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Abstract. We present a construction of an induced cycle in the n-dimensional hypercube I[n]
(n ≥ 2), and a subgroup Hn of I[n] considered as the group Zn

2 , such that |Hn| ≤ 16 and the
induced cycle uses exactly one element of every coset of Hn. This proves that for any n ≥ 2 the
vertices of I[n] can be covered using at most 16 vertex-disjoint induced cycles.
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1. Introduction

Given a positive integer d, let I[d] be the d-dimensional cube (also called hypercube)

i.e. the graph with all d-tuples of binary digits as vertices, and all pairs of vertices differing

at exactly one coordinate as edges. It will be convenient to think of the set of vertices of I[d]

as the set of elements of the group Zd
2 = (Z/2Z)d with the operation ⊕ of componentwise

addition mod 2. Thus, when we refer to I[d], we assume that it has both a structure of a

graph and a structure of a group.

A snake is an induced cycle in I[d]. For each d ≥ 2, let S(d) denote the length of

the longest snake in I[d]. An extensive literature has evolved concerning the problem of

estimating S(d). See [1], [3], [5], and the references in these papers. What we know now

is that
77
256

2d ≤ S(d) ≤ 2d−1 − 2d−1

20d− 41
,

assuming that d ≥ 12 in the upper bound. The lower bound was proved by Abbott and

Katchalski [2] and the upper bound by Snevily [4].

During the XXIII Southeastern International Conference, Boca Raton 1992, Erdős

posed the problem of deciding whether there is a number k such that for every d ≥ 2

the vertices of I[d] can be covered using at most k snakes, and if the answer to the above

problem is positive, then whether it can be done in such a way that the snakes are pairwise

vertex-disjoint. In this note we show that the answer to both of the above questions is

positive with k = 16. Actually, we prove the following theorem, which is a stronger result.

Theorem 1. For every n ≥ 2, there is a subgroup Hn ⊂ I[n] and a snake Cn ⊂ I[n] such

that |Hn| ≤ 16 and Cn uses exactly one element of every coset of Hn.

2



2. Basic Definitions

Let ψ0, ψ1 : I[d] → I[d+ 1] be the embeddings defined by

ψi(v1v2 . . . vd) = v1 v2 . . . vd i,

for i = 0, 1. If F is a subgraph of I[d], let F (i) be the subgraph of I[d+ 1] obtained as the

image of F under the embedding ψi.

For each d ≥ 2 we define a function Hd : {1, 2, . . . , 2d} → V (I[d]) such that H∗
d =

(Hd(1), . . . ,Hd(2d),Hd(1)) is a Hamiltonian cycle in I[d]. We set

H∗
2 = (00, 01, 11, 10, 00),

and

Hd+1(i) =

{(
Hd(i)

)(0) if 1 ≤ i ≤ 2d,(
Hd ◦Rd(i)

)(1) if 2d + 1 ≤ i ≤ 2d+1,

where Rd : {2d + 1, 2d + 2, . . . , 2d+1} → {1, 2, . . . , 2d} is the order reversing bijection,

Rd(i) = 2d+1 + 1− i.

In other words, H∗
d+1 is obtained by takingH∗

d
(0) andH∗

d
(1), removing the edges connecting

their last vertices with their first vertices, joining the first vertex of H∗
d

(0) with the first

vertex of H∗
d

(1) and analogously the last with the last.

Let us regard I[d+ 6] as I[d]× I[6], that is as the d-dimensional cube I[d] with each

vertex being a copy of I[6]. Suppose that Pd =
{
(v1

j , . . . , v
rj

j )
}2d

j=1
is a sequence of 2d

paths in I[6] such that vri
i = v1

j when 1 ≤ i ≤ 2d − 1 and j = i + 1 or i = 2d and j = 1.

Such a sequence will be called a 2d-chain of paths in I[6]. We can use Pd and H∗
d to

construct a cycle Cd+6 in I[d + 6]. Let us take the jth path (v1
j , . . . , v

rj

j ) in the copy of

I[6] corresponding to the vertex Hd(j) in I[d]; see Figure 1 for the case d = 3.

Then, let us join vri
i from the ith copy of I[6] with v1

i+1 from the (i+1)st copy of I[6]

for all i ∈ {1, . . . , 2d}, where the indices are understood circularly. Hence we have

Cd+6 =
(
(Hd(1), v1

1), (Hd(1), v2
1), . . . , (Hd(1), vr1

1 ), (Hd(2), v1
2), . . . , (Hd(2), vr2

2 ), . . . ,

(Hd(2d), v1
2d), . . . , (Hd(2d), vr2d

2d ), (Hd(1), v1
1)

)
.
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Fig. 1.

It is clear that Cd+6 is a cycle in I[d+ 6], we will call it the cycle generated by Hd and Pd.

We call Pd well separated with respect to Hd if the cycle Cd+6 generated by Hd and Pd is

an induced cycle.

Let P be the set of all 12 paths in I[6] that can be obtained from one of the following

two paths

p0 = (000000, 100000, 110000, 111000)

q0 = (111000, 111100, 111110, 111111)

by a cyclic permutation of coordinates of every vertex of the path. Let H be the subgroup

of I[6] containing all a1a2 . . . a6 ∈ I[6] such that the following two conditions are satisfied

(i) a1 + a3 + a5 is even, and

(ii) a2 + a4 + a6 is even.

Note that H is generated by the set of elements of I[6] that can be obtained from
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101000 by cyclic permutations of the coordinates. Also note that the elements of H are

000000, six cyclic permutations of 101000, six cyclic permutations of 111100, and three

cyclic permutations of 110110, so |H| = 16. To prove Theorem 1, we will define a 2d-

chain Pd of paths which is well separated with respect to Hd and the paths in Pd are

elements of P. We will need the following lemma.

Lemma 1. Every path P ∈ P uses exactly one element of each coset of H in I[6].

Proof. Let P ∈ P, and let v1, v2 be two vertices of P . It easy to observe that if v1 6= v2

then v1⊕v2 has an odd number of ones or two consecutive ones (in the cyclic order), where

⊕ is the operation of the group I[6]. Thus, if v1 ⊕ v2 ∈ H then v1 = v2.

This proves that P uses at most one element of every coset of H. Since |P | × |H| =

|I[6]|, the path P uses exactly one element of every coset of H, and the proof is complete.
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Fig. 2. The graph G

3. The Main Result

Let G = K2,5 be the graph shown in Figure 2.

The following lemma is proved in Wojciechowski [5] (Lemma 3).

Lemma 2. For every d ≥ 2 there is a function Φd : {1, 2, . . . , 2d} → E(G) such that

(i) if 1 ≤ i ≤ 2d−1 and j = i+1, or else i = 2d, j = 1, then Φd(i) and Φd(j) have exactly

one vertex vi in common, such that vi ∈ {a1, . . . , a5} for i even, and vi ∈ {b1, b2} for

i odd, and

(ii) if
(
Hd(i),Hd(j)

)
∈ E(I[d]) \ E(H∗

d ), then Φd(i) and Φd(j) are vertex-disjoint.

Let P be the set of paths defined in Section 2. The following lemma will be used in

the proof of the main result.

Lemma 3. For every d ≥ 2 there is a 2d-chain Pd of paths in I[6] such that every path in

Pd belongs to P, and Pd is well separated with respect to Hd.

Proof. Let G′ be the subdivision of G obtained by subdividing e1k (1 ≤ k ≤ 5) with two

new vertices c1k and c2k in such a way that we get the path (b1, c1k, c
2
k, ak), and subdividing

e2k with two new vertices c4k, c5k, giving rise to the path (ak, c
4
k, c

5
k, b2). Let c3k = ak and
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ξ : V [G′] → V (I[6]) be defined as follows. Set

ξ(b1) = 000000,

ξ(c11) = 100000,

ξ(c21) = 110000,

ξ(c31) = 111000,

ξ(c41) = 111100,

ξ(c51) = 111110,

ξ(b2) = 111111,

and if ξ(ci1) = α1 . . . α6, then let

ξ(cik) = αk . . . α6α1 . . . αk−1,

for 2 ≤ k ≤ 5.

It is clear that the function ξ defines an embedding ofG′ into I[6] such that the image of

the subdivision of any edge of G is an induced path in I[6]. Let Φd : {1, 2, . . . , 2d} → E(G)

be a function satisfying conditions (i) and (ii) of Lemma 2. Let Pd = {(v1
i , . . . , v

4
i )}2d

i=1 be

a 2d-chain of paths in I[6] such that (v1
i , . . . , v

4
i ) is the image under ξ of the subdivision of

the edge Φd(i).

Let Cd+6 be the cycle generated by Hd and Pd. Since each pair of vertex-disjoint

edges in G corresponds to a pair of vertex-disjoint paths in Pd, and since each pair of

edges having exactly one vertex in common corresponds to a pair of paths in Pd having

exactly one vertex in common, it follows from (i) and (ii) of Lemma 2 that Cd+6 is an

induced cycle. So Pd is well separated with respect to Hd, and the proof is complete.

We can now prove our main result.

Proof of Theorem 1. Let us assume first that n ≥ 8. Set d = n−6. Let Pd be a 2d-chain

of paths in I[6] such that every path in Pd belongs to P and Pd is well separated with
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respect to Hd, and let Cn be the snake generated by Pd and Hd. Let Hn be the subgroup

of I[n] defined to be the set of all (a1, a2, . . . , ad, b1, . . . , b6) ∈ I[n] such that the following

conditions are satisfied.

(i) a1 = a2 = . . . = ad = 0,

(ii) b1 + b3 + b5 is even, and

(iii) b2 + b4 + b6 is even.

We will show that Cn contains exactly one element of every coset of Hn. Since

|Cn| = 4× 2d and |Hn| = 16, it is enough to prove that Cn contains at most one element

of every coset of Hn. Suppose w1, w2 ∈ Cn and the cosets of w1 and w2 are equal. Then

w1 ⊕ w2 ∈ Hn. Let v1 ∈ I[6] be the sequence of the last six digits of w1, and similarly

let v2 ∈ I[6] consist of the last six digits of w2. Since w1 ⊕ w2 ∈ Hn, the first d digits of

w1 are the same as the first d digits of w2, and v1 ⊕ v2 ∈ H. Thus v1 and v2 are vertices

of the same path in P, and so it follows from Lemma 1 that v1 = v2. Hence w1 = w2, and

the proof of the case n ≥ 8 is complete.

If 2 ≤ n ≤ 6, then we can take Cn = (000 . . . 0, 100 . . . 0, 110 . . . 0, 010 . . . 0, 000 . . . 0),

and Hn to be the set of all elements of I[n] with first two coordinates equal 0. It is clear

that Cn uses exactly one element of every coset of Hn. In the remaining case n = 7, let

C7 = (0000000, 1000000, 1100000, 1110000, 1111000, 0111000, 0011000, 0001000, 0000000),

and let H7 be the set of all elements of I[7] with the first four coordinates being either

0000 or 1010. It is straightforward to check that in this case the conclusion is true as well.

Thus the proof is complete.

The following corollary gives the answer to the problem of Erdős.

Corollary 1. For every n ≥ 2 the vertices of I[n] can be covered using at most 16 pairwise

disjoint snakes.

Proof. Let us take a subgroup Hn and a snake Cn in I[n] such that |Hn| ≤ 16 and Cn
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uses exactly one element of every coset of Hn. The family of snakes {Cn ⊕ h : h ∈ Hn}

contains 16 vertex-disjoint snakes covering I[n].

4. Concluding remarks

Let k0 be the smallest integer such that for every n ≥ 2, the cube I[n] can be vertex

covered by at most k0 snakes. Let k1 and k2 be defined in a similar way taking pairwise

vertex-disjoint snakes and pairwise vertex-disjoint snakes of equal length, respectively. Set

k3 to be the smallest integer such that for every n ≥ 2 there is a subgroup Hn and a snake

Cn in I[n] such that |Hn| ≤ k3 and Cn uses exactly one element of every coset of Hn. As a

corollary of Theorem 1 and the upper bound for the length of snakes we get the following

theorem.

Theorem 2. We have 3 ≤ k0 ≤ k1 ≤ k2 ≤ k3 ≤ 16 and k2, k3 ∈ {4, 8, 16}.

The question of determining the exact values of k0, k1, k2, and k3 remains open. It

might be possible to modify the technique used in this note to improve Theorem 2 to make

the upper bound equal 8 or perhaps even 4. The possible approach may involve finding a

more sophisticated embedding of a subdivision of K2,5 into I[c], where c is a small integer

constant (in our proof we used c = 6), or else replacing K2,5 by another graph, perhaps

K2,4.
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