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Abstract. Let M = (Mr)r∈R be a system of matroids on a set S. Following the ideas of
Nash-Williams [7], for every transfinite sequence f of distinct elements of S, we define a
number η(f). We prove that the condition that η(f) ≥ 0 for every possible choice of f is
necessary for M to have a system of mutually disjoint bases. Further, we show that this
condition is sufficient if R is countable and Mr is a rank-finite transversal matroid for every
r ∈ R. We also present conjectures about edge-disjoint spanning trees and detachments
of countable graphs.
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1. Introduction.

Let S be a set and let M be a family of subsets of S. We say that M has finite

character if a set A belongs to M if and only if any finite subset I of A belongs to

M . We say that M is a matroid on S if M is a non-empty family of subsets of S

satisfying the conditions:

(I-1) If A ∈M and B ⊂ A, then B ∈M .

(I-2) If I, J ∈ M are finite and |I| = |J | + 1, then there is an element y ∈ I \ J
such that J ∪ {y} ∈M .

(I-3) M has finite character.

A maximal element of M is called a base of M , and the cardinality of any base of

M is called the rank of M . The matroid M is said to be rank-finite if M has finite

rank, and to be rank-countable if it has countable rank (ρ(M) ≤ ℵ0).

Let R and S be disjoint sets and for each r ∈ R let Mr be a matroid on the

set S. The system M = (Mr)r∈R will be called a system of matroids on S. M will

be said to be countable (finite) if R is countable (finite). The system B = (Br)r∈R

of subsets of S will be called a system of disjoint bases for M if Br is a base of Mr,

r ∈ R, and Br ∩Br′ = ∅ for every r, r′ ∈ R such that r 6= r′.

The problem of finding a necessary and sufficient condition for a system of

matroids to have a system of disjoint bases (known as the packing problem) is

solved only for some special cases. Tutte [12] and Nash-Williams [6] independently

proved a necessary and sufficient condition for a finite graph to have k edge-disjoint

spanning trees. These results were later generalized by Edmonds [3] who thus settled

the packing problem for finite systems of finite matroids. Brualdi [2] generalized

the condition of Edmonds, and thus solved the packing problem for finite systems

of rank-finite matroids and for arbitrary systems of finite matroids. Oxley [10]

formulated a sufficient condition for a system of matroids to have a system of disjoint

bases and gave a counterexample showing that his condition is not necessary.

We are going to formulate a necessary condition for a system of matroids

to have a system of disjoint bases which is in the spirit of the condition given by

Nash-Williams [7] as a necessary and sufficient condition for a countable family of

sets to have a transversal. Then we prove that our condition is sufficient in the case

of a countable system of rank-finite transversal matroids. We also conjecture that

the condition is sufficient in the case of a countable system of arbitrary matroids.
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At the end of this note we shall present a conjecture concerning the exis-

tence of k edge-disjoint spanning trees in a countable graph and a conjecture about

detachments of countable graphs. We believe that these conjectures can be proved

using Conjecture 1.

Let Z∗ = Z ∪ {∞,−∞} be the set of quasi-integers. The arithmetic and

inequalities on Z∗ follow the obvious rules with the additional rule that∞−∞ = ∞.

If A is a set, then the size ‖A‖ of A is the cardinality |A| if A is finite, and ‖A‖ = ∞
if A is infinite.

If M is a matroid on the set S, and A ⊂ S, then let M⊗A be the contraction

of M to A, i.e. let I ∈ M ⊗ A iff I ⊂ A and I ∪ J ∈ M for every J ⊂ S \ A such

that J ∈M . The following properties are satisfied (see Brualdi [1]):

(P-1) If I ∈M ⊗A and A ⊂ B ⊂ S, then I ∈M ⊗B.

(P-2) If A ⊂ B ⊂ S, then (M ⊗B)⊗A = M ⊗A.

(P-3) If B is a base of M and A ⊂ S, then there is B′ ⊂ B ∩ A such that B′ is a

base of M ⊗A.

(P-4) Let B1 ⊂ B2 ⊂ S, B′1 ⊂ B′2 ⊂ S, A ⊂ S, B2, B
′
2 be bases of M , and B1, B

′
1

be bases of M ⊗A. Then ‖B2 \B1‖ = ‖B′2 \B′1‖.
Assume that ordinals are defined in such a way that an ordinal α is the set of all

ordinals less than α. A transfinite sequence is a function with its domain being an

ordinal.

Let us assume now that M = (Mr)r∈R is a fixed system of matroids on S. If

r ∈ R, A1, A2 ∈Mr, A1 ⊂ A2, B1 is a base of Mr⊗A1 and B2 is a base of Mr⊗A2

containing B1, then let

γr(A1, A2) = ‖B2 \B1‖.

It follows from (P-2), (P-3), and (P-4) that γr is well-defined (does not depend on

the choice of B1 and B2).

Suppose that r ∈ R and that A = (Aα)α<λ, B = (Bα)α<λ are transfinite

sequences of subsets of S such that

(i) Aδ ⊂ Aθ and Bδ ⊂ Bθ, for δ ≤ θ < λ,

(ii) Bδ is a base of Mr ⊗Aδ, for δ < λ,

and suppose that B be a base of Mr ⊗ (∪α<λAα) such that⋃
α<λ

Bα ⊂ B.
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Then we say that the pair (B, B) is a proper Mr-choice of bases for A. If A =

(Aα)α<λ is a transfinite sequence of subsets of S, and λ is a limit ordinal, then let

Γr(A) = min
{∥∥∥∥B\ ⋃

α<λ

Bα

∥∥∥∥ : ((Bα)α<λ, B) is a proper Mr-choice of bases for A
}
.

By queue we mean a countable injective transfinite sequence, i.e. an injective

transfinite sequence whose domain is a countable ordinal. If f is a queue, then

dom(f) is the domain of f and rge(f) is the range of f . If dom(f) = λ and α ≤ λ,

then fα will denote the restriction of f to α. A queue in S is a queue whose range

is a subset of S, and λ-queue is a queue with domain λ. With a λ-queue f in S

we associate a quasi-integer η(f), called the M-margin of f . Let η(f) = 0 if λ = 0.

Suppose now that λ > 0 and that q(f ′) has been defined for every queue f ′ in S

such that dom(f ′) < λ. If λ = κ+ 1 is a successor ordinal, then let

η(f) = η(fκ) + 1−
∑
r∈R

γr(rge(fκ), rge(f)).

If λ is a limit ordinal, then let

η(f) = lim inf
θ→λ

η(fθ)−
∑
r∈R

Γr((rge(fα))α<λ).

We say that the system M of matroids is good if η(f) ≥ 0 for every queue f in S.

We will show that the condition of being good is a necessary condition for a

system of matroids to have a system of disjoint bases.

Theorem 1. If M = (Mr)r∈R is a system of matroids on S which have a system

of disjoint bases, then M is good.

Let E = (Ei)i∈I be any family of subsets of S. A transversal of E is a subset

A of S such that there is a bijection θ : I → A satisfying θ(i) ∈ Ei for every

i ∈ I. A ⊂ S is a partial transversal of E if A is a transversal of a subfamily of E .

Further, the family E is said to be restricted if no element of S belongs to Ei for

infinitely many values of i ∈ I. Edmonds and Fulkerson [4] (see also [5] Theorem

6.5.3) proved that if E is a restricted family of subsets of S, then the collection of

partial transversals of E is a matroid on S. Such a matroid will be called a transversal

matroid . Using a theorem of Nash-Williams [7] we shall prove the following theorem.
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Theorem 2. If M is a good countable system of rank-finite transversal matroids

on S, then M has a system of disjoint bases.

We would like to formulate the following conjecture.

Conjecture 1. If M is a good countable system of rank-countable matroids on S,

then M has a system of disjoint bases.

2. Necessity of the condition.

Theorem 1 follows immediately from the following lemma.

Lemma 1. If (Br)r∈R is a system of disjoint bases of the system (Mr)r∈R of

matroids on S and f is a queue in S, then

∥∥∥∥rge(f) \
⋃
r∈R

Br

∥∥∥∥ ≤ η(f). (1)

Proof. If a queue f in S satisfies the condition

∥∥∥∥rge(f) \
⋃
r∈R

Bf
r

∥∥∥∥ ≤ η(f), (2)

where Bf
r is any base of Mr ⊗ rge(f) such that Bf

r ⊂ Br, r ∈ R, then f satisfies

(1). Therefore to prove the lemma, it is sufficient to prove that any queue f in S

satisfies (2).

We are going to use transfinite induction. If dom(f) = 0, then both sides of

(2) are equal to 0, so (2) is true. Now suppose that dom(f) = λ > 0 and that

∥∥∥∥rge(g) \
⋃
r∈R

Bg
r

∥∥∥∥ ≤ q(g)

for any queue g in S such that dom(g) < λ and for any system (Bg
r )r∈R of bases of

(Mr ⊗ rge(g))r∈R such that Bg
r ⊂ Br, r ∈ R.

Suppose first that λ = κ + 1 is a successor ordinal. Let B′r be any base of

Mr ⊗ rge(f) contained in Br, and let B′′r be any base of Mr ⊗ rge(fκ) contained in
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B′r, r ∈ R. Then∥∥∥∥rge(f) \
⋃
r∈R

B′r

∥∥∥∥ =
∥∥∥∥((

rge(fκ) \
⋃
r∈R

B′′r

)
∪ {f(κ)}

)
\

⋃
r∈R

(B′r \B′′r )
∥∥∥∥

≤
∥∥∥∥rge(fκ) \

⋃
r∈R

B′′r

∥∥∥∥ + 1−
∥∥∥∥ ⋃

r∈R

B′r \B′′r
∥∥∥∥

≤ η(fκ) + 1−
∑
r∈R

γr(rge(fκ), rge(f))

= η(f).

Now suppose that λ is a limit ordinal. Let B′r be any base of Mr ⊗ rge(f).

Let (Bα
r )α<λ be a transfinite sequence of subsets of S such that Bα

r is a base of

Mr ⊗ rge(fα) contained in B′r, and Bα
r ⊂ Bθ

r for α < θ < λ. Then ((Bα
r )α<λ, B

′
r) is

a proper Mr-choice of bases for ((rge(fα))α<λ) and∥∥∥∥rge(f) \
⋃
r∈R

B′r

∥∥∥∥ =
∥∥∥∥(

rge(f) \
⋃
r∈R

⋃
α<λ

Bα
r

)
\

⋃
r∈R

(
B′r \

⋃
α<λ

Bα
r

)∥∥∥∥
≤

∥∥∥∥rge(f) \
⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥− ∑
r∈R

∥∥∥∥B′r \ ⋃
α<λ

Bα
r

∥∥∥∥
≤

∥∥∥∥rge(f) \
⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥− ∑
r∈R

Γr((rge(fα))α<λ).

We claim that ∥∥∥∥rge(f) \
⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥ ≤ lim inf
θ→λ

η(fθ).

Indeed, we have

lim inf
θ→λ

η(fθ) = sup{ξδ : δ < λ},

where

ξδ = inf{η(fθ) : δ ≤ θ < λ}.

By the induction hypothesis we have

η(fθ) ≥
∥∥∥∥rge(fθ) \

⋃
r∈R

Bθ
r

∥∥∥∥ ≥ ∥∥∥∥rge(fδ) \
⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥
for any θ such that δ ≤ θ < λ. Hence

ξδ ≥
∥∥∥∥rge(fδ) \

⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥
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for any δ < λ. Therefore

lim inf
θ→λ

η(fθ) ≥ sup
{∥∥∥∥rge(fδ) \

⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥ : δ < λ

}
=

∥∥∥∥rge(f) \
⋃
r∈R

⋃
α<λ

Bα
r

∥∥∥∥.
Thus the proof of the claim is complete.

Hence we have∥∥∥∥rge(f) \
⋃
r∈R

B′r

∥∥∥∥ ≤ lim inf
θ→λ

η(fθ)−
∑
r∈R

Γr((rge(fα))α<λ) = η(f),

and the proof of the lemma is complete.

3. Proof of Theorem 2.

Let I be a countable set and let E = (Ei)i∈I be a family of subsets of S. If X ⊂ S,

then the E-demand set D(X) is defined by

D(X) = {i ∈ I : Ei ⊂ X}.

Let f be a λ-queue in S. Denote ∆(f) = D(rge(f)), and let the E-margin q(f) be

defined as follows:

(i) q(f) = −‖D(∅)‖ if λ = 0,

(ii) q(f) = q(fκ) + 1− ‖∆(f) \∆(fκ)‖ if λ = κ+ 1,

(iii) q(f) = lim infθ→λ q(fθ)− ‖∆(f) \ ∪θ<λ∆(fθ)‖ if λ is a limit ordinal.

We say that E is good if q(f) ≥ 0 for every queue f in S. To prove Theorem 2 we

shall use the following theorem of Nash-Williams [7].

Theorem 3. (Nash-Williams [7]) E has a transversal iff E is good.

Let

I =
⋃
r∈R

Ir

be a partition of I into finite subsets. For each r ∈ R, define Er = (Ei)i∈Ir
to be

the subfamily of E corresponding to Ir. Let Mr be the family of partial transversals

of Er. Since Ir is finite it follows that Er is a restricted family and that Mr is a

rank-finite matroid. If f is a queue in S, then let µr(f) be the rank of the matroid

Mr ⊗ rge(f). Let M = (Mr)r∈R.

The following lemma holds since M is a system of rank-finite matroids.
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Lemma 2. If f is a λ-queue in S, then the M-margin η(f) satisfies the following

conditions:

(i) η(f) = 0 if λ = 0,

(ii) η(f) = η(fκ) + 1−
∑

r∈R

(
µr(f)− µr(fκ)

)
if λ = κ+ 1,

(iii) η(f) = lim infθ→λ η(fθ)−
∑

r∈R

(
µr(f)−max

{
µr(fθ) : θ < λ

})
if λ is a

limit ordinal.

Proof. Use transfinite induction.

Assume that, for every r ∈ R, Er has a transversal Xr, and that θr : Ir → Xr

is a bijection such that θr(i) ∈ Ei for every i ∈ Ir.
Assume that f is a queue in S. For each r ∈ R let ∆r(f) be the Er-demand

set Dr(rge(f)), and let Ψr(f) = θr(∆r(f)). In other words, Ψr(f) is the part of

the transversal Xr which corresponds to the subset ∆r(f) of Ir. Clearly Ψr(f) ∈
Mr ⊗ rge(f). Let ψr(f) = ‖Ψr(f)‖, and let ζr(f) = µr(f)− ψr(f). Set

ζ(f) =
∑
r∈R

ζr(f).

The following lemmas are satisfied.

Lemma 3. If f is a λ-queue in S and θ < λ, then

‖∆(f) \∆(fθ)‖ =
∑
r∈R

(ψ(f)− ψ(fθ)).

Proof. We have

‖∆(f) \∆(fθ)‖ =
∥∥∥∥ ⋃

r∈R

(∆r(f) \∆r(fθ))
∥∥∥∥

=
∑
r∈R

(‖∆r(f)‖ − ‖∆r(fθ)‖)

=
∑
r∈R

(ψr(f)− ψr(fθ)).

Lemma 4. If λ is a limit ordinal, if f is a λ-queue in S, and if, for every r ∈ R,

δr < λ is an ordinal such that

ζr(fγ) = ζr(fδr
)
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for every ordinal γ satisfying δr ≤ γ < λ, then

∑
r∈R

ζr(fδr ) ≤ lim inf
θ→λ

ζ(fθ).

Proof. If θ < λ, then let

Rθ =
{
r ∈ R : ζr(fγ) = ζr(fθ) for θ ≤ γ < λ

}
.

Clearly, we have r ∈ Rδr
so ⋃

θ<λ

Rθ = R.

Moreover, we have Rθ ⊂ Rγ for θ ≤ γ < λ, and ζr(θ) ≥ 0 for any θ < λ and r ∈ R.

Therefore ∑
r∈R

ζr(fδr ) = sup
{ ∑

r∈Rθ

ζr(fδr ) : θ < λ

}
= lim inf

θ→λ

∑
r∈Rθ

ζr(fδr
)

= lim inf
θ→λ

∑
r∈Rθ

ζr(fθ)

≤ lim inf
θ→λ

∑
r∈R

ζr(fθ)

= lim inf
θ→λ

ζ(fθ).

The following lemma, relating the E-margin and the M-margin, is the key

step in the proof of Theorem 2.

Lemma 5. For any queue f in S, η(f) ≤ q(f)− ζ(f).

Proof. Let dom(f) = λ. We shall use transfinite induction. If λ = 0, then η(f) =

q(f) = ζ(f) = 0 so the inequality stated in the lemma is satisfied.

Now assume that λ > 0 and that we have η(g) ≤ q(g) − ζ(g) for any queue

g in S such that dom(g) < λ. If λ = κ + 1, then by the inductive assumption and
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Lemma 3, we have:

η(f) = η(fκ) + 1−
∑
r∈R

(µr(f)− µr(fκ))

≤ q(fκ)−
∑
r∈R

ζr(fκ) + 1−
∑
r∈R

(µr(f)− µr(fκ))

= q(fκ) + 1−
∑
r∈R

(
ζr(fκ) + µr(f)− µr(fκ)

)
= q(fκ) + 1−

∑
r∈R

(µr(f)− ψr(fκ))

= q(fκ) + 1−
∑
r∈R

(ζr(f) + ψr(f)− ψr(fκ))

= q(fκ) + 1−
∑
r∈R

(ψr(f)− ψr(fκ))−
∑
r∈R

ζr(f)

= q(fκ) + 1− ‖∆(f) \∆(fκ)‖ − ζ(f)

= q(f)− ζ(f).

Assume now that λ is a limit ordinal. Since Ir is a finite set and Mr is a

rank-finite matroid, for each r ∈ R, there is an ordinal δr < λ such that

µr(fδr
) = max{µr(fθ) : θ < λ}, (3)

and

∆r(fδr
) =

⋃
θ<λ

∆r(fθ).

Then we also have

ζr(fγ) = ζr(fδr ),

for any ordinal γ such that δr ≤ γ < λ.

Moreover, by Lemma 3, we have:∥∥∥∥∆(f) \
⋃
θ<λ

∆(fθ)
∥∥∥∥ =

∥∥∥∥ ⋃
r∈R

(
∆r(f) \

⋃
θ<λ

∆r(fθ)
)∥∥∥∥

=
∥∥∥∥ ⋃

r∈R

(
∆r(f) \∆r(fδr

)
)∥∥∥∥

=
∑
r∈R

‖∆r(f) \∆r(fδr )‖

=
∑
r∈R

(ψr(f)− ψr(fδr
)).

(4)
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Using the inductive hypothesis, Lemma 4, equations (3) and (4), and the inequality

lim inf
θ→λ

q(fθ)− lim inf
θ→λ

ζ(fθ) ≥ lim inf
θ→λ

(q(fθ)− ζ(fθ)),

we get

q(f)− ζ(f) = lim inf
θ→λ

q(fθ)−
∥∥∥∥∆(f) \

⋃
θ<λ

∆(fθ)
∥∥∥∥− ∑

r∈R

(µr(f)− ψr(f))

= lim inf
θ→λ

q(fθ)−
∑
r∈R

(ψr(f)− ψr(fδr ))−
∑
r∈R

(µr(f)− ψr(f))

= lim inf
θ→λ

q(fθ)−
∑
r∈R

(µr(f)− ψr(fδr
))

= lim inf
θ→λ

q(fθ)−
∑
r∈R

(µr(f) + ζr(fδr
)− µr(fδr

))

= lim inf
θ→λ

q(fθ)−
∑
r∈R

ζr(fδr )−
∑
r∈R

(µr(f)− µr(fδr ))

≥ lim inf
θ→λ

q(fθ)− lim inf
θ→λ

ζ(fθ)−
∑
r∈R

(µr(f)− µr(fδr
))

≥ lim inf
θ→λ

(q(fθ)− ζ(fθ))−
∑
r∈R

(µr(f)− µr(fδr
))

≥ lim inf
θ→λ

η(fθ)−
∑
r∈R

(µr(f)−max{µr(fθ) : θ < λ})

= η(f)

The following theorem, which is a countable version of König’s theorem, was

proved by Podewski and Steffens ([11], section 3.).

Theorem 4. Any countable bipartite graph has a matching F and a cover C such

that C contains exactly one vertex from each edge in F .

The following lemma is implied by Theorem 4.

Lemma 6. Let J and T be countable sets. If A = (Ai)i∈J is a family of sets on

T , then there is a subset J ′ ⊂ J such that

(i) the family A′ = (Ai)i∈J′ has a transversal, and

(ii) if X ⊂ T , then X is a partial transversal of A iff X is a partial transversal

of A′.

Proof. Let G be the bipartite graph with bipartition (J, T ) and such that jt ∈ E(G)
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iff t ∈ Aj . Let F be a matching and C be a cover in G such that C contains exactly

one vertex from each edge in F . Let J ′ be the subset of J defined as follows:

J ′ = {j ∈ J : j is a vertex of an edge of F}.

Then (i) is clearly satisfied. We are going to show that (ii) is satisfied. Of course,

if X is a partial transversal of A′ = (Ai)i∈J′ , then X is a partial transversal of A.

Suppose now that X is a partial transversal of A. Let Y ⊂ J and let θ : Y → X be

a bijection. Set
C1 = C ∩ J,

C2 = C ∩ T,

X2 = X ∩ C2,

X1 = X \X2,

Y1 = Y ∩ C1,

Y2 = Y \ Y1.

Since C is a cover of G we have

θ(Y2) ⊂ X2

and

θ−1(X1) ⊂ Y1.

Let ξ : X → J ′ be defined by

ξ(x) =
{
θ−1(x) if x ∈ X1,
yx if x ∈ X2,

where yx is the vertex of G such that yxx is and edge of the matching F . It is easy

to see that ξ is an injection. Hence X is a partial transversal of A′.

We can now conclude the proof of Theorem 2.

Proof of Theorem 2. Let S be any set and let M = (Mr)r∈R be a good countable

system of rank-finite transversal matroids on S. For each r ∈ R, let Er = (Ei)i∈Ir

be a family of subsets of S such that Mr is the the family of partial transversals of

Er. We can assume that Ir1 ∩ Ir2 = ∅ for r1 6= r2 and, by Lemma 6, that Er has a

transversal for any r ∈ R. Let

I =
⋃
r∈R

Ii,
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and

E = (Ei)i∈I .

Since M is good it follows from Lemma 5 that E is good. Thus, by Theorem 3,

E has a transversal X. Let θ : I → X be a bijection such that θ(i) ∈ Ei, and let

Br = θ(Ir), r ∈ R. Then it is easy to see that (Br)r∈R is a system of disjoint bases

for M.

4. Edge-disjoint spanning trees.

Let G = (V,E) be a countable graph, i.e. a graph with countably many vertices

and edges (loops, multiple edges, and vertices of infinite degrees are allowed). Let

WG be the set of all patitions of V . If P1 and P2 are partitions of V , then we say

that P1 precedes P2 (P1 � P2) if for every A ∈ P2 there is B ∈ P1 such that A ⊂ B.

It is well known that (WG,�) is a partially ordered set, and that if the subset W ′

of WG is a chain, then W ′ has the least upper bound (denoted by l.u.b.(W ′)).

If P is a λ-queue in WG, then we say that P is proper if either λ = 0 or

λ > 0 and the following conditions are satisfied:

(i) P(0) = {V },
(ii) P(θ + 1) = (P(θ) \ {V0}) ∪ {V ′0 , V ′′0 }, where V0 ∈ P(θ) and {V ′0 , V ′′0 } is a

partition of V0, for θ + 1 < λ,

(iii) P(γ) = l.u.b.(rge(Pγ)), if γ < λ is a limit ordinal.

Roughly speaking, P is proper if P(θ+1) is obtained from P(θ) by splitting one set

into two sets, and for a limit ordinal γ the partition P(γ) is the least upper bound

of all partitions which are before it in the queue P.

If P ∈ WG, then let E(P ) be the set of edges of G whose end-vertices are in

different sets of the partition P .

Let P be a proper λ-queue in WG. Clearly Pθ is proper for any θ ≤ λ. If k

is a positive integer, then the k-margin ξk(P) is defined as follows:

(i) ξk(P) = 0 if λ = 0 or λ = 1,

(ii) ξk(P) = ξk(Pθ) if λ = θ + 1 and θ is a limit ordinal,

(iii) ξk(P) = ξk(Pθ+1) + ‖E(P(θ + 1) \ E(P(θ))‖ − k if λ = θ + 2, and

(iv) ξk(P) = lim infθ→λ ξk(θ) if λ is a limit ordinal.

We say that G is k-good if ξk(P) ≥ 0 for every proper queue P in WG.
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We would like to formulate the following conjecture.

Conjecture 2. Let G be a countable graph, and k be a positive integer. Then G

has k edge-disjoint spanning trees if and only if G is k-good.

The “only if” part of Conjecture 2 is easy to prove by transfinite induction,

and we believe that the “if” part follows from Conjecture 1.

Oxley [10] gave an example of a countable graph G which has no 2 edge-

disjoint spanning trees, and which satitsfies the condition

‖E(P )‖ ≥ 2(‖P‖ − 1)

for every finite partition P of its set of vertices V (G) (see Fig. 1, where vertices are

denoted by small circles).

◦ ◦
x−1 x1

◦ ◦ ◦x−2 x0 x2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦y7 y8 y3 y4 y0 y2 y1 y6 y5 y10 y9

◦ ◦
z−1 z1

◦ ◦ ◦z−2 z0 z2

Fig. 1.

As an illustration of Conjecture 2, we will prove that the graph G given by

Oxley is not 2-good. Let λ = ω + 2, where ω is the first infinite ordinal, and let P
be the proper λ-queue in WG defined as follows:

P(i) = {{y0}, {y1}, . . . , {yi−1}} ∪ {V (G) \ {y0, y1, . . . , yi−1}}, i < ω,

P(ω) = {{y0}, {y1}, {y2}, . . . } ∪ {{xi : i ∈ Z} ∪ {zi : i ∈ Z}},

P(ω + 1) = {{y0}, {y1}, {y2}, . . . } ∪ {{xi : i ∈ Z}, {zi : i ∈ Z}}.

It is easy to see that

ξ2(Pi) = 0, i < ω,

so

ξ2(Pω) = ξ2(Pω+1) = 0,

and hence

ξ2(P) = −2.
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Therefore G is not 2-good.

It may appear to some readers that it should not be necessary to deal with

arbitrary transfinite sequences in Conjecture 2, i.e. that perhaps some modification

of Conjecture 2 involving sequences of length at most ω would be true (at least for

locally finite graphs). We believe that, even in the case of locally finite graphs, it

is essential to consider arbitrary sequences in Conjecture 2. To illustrate this point

let us consider the graph G from Fig. 2. (small circles denote vertices and double

lines denote edges of multiplicity 2).

◦ ◦ ◦ ◦ ◦ · · ·z−1 z−2 z−3 z−4 z−5

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
y1
0

y0
0 y1

1
y0
1 y1

2
y0
2 y1

3
y0
3 y1

4
y0
4

◦ ◦ ◦ ◦ ◦ · · ·
z1 z2 z3 z4 z5

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
y2
0 x0

0 y2
1 x0

1 y2
2 x0

2 y2
3 x0

3 y2
4 x0

4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
y3
0 x1

0 y3
1 x1

1 y3
2 x1

2 y3
3 x1

3 y3
4 x1

4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
y4
0 x2

0 y4
1 x2

1 y4
2 x2

2 y4
3 x2

3 y4
4 x2

4

...
...

...
...

...
. . .

Fig. 2.

We claim that G is not 2-good. Let λ = 2ω + 2. We shall define a λ-queue

P in WG such that ξ2(P) < 0. Let f be an ω-queue in V (G) such that

rge(f) = {xj
i : i, j = 0, 1, . . . }.

15



For every i = 0, 1, 2, . . . , define

Xi = {f(i)},

X ′
i = V (G) \

i−1⋃
j=0

Xj ,

Yi = {yj
i : j = 0, 1, . . . },

Y ′i =
(
V (G) \

∞⋃
j=0

Xj

)
\

i−1⋃
j=0

Yj .

Further, let
Z0 = {zj : j ∈ Z \ {0}},

Z1 = {zj : j > 0},

Z−1 = {zj : j < 0}.

Note that X ′
0 = V (G), and

Y ′0 = V (G) \
∞⋃

j=0

Xj .

Let P be the λ-queue in WG defined by:

P(i) = {X0, X1, . . . , Xi−1, X
′
i}, i = 0, 1, . . . ,

P(ω + i) = {Xj : j = 0, 1, . . . } ∪ {Y0, Y1, . . . , Yi−1, Y
′
i }, i = 0, 1, . . . ,

P(2ω) = {Xj : j = 0, 1, . . . } ∪ {Yj : j = 0, 1, . . . } ∪ {Z0},

P(2ω + 1) = {Xj : j = 0, 1, . . . } ∪ {Yj : j = 0, 1, . . . } ∪ {Z−1, Z1}.

It is easy to see that ξ2(Pα) = 0, for α ≤ 2ω + 1 and ξ2(P) = −2. Therefore G is

not 2-good.

It is not hard to see that there is no λ-queue P in WG such that λ < 2ω+ 2

and ξ2(P) < 0.
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5. Detachments of countable graphs.

Let G = (V,E) be a countable graph, and let b : V (G) → {1, 2, . . . } ∪ {∞} be a

function. We say that the graph D is a b-detachment of G if

(i) V (D) =
⋃

v∈V (G) Ωv, where (Ωv)v∈V (G) is a family of mutually disjoint sets

such that ‖Ωv‖ = b(v),

(ii) E(D) = E(G), and

(iii) if e ∈ E(G) joins vertices v and w in G, then e joins a vertex of Ωv to a

vertex of Ωw in the graph D.

Nash-Williams [8] [9] proved that if G is finite, then there is a connected b-detach-

ment D of G if and only if for every partition {V1, V2} of V (G) we have

|EV1 | ≥
∑
v∈V1

b(v) + c(G[V2])− 1,

where EV1 is the set of edges adjacent to a vertex in V1 and c(G[V2]) is the number

of components of the graph spanned by V2 in G.

The existence of a connected b-detachment of a finite graph G is equivalent

to the existence of a family of disjoint bases of a particular family of matroids on

E(G) (see [9]). We will formulate a conjecture about b-detachments of countable

graphs which is analogous to Conjecture 1.

Let g be a λ-queue in V (G). Set P (g) to be the partition of V (G) such that

the elements of P (g) are the vertex sets of the components of the graph obtained

from G by removing all the edges incident with a vertex in rge(g). Let

P (g) = l.u.b.({P (gθ) : θ < λ}).

If v ∈ V (G) and A ⊂ V (G), then let v 5 A be the set of edges of G which are

incident to v and to a vertex in V (G). Let the b-margin ξb(g) be defined as follows:

(i) ξb(g) = 1− ‖P (g)‖ if λ = 0,

(ii) ξb(g) = ξb(gθ) + ‖g(θ) 5 (V (G) \ rge(gθ))‖ + ‖P (gθ) \ P (g)‖ + 1 − b(θ) −
‖P (g) \ P (gθ)‖ if λ = θ + 1,

(iii) ξb(g) = lim infθ→λ ξb(gθ) + ‖P (g) \ P (g)‖ − ‖P (g) \ P (g)‖ if λ is a limit

ordinal.

We say that G is b-good if ξb(P) ≥ 0 for every queue P in V (G).
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Conjecture 3. Let G be a countable graph, and let b : V (G) → {1, 2, . . . } ∪ {∞}
be a function. Then G has a connected b-detachment if and only if G is b-good.

The “only if” part of Conjecture 3 is easy to prove by transfinite induction,

and we believe that the “if” part follows from Conjecture 1.

As an illustration of Conjecture 3, let us consider the graph G shown at

Fig. 3, and let the function b : V (G) → {1, 2, . . . } ∪ {∞} be defined by

b(v) =
{

2 if v = xj
i or v = yi, i, j = 0, 1, 2, . . . ,

1 otherwise.

◦ ◦ ◦ ◦ ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·y0 y1 y2 y3 y4

◦ ◦ ◦ ◦ ◦ · · ·

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
x0

0 x0
1 x0

2 x0
3 x0

4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
x1

0 x1
1 x1

2 x1
3 x1

4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · ·
x2

0 x2
1 x2

2 x2
3 x2

4
...

...
...

...
...

. . .

Fig. 3.

It is easy to see that G has no connected b-detachments. Let g be a 2ω-queue

in V (G) such that

rge(gω) = {xj
i : i, j = 0, 1, 2, . . . },

and

g(ω + i) = yi, i = 0, 1, 2, . . . .

It is easy to see that

ξb(gω) = 0,

hence

ξb(gω+i) = 0, for any i < ω,

and thus

ξb(g) = −1.
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ThereforeG is not b-good. Note that if f is a λ-queue in V (G) and {yi : i = 0, 1, . . . }
is not contained in rge(f), then ξb(f) ≥ 0. Moreover, if λ ≤ ω, then

ξb(fn) = ‖rge(fn) ∩ {yi : i = 0, 1, . . . }‖,

for any n < λ so ξb(f) ≥ 0. Therefore, if λ ≤ ω, then ξb(f) ≥ 0 for every λ-queue in

V (G). This observation shows that even when G is locally finite we cannot restrict

our attention to ω-queues only.
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