) follows from Lemma 2.4 and the proof is complete.

Lemma 3.5. If X ⊆ S and ξX is the N�X-margin, then

ξ(f) = ξX(f),

for any queue f in X.

Proof. For every r ∈ R, let µX
r be the Mr�X-reserve. Let λ = dom f . We shall use

transfinite induction on λ. If λ = 0, then

ξX(f) =
∑
r∈R

(ρ(Mr�X)− ζ(Nr, X))

=
∑
r∈R

(ρ(Mr�X) + ρ(Mr\X)−mr)

=
∑
r∈R

(ρ(Mr)−mr)

= ξ(f).
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If λ = θ + 1 for some ordinal θ, then by the inductive hypothesis and by Lemma 2.9, we

have
ξX(f) = ξX(fθ) + 1−

∑
r∈R

(µX
r (fθ)− µX

r (f))

= ξ(fθ) + 1−
∑
r∈R

(µr(fθ)− µr(f))

= ξ(f).

If λ is a limit ordinal, then for every r ∈ R, there is an ordinal θr < λ such that

µr(f) = µr(fθr
),

and

µX
r (f) = µX

r (fθr ).

Thus, by the inductive hypothesis and by Lemma 2.9, we have

ξX(f) = lim inf
θ→λ

ξX(fθ)−
∑
r∈R

(µX
r (f)− µX

r (f))

= lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µX
r (fθr

)− µX
r (f))

= lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µr(fθr )− µr(f))

= lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µr(f)− µr(f))

= ξ(f),

and the proof is complete.

Corollary 3.6. If N is good and g is a queue in S, then N�g is good.

Proof. Let f be any queue in rge g. Then ξ(f) ≥ 0 since N is good. Taking X = rge g in

Lemma 3.5 gives

ξX(f) = ξ(f) ≥ 0.

Therefore N�g is good.
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Lemma 3.7. If g is a queue in S such that ξ(g) = 0, and f is a queue in S r rge g, then

ξ(g ∗ f) = ξg(f),

where ξg is the N\g-margin.

Proof. Let µ̂r be the Mr\g-reserve, and let µr be the limit of µ̂r, r ∈ R. We shall use

transfinite induction on λ = dom f . If λ = 0, then

ξ(g ∗ f) = ξ(g) = 0,

and, since N\g is normal, we have

ξg(f) = 0 = ξ(g ∗ f).

If λ = θ + 1 for some ordinal θ, then by the inductive hypothesis and by Lemma 2.10, we

have
ξ(g ∗ f) = ξ(g ∗ fθ) + 1−

∑
r∈R

(µr(g ∗ fθ)− µr(g ∗ f))

= ξg(fθ) + 1−
∑
r∈R

(µ̂r(fθ)− µ̂r(f))

= ξg(f).

If λ is a limit ordinal, then by Lemma 2.10, we have

µr(g ∗ fθ) = µ̂r(fθ),

for every θ ≤ λ, so

µr(g ∗ f) = lim
θ→λ

µr(g ∗ fθ) = lim
θ→λ

µ̂r(fθ) = µr(f).

Moreover, by the inductive hypothesis, we have

lim inf
θ→λ

ξ(g ∗ fθ) = lim inf
θ→λ

ξg(fθ),
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hence if γ = dom (g ∗ f), then

ξ(g ∗ f) = lim inf
δ→γ

ξ((g ∗ f)δ)−
∑
r∈R

(µr(g ∗ f)− µr(g ∗ f))

= lim inf
θ→λ

ξ(g ∗ fθ)−
∑
r∈R

(µr(g ∗ f)− µr(g ∗ f))

= lim inf
θ→λ

ξg(fθ)−
∑
r∈R

(µr(f)− µ̂r(f))

= ξg(f),

and the proof is complete.

Corollary 3.8. If N is good and g is a queue in S such that ξ(g) = 0, then N\g is good.

Proof. Let f be a queue in S r rge g. Since N is good, we have

ξ(g ∗ f) ≥ 0,

and by Lemma 3.7, we have

ξg(f) = ξ(g ∗ f) ≥ 0.

Therefore N\g is good.
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4. The reduction procedure.

To find a system of disjoint bases for M, we might take an element a ∈ R and start

constructing a base for Ma by selecting an element u ∈ S such that {u} ∈ Ma, and

forming a new system M′ of matroids representing the rest of the work to be done. For

r = a, we need to consider the matroid Ma ∼ u since B is a base of Ma ∼ u iff B ∪ {u} is

a base of Ma. For the remaining values of r, we should consider the matroid M ′
r = Mr−u

and include the demand that a base of M ′
r is also a base of Mr. We can easily express all

these requirements using weighted matroids instead of matroids.

If N = (M,m) is a weighted matroid on S and u ∈ S, then let

N − u = (M − u, m),

and if moreover {u} ∈ M , then let

N ∼ u = (M ∼ u, m− 1).

Clearly, N − u and N ∼ u are weighted matroids on S r {u}. Note that N ∼ u =

N �(S r {u}), and that N − u = N\{u} if and only if {u} 6∈ M �{u}.

If a ∈ R and {u} ∈ Ma, then for every r ∈ R, let N ′
r = (M ′

r,m
′
r) be the weighted

matroid on S r {u} defined by

N ′
r =

{
Nr − u if r 6= a,
Na ∼ u if r = a.

(4.1)

The system (N ′
r)r∈R defined by (4.1) will be denoted by N(a, u). Note that it is possible

that N is normal and N(a, u) is not normal.

From now to the end of this section, let us assume that a ∈ R and u ∈ S are fixed

elements such that {u} ∈ Ma. Let N′ = (N ′
r)r∈R = N(a, u) and let ξ′ be the N′-margin.

For every r ∈ R, let N ′
r = (M ′

r,m
′
r), µ′r be the M ′

r-reserve, µ′r be the limit of µ′r, and νr

be the Mr-character.
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Lemma 4.1. If u is not Mr-essential for any r ∈ R r {a}, and f is a queue in S r {u},

then

ξ′(f) = ξ(f).

Proof. Let λ = dom f . If δ ≤ λ, then by Lemma 2.5, we have

µ′a(fδ) = µa(fδ)− 1, (4.2)

and by Lemma 2.7, we have

µ′r(fδ) = µr(fδ), (4.3)

for every r ∈ R r {a}. Therefore

µ′r(fθ)− µ′r(f) = µr(fθ)− µr(f), (4.4)

for any θ < λ and r ∈ R.

Now we shall use transfinite induction on λ. Assume that λ = 0. Taking δ = 0 in

the equations (4.2) and (4.3), we get

ρ(M ′
a) = ρ(Ma)− 1

and

ρ(M ′
r) = ρ(Mr),

for r ∈ R r {a}. Since m′
a = ma− 1 and m′

r = mr for every r ∈ R r {a}, we conclude that

ξ(f) =
∑
r∈R

(ρ(Mr)−mr) =
∑
r∈R

(ρ(M ′
r)−m′

r) = ξ′(f).

If λ = θ+1 for some ordinal θ, then using the inductive hypothesis and the equation

(4.4) we get
ξ′(f) = ξ′(fθ) + 1−

∑
r∈R

(µ′r(fθ)− µ′r(f))

= ξ(fθ) + 1−
∑
r∈R

(µr(fθ)− µr(f))

= ξ(f)

.
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Assume now that λ is a limit ordinal. After taking limits of both sides of the

equation (4.4), as θ → λ, we get

µ′r(f)− µ′r(f) = µr(f)− µr(f), (4.5)

for any r ∈ R. By the inductive hypothesis, we have

lim inf
θ→λ

ξ(fθ) = lim inf
θ→λ

ξ′(fθ).

Therefore, using the equation (4.5), we get

ξ′(f) = lim inf
θ→λ

ξ′(fθ)−
∑
r∈R

(µ′r(f)− µ′r(f))

= lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µr(f)− µr(f))

= ξ(f).

Thus the proof is complete.

Lemma 4.2. Suppose that N is good and that the set {x ∈ S : {x} ∈ Ma} is uncountable.

Then there is y ∈ S such that {y} ∈ Ma and N(a, y) is good.

Proof. Since R is countable and, by Lemma 2.8, the set of Mr-essential elements is count-

able for every r ∈ R, we conclude that there is y ∈ S such that {y} ∈ Ma and y is not

Mr-essential for any r ∈ R r {a}.

Since N is good, we have ξ(f) ≥ 0 for every queue f in S. Therefore, if u = y,

then by Lemma 4.1, we have ξ′(f) ≥ 0 for any queue f in S r {u} and so N′ = N(a, y) is

good.

Lemma 4.3. If h is a queue in S r {u} and g = [u] ∗ h, then

ξ′(g) = ξ(g) + νa(g).
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Proof. Let λ = dom g. If 0 < δ ≤ λ, then u ∈ rge gδ and so

µ′r(gδ) = µr(gδ), (4.6)

for every r ∈ R r {a}. Moreover, by Lemma 2.6, we have

µ′a(gδ) = µa(gδ) + νa(gδ)− 1. (4.7)

We shall now use transfinite induction to complete the proof. If λ = 1, then h = ε and

g = [u]. By Lemma 3.3, we have

ξ(g) =
∑
r∈R

(µr(g)−mr) + 1, (4.8)

and

ξ′(g) =
∑
r∈R

(µ′r(g)−m′
r) + 1. (4.9)

Since m′
r = mr for r ∈ R r {a}, and m′

a = ma − 1, using the equations (4.6) and (4.7)

with δ = λ, and the equations (4.8) and (4.9), we get

ξ′(g) =
∑
r∈R

(µr(g)−mr) + νa(g) + 1 = ξ(g) + νa(g).

If λ = θ + 1 for some ordinal θ, then by the inductive hypothesis we have

ξ′(g) = ξ′(gθ) + 1−
∑
r∈R

(µ′r(gθ)− µ′r(g))

= ξ(gθ) + 1 + νa(gθ)−
∑
r∈R

(µ′r(gθ)− µ′r(g)).

Using the equations (4.6) and (4.7) with δ = λ and with δ = θ, we get

ξ′(g) = ξ(gθ) + 1 + νa(g)−
∑
r∈R

(µr(gθ)− µr(g)) = ξ(g) + νa(g).

If λ is a limit ordinal, then by the inductive hypothesis we have

ξ′(gθ) = ξ(gθ) + νa(gθ),
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for every θ < λ. Therefore

lim inf
θ→λ

ξ′(gθ) = lim inf
θ→λ

ξ(gθ) + νa(g). (4.10)

Moreover, taking limits of both sides of (4.6) and (4.7), as δ → λ, we get

µ′r(g) = µr(g), (4.11)

for r ∈ R r {a}, and

µ′a(g) = µa(g) + νa(g)− 1. (4.12)

Now using the equations (4.6) and (4.7) with δ = λ, and the equations (4.10), (4.11) and

(4.12), we conclude that

ξ′(g) = lim inf
θ→λ

ξ′(gθ)−
∑
r∈R

(µ′r(g)− µ′r(g))

= lim inf
θ→λ

ξ(gθ) + νa(g)−
∑
r∈R

(µ′r(g)− µ′r(g))

= lim inf
θ→λ

ξ(gθ) + νa(g)−
∑
r∈R

(µr(g)− µr(g))

= ξ(g) + νa(g),

and so the proof is complete.

Lemma 4.4. If N is good and N′ is not good, then there is a queue g in S such that

u ∈ rge g, µa(g) > 0, and ξ(g) = 0.

Proof. Since N′ is not good, there is a queue h in S r {u} such that ξ′(h) < 0. Let

g = [u] ∗ h. By Lemma 3.4, we have ξ′(g) ≤ ξ′(h) + 1, and by Lemma 4.3, we have

ξ′(g) = ξ(g) + νa(g). Therefore

ξ(g) + νa(g) ≤ 0.

Since ξ(g) ≥ 0 and νa(g) ≥ 0, we must have ξ(g) = 0 and νa(g) = 0.

To conclude the proof it remains to show that µa(g) > 0. Suppose that µa(g) =

ρ(Ma\g) = 0. Then Ma = Ma�g. Since νa(g) = 0 and g 6= ε, we have {u} ∈ Ma and
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{u} 6∈ Ma�g in contradiction with the equality of Ma and Ma�g. Therefore the proof is

complete.

5. Piecewise good systems.

In order to prove Theorem 1.9, we need to generalize the notion of a good system of

weighted matroids.

Let {S1, S2, . . . , Sk} be a partition of S. If Ni = (Mi,mi) is a weighted matroid

on Si, i = 1, 2, . . . , k, such that

M1 ⊕M2 ⊕ . . .⊕Mk ⊆ M,

and m = m1 + m2 + . . . + mk, then we will say that the sequence (N1, N2, . . . , Nk) is

a decomposition of N . Note that it is possible that (N1, N2, . . . , Nk) is a decomposition

of N but (M1,M2, . . . ,Mk) is not a decomposition of M since M may have a larger rank

than M1 ⊕ M2 ⊕ . . . ⊕ Mk does. However, if Ni is normal for every i, 1 ≤ i ≤ k, then

(N1, N2, . . . , Nk) is a decomposition of N if and only if (M1,M2, . . . ,Mk) is a decomposition

of M .

Let Ni = (N (i)
r )r∈R be a system of weighted matroids on Si, i = 1, 2, . . . , k, such

that (N (1)
r , N

(2)
r , . . . , N

(k)
r ) is a decomposition of Nr for every r ∈ R. Then we will say

that (N1,N2, . . . ,Nk) is a decomposition of N, and we will write

N D N1 ⊕N2 ⊕ . . .⊕Nk.

Assume that N
(i)
r = (M (i)

r ,m
(i)
r ), for every i = 1, 2, . . . , k and r ∈ R.

Lemma 5.1. If N D N1 ⊕ N2 ⊕ . . .⊕ Nk, a ∈ R, and {u} ∈ M
(j)
a for some j, 1 ≤ j ≤ k,

then

N(a, u) D N1 ⊕ . . .⊕Nj−1 ⊕Nj(a, u)⊕Nj+1 ⊕ . . .⊕Nk.

27



Proof. Because of symmetry, we can assume that j = 1. Let N(a, u) = (N ′
r)r∈R and

N1(a, u) = (N ′′
r )r∈R, where N ′

r = (M ′
r,m

′
r) and N ′′

r = (M ′′
r ,m′′

r ), r ∈ R. Clearly, we have

m′
r = m′′

r +
k∑

i=2

m(i)
r ,

for every r ∈ R. To complete the proof, we have to show that

M ′′
r ⊕M (2)

r ⊕M (3)
r ⊕ . . .⊕M (k)

r ⊆ M ′
r, (5.1)

for every r ∈ R.

Assume first that r ∈ R r {a}. Then M ′
r = mr − u and M ′′

r = M
(1)
r − u. Let

I1 ∈ M ′′
r ⊆ M

(1)
r and let Ii ∈ M

(i)
r for i = 2, 3, . . . , k. Then

I =
k⋃

i=1

Ii ∈
k⊕

i=1

M (i)
r ⊆ Mr.

Since I1 ∈ M
(1)
r − u, we have u 6∈ I1. Clearly u 6∈ Ii for i = 2, 3, . . . , k, hence u 6∈ I.

Therefore I ∈ Mr − u = M ′
r, and so the condition (5.1) is satisfied for every r ∈ R r {a}.

It remains to show that (5.1) holds for r = a. We have M ′
a = Ma ∼ u and

M ′′
a = M

(1)
a ∼ u. Let I ′1 ∈ M ′′

a and let Ii ∈ M
(i)
a for i = 2, 3, . . . , k. Then

I1 = I ′1 ∪ {u} ∈ M (1)
a ,

and so

I =
k⋃

i=1

Ii ∈
k⊕

i=1

M (i)
a ⊆ Ma.

Let

I ′ = I ′1 ∪
k⋃

i=2

Ii.

Clearly u 6∈ I ′. Since I ′ ∪ {u} = I ∈ Ma, we conclude that I ′ ∈ Ma ∼ u = M ′
a. Therefore

(5.1) holds for r = a and so the proof is complete.

Corollary 5.2. If a ∈ R, X ⊆ S, and u ∈ S r X is such that {u} ∈ Ma\X, then

N(a, u) D (N\X)(a, u)⊕ (N�X).
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Proof. It follows from Corollary 2.2 that

N D (N\X)⊕ (N�X).

Thus, using Lemma 5.1, we get the desired result.

We say that N is piecewise good if N can be decomposed into finitely many good

weighted matroids, i.e. if there is a finite partition {S1, S2, . . . , Sk} of S and good systems

of weighted matroids Ni on Si, i = 1, 2, . . . , k, such that (N1,N2, . . . ,Nk) is a decomposition

of N.

Recall that R and S are fixed sets with R being countable, Nr = (Mr,mr) is a

weighted matroid on S for each r ∈ R, and N = (Nr)r∈R. Let a ∈ R be a fixed element

such that ρ(Ma) > 0. We shall apply now the reduction procedure described in section 4.

Assuming that N is piecewise good, our aim is to show that we can select an element

u ∈ S such that {u} ∈ Ma and the system N(a, u) is also piecewise good. Repeating

such selection ρ(Mr) times for every r ∈ R, we will get a set Br ⊆ S consisting of ρ(Mr)

elements which will be a base of Mr. Moreover, since any selected element is eliminated

from consideration during further selections, the bases obtained will be disjoint.

We will need the following lemmas.

Lemma 5.3. If N is piecewise good, then N is normal.

Proof. Let (N1,N2, . . . ,Nk) be a decomposition of N into good weighted matroids such

that Ni = (N (i)
r )r∈R, i = 0, 1, . . . , k, and N

(i)
r = (M (i)

r ,m
(i)
r ), r ∈ R.

Since for each i = 1, 2, . . . , k, the system Ni is good, the value of the Ni-margin on

the empty queue is nonnegative and hence

ρ(M (i)
r ) = m(i)

r ,

for every r ∈ R.
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Let r ∈ R. Since (N (1)
r , N

(2)
r , . . . , N

(k)
r ) is a decomposition of Nr, we have

ρ(Mr) ≥ ρ(M (1)
r ) + ρ(M (2)

r ) + . . . + ρ(M (k)
r )

= m(1)
r + m(2)

r + . . . + m(k)
r ,

and

mr = m(1)
r + m(2)

r + . . . + m(k)
r .

Thus ρ(Mr) ≥ mr. Since Nr is a weighted matroid, we have ρ(Mr) ≤ mr, hence ρ(Mr) =

mr, and so Nr is normal. Therefore N is normal and the proof is complete.

Lemma 5.4. If the system N is good and the set {x ∈ S : {x} ∈ Ma} is countable, then

there is u ∈ S such that {u} ∈ Ma and N(a, u) is piecewise good.

Proof. Let

E = {x ∈ S : {x} ∈ Ma}.

Note that E 6= ∅ since ρ(Ma) > 0.

Suppose that N(a, u) is not piecewise good for any u ∈ E. Let t be an α-queue in E

such that rge t = E and α ≤ ω. (ω is the first infinite ordinal.) Let xi = t(i), i < α. We

claim that for every nonnegative integer j, there is a countable ordinal λj and a λj-queue

f (j) in S such that

(5.2) {xi : i < j} ⊆ rge f (j),

(5.3) µa(f (j)) > 0,

(5.4) ξ(f (j)) = 0, and

(5.5) if j ≥ 1, then λj > λj−1 and f
(j)
λj−1

= f (j−1).

Note that after the claim is proved it will follow that α = ω.

To prove the claim we shall use induction on j. If j = 0, then f (0) = ε satisfies the

conditions (5.2)–(5.5).

Suppose now that j = k+1, and f (k) is a λk-queue in S satisfying the requirements.

Since µa(f (k)) > 0, so E r rge f (k) is a nonempty set. Let p be the minimal integer such
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that xp ∈ E r rge f (k). By Corollary 5.2, we have

N(a, xp) D (N\f (k))(a, xp)⊕ (N�f (k)).

Since N�f (k) is good by Corollary 3.6, and N(a, xp) is not piecewise good, we conclude

that (N\f (k))(a, xp) is not good. Since N\f (k) is good by Corollary 3.8, it follows from

Lemma 4.4 that there is a queue g in S r rge f (k) such that xp ∈ rge g, µ̂a(g) > 0, and

ξk(g) = 0, where µ̂a is the Ma\f (k)-reserve and ξk is the N\f (k)-margin.

Let f (j) = f (k) ∗ g. Then

{xi : i < j} ⊆ rge f (j)

since by the inductive hypothesis, we have

{xi : i < k} ⊆ rge f (k) ⊆ rge f (j),

and either xk ∈ rge f (k) or else xk = xp ∈ rge g. Moreover, we have

µa(f (j)) = ρ(Ma\(f (k) ∗ g)) = ρ((Ma\f (k))\g) = µ̂a(g) > 0,

and by Lemma 3.7, we have ξ(f (j)) = ξk(g) = 0. Finally, if λk = dom f (k) and λj =

dom f (j), then of course λj > λk and

f
(j)
λk

= f (k).

Thus, f (j) satisfies the conditions (5.2)–(5.5) and our claim is proved.

Let

λ = sup{λj : j = 1, 2, . . . },

and let f be the λ-queue in S such that if θ < λ, then f(θ) = f (j)(θ), where j satisfies

θ < λj . By the condition (5.5), the queue f is well-defined and λ is a limit ordinal. It

follows from (5.2) that E ⊆ rge f and thus

µa(f) = 0,

31



it follows from (5.3) that

µa(f) > 0,

and it follows from (5.4) that

lim inf
θ→λ

ξ(fθ) ≤ 0.

Since obviously µr(f) ≥ µr(f) for every r ∈ R, we conclude that

ξ(f) = lim inf
θ→λ

ξ(fθ)−
∑
r∈R

(µr(f)− µr(f)) < 0,

which is in contradiction with our assumption that N is good. Therefore, there is u ∈ S

such that N(a, u) is piecewise good, and so the proof is complete.

Corollary 5.5. If N is piecewise good, then there is u ∈ S such that {u} ∈ Ma and

N(a, u) is piecewise good.

Proof. Let (N1,N2, . . . ,Nk) be a decomposition of N into good weighted matroids. Let

{S1, S2, . . . , Sk} be a partition of S such that Ni = (M (i)
r ,m

(i)
r ) is a weighted matroid on

Si, 1 ≤ i ≤ k. Since ma ≥ ρ(Ma) > 0, there is an integer j, 1 ≤ j ≤ k, such that m
(j)
a > 0.

Since Nj is good, it is normal and hence

ρ(M (j)
a ) = m(j)

a > 0.

By Lemma 4.2 and Lemma 5.4, there is u ∈ Sj such that Nj(a, u) is piecewise good.

Let (N(1)
j ,N

(2)
j , . . . ,N

(`)
j ) be a decomposition of Nj(a, u) into good weighted matroids. By

Lemma 5.1, we have

N(a, u) D N1 ⊕ . . .⊕Nj−1 ⊕Nj(a, u)⊕Nj+1 ⊕ . . .⊕Nk,

which implies that

N(a, u) D N1 ⊕ . . .⊕Nj−1 ⊕N
(1)
j ⊕ . . .⊕N

(`)
j ⊕Nj+1 ⊕ . . .⊕Nk,

and so the proof is complete.
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6. The main result.

Let r0, r1, . . . be a (possibly finite) enumeration of R. Let ρi = ρ(Mri
), i < ‖R‖. We say

that N is weedless if ρi > 0 for every i < ‖R‖.

Assume that N is weedless. Let

Ξ = {(i, j) ∈ Z× Z : 0 ≤ i < ‖R‖, 1 ≤ j ≤ ρi},

and let ≺ be the linear ordering of Ξ such that (i, j) ≺ (k, `) if either i < k or else i = k

and j < `. If β, γ ∈ Ξ, then let β � γ mean that β ≺ γ or β = γ. If β ∈ Ξ, then let

Ξβ = {γ ∈ Ξ : γ ≺ β}.

We say that β = (i, j) ∈ Ξ is a starter if j = 1. If β ∈ Ξ, then let β− be the largest starter

in Ξβ ∪ {(0, 1)}. If β ∈ Ξ and f : Ξβ → S, then let

Xf = {f(γ) : β− � γ ≺ β},

and let

Yf = S r {f(γ) : γ ≺ β}.

If f : Ξ → S, then let

Xβ
f = Xfβ

,

and

Y β
f = Yfβ

,

where fβ is the restriction of f to Ξβ . Let the successor β+ of β be the smallest γ ∈ Ξ

such that β ≺ γ.

An injective function f : Ξβ → S, where β = (k, `) ∈ Ξ, is a partial foundation of N

if there is a piecewise good system of weighted matroids Nβ = (Nβ
r )r∈R on Yf such that if

Nβ
r = (Mβ

r ,mβ
r ), r ∈ R, then

(6.1) Mβ
r ⊆ Mr for any r ∈ R,
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(6.2) mβ
rk

= ρk − ` + 1,

(6.3) mβ
rq

= ρq for q > k, and

(6.4) if β = (i, j)+, then for every I ∈ Mβ
ri

we have

I ∪Xf ∈ Mri .

An injective function f : Ξ → S is a foundation of N if for every β ∈ Ξ, the restriction fβ

of f to Ξβ is a partial foundation of N.

Lemma 6.1. If N is piecewise good and weedless, then there is a foundation of N.

Proof. Clearly, it is enough to show that for every β ∈ Ξ, there is a partial foundation

fβ : Ξβ → S of N such that fβ is the restriction of fβ+ to Ξβ .

We shall use induction on β. If β = (0, 1), and fβ is the empty function, then fβ is

a partial foundation of N since Nβ = N is a piecewise good system of weighted matroids

on Yfβ
= S and the conditions (6.1)–(6.4) are satisfied. Indeed, the conditions (6.1) and

(6.4) are satisfied trivially and the conditions (6.2) and (6.3) hold since, by Lemma 5.3,

the system Nβ is normal.

Assume now that β = γ+, where γ = (i, j), and that fγ is a partial foundation of

N. Thus, there is a piecewise good system of weighted matroids Nγ on Yfγ
such that:

(6.1′) Mγ
r ⊆ Mr for any r ∈ R,

(6.2′) mγ
ri

= ρi − j + 1,

(6.3′) mγ
rq

= ρq for q > i, and

(6.4′) if γ = (a, b)+, then for every I ∈ Mγ
ra

we have

I ∪Xfγ ∈ Mra .

We will show that there is a partial foundation fβ of N such that fβ restricted to Ξγ is

equal to fγ .
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Since the system Nγ is piecewise good, it follows from Lemma 5.3 that it is normal.

Thus by (6.2′), we have

ρ(Mγ
ri

) = ρi − j + 1 > 0.

Therefore, by Corollary 5.5, there is u ∈ Yfγ
such that {u} ∈ Mγ

ri
and Nγ(ri, u) is piecewise

good.

Let fβ : Ξβ → S be such that

fβ(δ) =
{

fγ(δ) if δ ≺ γ,
u if δ = γ.

Clearly, fβ restricted to Ξγ is equal to fγ , and fβ is an injection since fγ is an injection

and u ∈ Yfγ
. Let

Nβ = Nγ(ri, u).

By the choice of u, Nβ is a piecewise good system of weighted matroids on Yfβ
= Yfγ r{u}.

Clearly, we have Mβ
r ⊆ Mγ

r for every r ∈ R, so (6.1) follows from (6.1′).

If β is a starter, then ` = 1 and k = i + 1. By (6.3′), we have mγ
rk

= ρk. Since

mβ
rk

= mγ
rk

, the condition (6.2) is satisfied in this case.

If β is not a starter, then ` = j + 1 and k = i. Thus by (6.2′), we have

mβ
rk

= mβ
ri

= mγ
ri
− 1 = ρi − j = ρk − ` + 1,

and so (6.2) is satisfied.

Since k ≥ i and since we have mβ
rq

= mγ
rq

for any q > i, the condition (6.3) follows

from (6.3′).

To complete the proof it remains to show that (6.4) is satisfied. Assume first that

γ is a starter. Then β− = γ and so Xfβ
= {u}. Since

Mβ
ri

= Mγ
ri
∼ u,

and {u} ∈ Mγ
ri

, we conclude that

I ∪Xfβ
∈ Mγ

ri
,
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for any I ∈ Mβ
ri

. Since by (6.1′) we have Mγ
ri
⊆ Mri , it follows that (6.4) is satisfied in

this case.

Now assume that γ is not a starter. Then γ = (i, j − 1)+ and

Xfβ
= Xfγ

∪ {u}.

Let I ∈ Mβ
ri

. Since

Mβ
ri

= Mγ
ri
∼ u,

and {u} ∈ Mγ
ri

, it follows that I ∪ {u} ∈ Mγ
ri

. By (6.4′), we have

I ∪Xfβ
= I ∪ {u} ∪Xfγ ∈ Mri ,

and so (6.4) is satisfied. Thus the proof is complete.

Proof of Theorem 1.9. Let N = (Mr)r∈R be the normal system of weighted matroids

corresponding to M. By Corollary 3.2, the system N is good, hence it is piecewise good.

Clearly, without loss of generality, we may assume that N is weedless.

By Lemma 6.1, there is a foundation g of N. For every i, 0 ≤ i < ‖R‖, let

βi = (i + 1, 1) = (i, ρi)+ and let

Bri = Xβi
g = {g(γ) : (i, 1) � γ � (i, ρi)}.

Using the condition (6.4), with I = ∅, for the partial foundation f = gβi
, we get

Bri
= Xf ∈ Mri

,

0 ≤ i < ‖R‖. Since g is an injection, we have

‖Bri
‖ = ρi,

0 ≤ i < ‖R‖, and

Bri
∩Brj

= ∅,

for any i and j such that 0 ≤ i, j < ‖R‖ and i 6= j. Therefore (Br)r∈R is a system of

disjoint bases for M, and so the proof is complete.
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