COMBINATORICA 14 (4) (1994) 1-6

Covering the Hypercube with a Bounded Number of Disjoint Snakes

JERZY WOJCIECHOWSKI

Department of Mathematics, West Virginia University, PO BOX 6310, Morgantown, WV 26506-6310, USA

E-mail: UN020243@WVNVMS.WVNET.EDU JERZY@MATH.WVU.EDU

Abstract. We present a construction of an induced cycle in the *n*-dimensional hypercube I[n] $(n \geq 2)$, and a subgroup \mathcal{H}_n of I[n] considered as the group \mathbb{Z}_2^n , such that $|\mathcal{H}_n| \leq 16$ and the induced cycle uses exactly one element of every coset of \mathcal{H}_n . This proves that for any $n \geq 2$ the vertices of I[n] can be covered using at most 16 vertex-disjoint induced cycles.

1. Introduction

Given a positive integer d, let I[d] be the d-dimensional cube (also called hypercube) *i.e.* the graph with all d-tuples of binary digits as vertices, and all pairs of vertices differing at exactly one coordinate as edges. It will be convenient to think of the set of vertices of I[d]as the set of elements of the group $\mathbb{Z}_2^d = (\mathbb{Z}/2\mathbb{Z})^d$ with the operation \oplus of componentwise addition mod 2. Thus, when we refer to I[d], we assume that it has both a structure of a graph and a structure of a group.

A snake is an induced cycle in I[d]. For each $d \ge 2$, let S(d) denote the length of the longest snake in I[d]. An extensive literature has evolved concerning the problem of estimating S(d). See [1], [3], [5], and the references in these papers. What we know now is that

$$\frac{77}{256}2^d \le S(d) \le 2^{d-1} - \frac{2^{d-1}}{20d - 41},$$

assuming that $d \ge 12$ in the upper bound. The lower bound was proved by Abbott and Katchalski [2] and the upper bound by Snevily [4].

During the XXIII Southeastern International Conference, Boca Raton 1992, Erdős posed the problem of deciding whether there is a number k such that for every $d \ge 2$ the vertices of I[d] can be covered using at most k snakes, and if the answer to the above problem is positive, then whether it can be done in such a way that the snakes are pairwise vertex-disjoint. In this note we show that the answer to both of the above questions is positive with k = 16. Actually, we prove the following theorem, which is a stronger result.

Theorem 1. For every $n \ge 2$, there is a subgroup $\mathcal{H}_n \subset I[n]$ and a snake $C_n \subset I[n]$ such that $|\mathcal{H}_n| \le 16$ and C_n uses exactly one element of every coset of \mathcal{H}_n .

2. Basic Definitions

Let $\psi_0, \psi_1: I[d] \to I[d+1]$ be the embeddings defined by

$$\psi_i(v_1v_2\ldots v_d)=v_1\,v_2\ldots v_d\,i_j$$

for i = 0, 1. If F is a subgraph of I[d], let $F^{(i)}$ be the subgraph of I[d+1] obtained as the image of F under the embedding ψ_i .

For each $d \geq 2$ we define a function $H_d : \{1, 2, ..., 2^d\} \to V(I[d])$ such that $H_d^* = (H_d(1), \ldots, H_d(2^d), H_d(1))$ is a Hamiltonian cycle in I[d]. We set

$$H_2^* = (00, 01, 11, 10, 00),$$

and

$$H_{d+1}(i) = \begin{cases} \left(H_d(i)\right)^{(0)} & \text{if } 1 \le i \le 2^d, \\ \left(H_d \circ R_d(i)\right)^{(1)} & \text{if } 2^d + 1 \le i \le 2^{d+1} \end{cases}$$

where $R_d: \{2^d+1, 2^d+2, \dots, 2^{d+1}\} \rightarrow \{1, 2, \dots, 2^d\}$ is the order reversing bijection,

$$R_d(i) = 2^{d+1} + 1 - i.$$

In other words, H_{d+1}^* is obtained by taking $H_d^{*(0)}$ and $H_d^{*(1)}$, removing the edges connecting their last vertices with their first vertices, joining the first vertex of $H_d^{*(0)}$ with the first vertex of $H_d^{*(1)}$ and analogously the last with the last.

Let us regard I[d+6] as $I[d] \times I[6]$, that is as the d-dimensional cube I[d] with each vertex being a copy of I[6]. Suppose that $P_d = \{(v_j^1, \ldots, v_j^{r_j})\}_{j=1}^{2^d}$ is a sequence of 2^d paths in I[6] such that $v_i^{r_i} = v_j^1$ when $1 \le i \le 2^d - 1$ and j = i + 1 or $i = 2^d$ and j = 1. Such a sequence will be called a 2^d -chain of paths in I[6]. We can use P_d and H_d^* to construct a cycle C_{d+6} in I[d+6]. Let us take the *j*th path $(v_j^1, \ldots, v_j^{r_j})$ in the copy of I[6] corresponding to the vertex $H_d(j)$ in I[d]; see Figure 1 for the case d = 3.

Then, let us join $v_i^{r_i}$ from the *i*th copy of I[6] with v_{i+1}^1 from the (i+1)st copy of I[6]for all $i \in \{1, \ldots, 2^d\}$, where the indices are understood circularly. Hence we have

$$C_{d+6} = \left((H_d(1), v_1^1), (H_d(1), v_1^2), \dots, (H_d(1), v_1^{r_1}), (H_d(2), v_2^1), \dots, (H_d(2), v_2^{r_2}), \dots, (H_d(2^d), v_{2^d}^{1}), \dots, (H_d(2^d), v_{2^d}^{r_{2^d}}), (H_d(1), v_1^1) \right).$$

It is clear that C_{d+6} is a cycle in I[d+6], we will call it the cycle *generated* by H_d and P_d . We call P_d well separated with respect to H_d if the cycle C_{d+6} generated by H_d and P_d is an induced cycle.

Let \mathcal{P} be the set of all 12 paths in I[6] that can be obtained from one of the following two paths

> $p_0 = (000000, 100000, 110000, 111000)$ $q_0 = (111000, 111100, 111110, 111111)$

by a cyclic permutation of coordinates of every vertex of the path. Let \mathcal{H} be the subgroup of I[6] containing all $a_1a_2\ldots a_6 \in I[6]$ such that the following two conditions are satisfied (i) $a_1 + a_3 + a_5$ is even, and

(*ii*) $a_2 + a_4 + a_6$ is even.

Note that \mathcal{H} is generated by the set of elements of I[6] that can be obtained from

101000 by cyclic permutations of the coordinates. Also note that the elements of \mathcal{H} are 000000, six cyclic permutations of 101000, six cyclic permutations of 111100, and three cyclic permutations of 110110, so $|\mathcal{H}| = 16$. To prove Theorem 1, we will define a 2^d chain P_d of paths which is well separated with respect to H_d and the paths in P_d are elements of \mathcal{P} . We will need the following lemma.

Lemma 1. Every path $P \in \mathcal{P}$ uses exactly one element of each coset of \mathcal{H} in I[6].

Proof. Let $P \in \mathcal{P}$, and let v_1, v_2 be two vertices of P. It easy to observe that if $v_1 \neq v_2$ then $v_1 \oplus v_2$ has an odd number of ones or two consecutive ones (in the cyclic order), where \oplus is the operation of the group I[6]. Thus, if $v_1 \oplus v_2 \in \mathcal{H}$ then $v_1 = v_2$.

This proves that P uses at most one element of every coset of \mathcal{H} . Since $|P| \times |\mathcal{H}| = |I[6]|$, the path P uses exactly one element of every coset of \mathcal{H} , and the proof is complete.

5

Fig. 2. The graph G

3. The Main Result

Let $G = K_{2,5}$ be the graph shown in Figure 2.

The following lemma is proved in Wojciechowski [5] (Lemma 3).

Lemma 2. For every $d \ge 2$ there is a function $\Phi_d : \{1, 2, \ldots, 2^d\} \to E(G)$ such that

(i) if $1 \le i \le 2^d - 1$ and j = i + 1, or else $i = 2^d$, j = 1, then $\Phi_d(i)$ and $\Phi_d(j)$ have exactly one vertex v_i in common, such that $v_i \in \{a_1, \ldots, a_5\}$ for i even, and $v_i \in \{b_1, b_2\}$ for i odd, and

(*ii*) if $(H_d(i), H_d(j)) \in E(I[d]) \setminus E(H_d^*)$, then $\Phi_d(i)$ and $\Phi_d(j)$ are vertex-disjoint. \Box

Let \mathcal{P} be the set of paths defined in Section 2. The following lemma will be used in the proof of the main result.

Lemma 3. For every $d \ge 2$ there is a 2^d -chain P_d of paths in I[6] such that every path in P_d belongs to \mathfrak{P} , and P_d is well separated with respect to H_d .

Proof. Let G' be the subdivision of G obtained by subdividing e_k^1 $(1 \le k \le 5)$ with two new vertices c_k^1 and c_k^2 in such a way that we get the path (b_1, c_k^1, c_k^2, a_k) , and subdividing e_k^2 with two new vertices c_k^4 , c_k^5 , giving rise to the path (a_k, c_k^4, c_k^5, b_2) . Let $c_k^3 = a_k$ and $\xi: V[G'] \to V(I[6])$ be defined as follows. Set

$$\begin{aligned} \xi(b_1) &= 000000, \\ \xi(c_1^1) &= 100000, \\ \xi(c_1^2) &= 110000, \\ \xi(c_1^3) &= 111000, \\ \xi(c_1^3) &= 111100, \\ \xi(c_1^5) &= 111110, \\ \xi(b_2) &= 111111, \end{aligned}$$

and if $\xi(c_1^i) = \alpha_1 \dots \alpha_6$, then let

$$\xi(c_k^i) = \alpha_k \dots \alpha_6 \alpha_1 \dots \alpha_{k-1},$$

for $2 \le k \le 5$.

It is clear that the function ξ defines an embedding of G' into I[6] such that the image of the subdivision of any edge of G is an induced path in I[6]. Let $\Phi_d : \{1, 2, \ldots, 2^d\} \to E(G)$ be a function satisfying conditions (i) and (ii) of Lemma 2. Let $P_d = \{(v_i^1, \ldots, v_i^4)\}_{i=1}^{2^d}$ be a 2^d -chain of paths in I[6] such that (v_i^1, \ldots, v_i^4) is the image under ξ of the subdivision of the edge $\Phi_d(i)$.

Let C_{d+6} be the cycle generated by H_d and P_d . Since each pair of vertex-disjoint edges in G corresponds to a pair of vertex-disjoint paths in P_d , and since each pair of edges having exactly one vertex in common corresponds to a pair of paths in P_d having exactly one vertex in common, it follows from (i) and (ii) of Lemma 2 that C_{d+6} is an induced cycle. So P_d is well separated with respect to H_d , and the proof is complete. \Box

We can now prove our main result.

Proof of **Theorem 1**. Let us assume first that $n \ge 8$. Set d = n - 6. Let P_d be a 2^d-chain of paths in I[6] such that every path in P_d belongs to \mathcal{P} and P_d is well separated with respect to H_d , and let C_n be the snake generated by P_d and H_d . Let \mathcal{H}_n be the subgroup of I[n] defined to be the set of all $(a_1, a_2, \ldots, a_d, b_1, \ldots, b_6) \in I[n]$ such that the following conditions are satisfied.

- (*i*) $a_1 = a_2 = \ldots = a_d = 0$,
- (ii) $b_1 + b_3 + b_5$ is even, and
- (*iii*) $b_2 + b_4 + b_6$ is even.

We will show that C_n contains exactly one element of every coset of \mathcal{H}_n . Since $|C_n| = 4 \times 2^d$ and $|\mathcal{H}_n| = 16$, it is enough to prove that C_n contains at most one element of every coset of \mathcal{H}_n . Suppose $w_1, w_2 \in C_n$ and the cosets of w_1 and w_2 are equal. Then $w_1 \oplus w_2 \in \mathcal{H}_n$. Let $v_1 \in I[6]$ be the sequence of the last six digits of w_1 , and similarly let $v_2 \in I[6]$ consist of the last six digits of w_2 . Since $w_1 \oplus w_2 \in \mathcal{H}_n$, the first d digits of w_1 are the same as the first d digits of w_2 , and $v_1 \oplus v_2 \in \mathcal{H}$. Thus v_1 and v_2 are vertices of the same path in \mathcal{P} , and so it follows from Lemma 1 that $v_1 = v_2$. Hence $w_1 = w_2$, and the proof of the case $n \geq 8$ is complete.

If $2 \le n \le 6$, then we can take $C_n = (000 \dots 0, 100 \dots 0, 110 \dots 0, 010 \dots 0, 000 \dots 0)$, and \mathcal{H}_n to be the set of all elements of I[n] with first two coordinates equal 0. It is clear that C_n uses exactly one element of every coset of \mathcal{H}_n . In the remaining case n = 7, let $C_7 = (0000000, 1000000, 1100000, 1110000, 1111000, 0111000, 0011000, 0001000, 0000000)$, and let \mathcal{H}_7 be the set of all elements of I[7] with the first four coordinates being either 0000 or 1010. It is straightforward to check that in this case the conclusion is true as well. Thus the proof is complete.

The following corollary gives the answer to the problem of Erdős.

Corollary 1. For every $n \ge 2$ the vertices of I[n] can be covered using at most 16 pairwise disjoint snakes.

Proof. Let us take a subgroup \mathcal{H}_n and a snake C_n in I[n] such that $|\mathcal{H}_n| \leq 16$ and C_n

uses exactly one element of every coset of \mathcal{H}_n . The family of snakes $\{C_n \oplus h : h \in \mathcal{H}_n\}$ contains 16 vertex-disjoint snakes covering I[n].

4. Concluding remarks

Let k_0 be the smallest integer such that for every $n \ge 2$, the cube I[n] can be vertex covered by at most k_0 snakes. Let k_1 and k_2 be defined in a similar way taking pairwise vertex-disjoint snakes and pairwise vertex-disjoint snakes of equal length, respectively. Set k_3 to be the smallest integer such that for every $n \ge 2$ there is a subgroup \mathcal{H}_n and a snake C_n in I[n] such that $|\mathcal{H}_n| \le k_3$ and C_n uses exactly one element of every coset of \mathcal{H}_n . As a corollary of Theorem 1 and the upper bound for the length of snakes we get the following theorem.

Theorem 2. We have $3 \le k_0 \le k_1 \le k_2 \le k_3 \le 16$ and $k_2, k_3 \in \{4, 8, 16\}$.

The question of determining the exact values of k_0 , k_1 , k_2 , and k_3 remains open. It might be possible to modify the technique used in this note to improve Theorem 2 to make the upper bound equal 8 or perhaps even 4. The possible approach may involve finding a more sophisticated embedding of a subdivision of $K_{2,5}$ into I[c], where c is a small integer constant (in our proof we used c = 6), or else replacing $K_{2,5}$ by another graph, perhaps $K_{2,4}$.

Acknowledgements. The author would like to thank Anthony J.W. Hilton for valuable discussions, Hunter Snevily for drawing his attention to the question studied in this note, and Yoshiharu Kohayakawa for carefull reading and correcting its original version.

References

- ABBOTT, H.L., KATCHALSKI, M., On the snake in the box problem, J. Comb. Theory Ser. B 45 (1988), 13–24.
- [2] ABBOTT, H.L., KATCHALSKI, M., On the construction of snake in the box codes, Utilitas Mathematica 40 (1991), 97–116.
- [3] EVDOKIMOV, A.A., The maximal length of a chain in the unit *n*-dimensional cube. *Mat. Zametki* **6** (1969), 309–319. English translation in *Math. Notes* **6** (1969), 642–648.
- [4] SNEVILY, H.S., The snake-in-the-box problem: a new upper bound, *Discrete Math.*, to appear.
- [5] WOJCIECHOWSKI, J., A new lower bound for snake-in-the-box codes, *Combinatorica* 9 (1989), 91–99.

10