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Abstract. In this paper we give a new lower bound on the length of Snake-in-the-Box Codes, i.e., induced cycles in
the d-dimensional cube. The bound is a linear function of the number of vertices of the cube and improves the bound
c · 2d/d, where c is a constant, proved by Danzer and Klee.
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1. Introduction

A snake-in-the-box code is an induced cycle in the d-dimensional cube I[d], i.e., the graph with all d-tuples

of binary digits as vertices, and all pairs of vertices differing in exactly one coordinate as edges. For each

d ∈ N, let S(d) denote the length of the longest induced cycle in I[d]. The problem of determining S(d) was

first met by Kautz [10] in constructing a type of error-checking code for certain analog-to-digital conversion

systems. He showed that

S(d) ≥ λ
√

2d.

This bound was later improved by Ramanujacharyulu and Menon [11], who proved that

S(d) ≥ (3/2)d,

Brown (unpublished, quoted from Danzer and Klee [3]) and Singleton [12] got

S(d) ≥ λ( 4
√

6)d,

Abbott [1] obtained

λ(
√

5/2)d,

Vasil’ev [14] showed that

S(d) ≥ 2d

d
when d is a power of 2,

and that

S(d) ≥ (1− ε(d))
2d−1

d
with ε(d) → 0 as d→∞,

and finally Danzer and Klee [3] proved that

S(d) ≥ 2d+1

d
when d is a power of 2,

and

S(d) ≥ 7
4

2d

d− 1
for all d ≥ 5.

In this note we give a new lower bound for S(d), namely

S(d) ≥ 9
64

2d.
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2. The Main Lemma

Our aim in this section is to state and prove Lemma 3, which will provide a construction of long snakes,

leading to the proof of the lower bound stated in the introduction.

Let us first introduce some notions and examine their properties. If F is a subgraph of I[d], then let us

denote by F (0) the subgraph of I[d+ 1] obtained as the image of F in the embedding

ψ0 : I[d] → I[d+ 1]

such that

ψ0((v1, . . . , vd)) = (v1, . . . , vd, 0).

Analogously, let F (1) be the image of F in

ψ1 : I[d] → I[d+ 1]

such that

ψ1((v1, . . . , vd)) = (v1, . . . , vd, 1).

For each d ≥ 2, let

Rd : [2d + 1, 2d+1] → [2d]

be the order reversing bijection, i.e., such that Rd(i) = 2d+1 + 1− i.

Now, for each d ≥ 2, we shall define a function

Hd : [2d] → V (I[d])

such that

Hd = (Hd(1), . . . ,Hd(2d),Hd(1))

is a Hamiltonian cycle in I[d]. Set

H2 = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),

and

Hd+1(i) =
{

(Hd(i))(0) if 1 ≤ i ≤ 2d,
(Hd ◦Rd(i))(1) if 2d + 1 ≤ i ≤ 2d+1.

In other words, Hd+1 is obtained by taking Hd
(0)

and Hd
(1)

, removing the edges connecting their last vertices

with their first vertices, joining the first vertex of Hd
(0)

with the first vertex of Hd
(1)

and analogously the

last with the last.

The following lemma can be proved simply by checking all the possible cases.
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Fig. 1. The graph G

Lemma 1. For each d ≥ 2, if 1 ≤ i < j ≤ 2d+1 and

(Hd+1(i),Hd+1(j)) ∈ E(I[d+ 1]) \ E(Hd+1),

then exactly one of the following conditions holds:

(1) 1 ≤ i < j ≤ 2d, (i, j) 6= (1, 2d) and (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd),

(2) i = 1 and j = 2d,

(3) 2d + 1 ≤ i < j ≤ 2d+1, (i, j) 6= (2d + 1, 2d+1) and (Hd ◦Rd(i),Hd ◦Rd(j)) ∈ E(I[d]) \ E(Hd),

(4) i = 2d + 1 and j = 2d+1,

(5) 2 ≤ i ≤ 2d − 1 and i = Rd(j).

Let G be the graph shown in Figure 1.

Given a permutation σ ∈ S5, let ϕσ and ϕ+
σ be permutations of edges of G such that

ϕσ(ej
i ) = ej

σ(i) and ϕ+
σ (ej

i ) = e3−j
σ(i).

Furthermore, let
σ1 = (3 5),

σ2 = (1 3)(2 4 5),

σ3 = (1 2)(4 5)

be permutations of the set {1, . . . , 5}.

The following lemma can be easily verified.

Lemma 2.

(6) For each e, e′ ∈ E(G) and σ ∈ S5, the edges e and e′ have the same number of vertices in common as

the edges ϕσ(e) and ϕσ(e′), and the same as the edges ϕ+
σ (e) and ϕ+

σ (e′). If e and e′ have one vertex in
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common, then it belongs to {a1, . . . , a5}, if and only if the common vertex of ϕσ(e) and ϕσ(e′) belongs

to {a1, . . . , a5}, and if and only if the common vertex of ϕ+
σ (e) and ϕ+

σ (e′) belongs to {a1, . . . , a5}.

(7) For each e ∈ E(G) the edges ϕσ1(e) and ϕ+
σ2

(e) are vertex disjoint, and the edges ϕσ1(e) and ϕ+
σ3

(e) are

vertex disjoint.

Now we can state our key lemma. We claim in it the existence, for each d ≥ 2, of a closed walk of length

2d in G which, after combining it with the Hamiltonian cycle Hd, will provide a construction of long snakes.

The walk will start from a vertex belonging to the set {a1, . . . , a5}, will not use any edge twice in turn and

will posses a certain property with respect to the Hamiltonian cycle Hd. Namely, if we regard this walk and

the Hamiltonian cycle Hd as sequences of length 2d, the walk as a sequence of edges and Hd as a sequence

of vertices, then any two edges corresponding to two nonconsecutive vertices of Hd being neighbours in I[d]

will be vertex disjoint.

Lemma 3. For every d ≥ 2 there is a function Φd : [2d] → E(G) such that

(8) if 1 ≤ i ≤ 2d−1, j = i+1, or i = 2d, j = 1, then Φd(i) and Φd(j) have exactly one vertex vi in common

such that vi ∈ {a1, . . . , a5} for i even, and vi ∈ {b1, b2} for i odd, and

(9) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then Φd(i) and Φd(j) are vertex disjoint.

Proof. We shall prove the lemma by induction on d. In order to make the induction work, we shall define

functions

Φk,l
d : [2d] → E(G)

for each d ≥ 2 and

(k, l) ∈ I = {(1, 1), (1, 3), (1, 4), (2, 3), (2, 4)}

such that each of the following conditions holds:

(10) Φk,l
d (1) = e1k and Φk,l

d (2d) = e2l ,

(11) if 1 ≤ i ≤ 2d − 1, then Φk,l
d (i) and Φk,l

d (i + 1) have exactly one vertex vi in common such that vi ∈

{a1, . . . , a5} for i even and vi ∈ {b1, b2} for i odd,

(12) if 2 ≤ i ≤ 2d − 1 and (k, l) 6= (1, 1) 6= (k′, l′), then Φk,l
d (i) = Φk′,l′

d (i),

(13) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then Φk,l
d (i) and Φk,l

d (j) are vertex disjoint.

In other words, the function Φk,l
d will describe a walk in G starting from the vertex ak and the edge e1k,

ending in the edge e2l and the vertex al, and having all the properties we require for the walk described by

the function Φd, i.e., it will not use any edge twice in turn and its edges corresponding to two nonconsecutive
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vertices of Hd being neighbours in I[d] will be vertex disjoint. Also, given d ≥ 2, all the walks described by

Φk,l
d , for (k, l) ∈ I \ {(1, 1)}, will differ only at the first and the last vertices.

The construction of such functions will complete the proof of Lemma 3 because if we set Φd = Φ1,1
d ,

then (9) will follow from (13), and (8) will follow from (10) and (11).

Set

(Φk,l
2 (1),Φk,l

2 (2),Φk,l
2 (3),Φk,l

2 (4)) = (e1k, e
1
5, e

2
5, e

2
l ).

If (k, l) 6= (1, 1), then let

Φk,l
d+1(i) =

{
ϕσ1 ◦ Φk,3

d (i) if 1 ≤ i ≤ 2d,

ϕ+
σ2
◦ Φσ−1

2 (l),4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

and set

Φ1,1
d+1(i) =

{
ϕσ1 ◦ Φ1,3

d (i) if 1 ≤ i ≤ 2d,
ϕ+

σ3
◦ Φ2,4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

where Rd is the order reversing bijection defined in Section 1.

In the induction construction performed above, the walk w corresponding to Φk,l
d+1 ((k, l) 6= (1, 1)) is

obtained from the walks w1 and w2 described by Φk,3
d and Φσ−1

2 (l),4

d . To obtain w, we permute the edges of

w1 with ϕσ1 , and the edges of w2 with ϕ+
σ2

, getting w′
1 and w′

2, then we reverse the order of edges of w′
2

getting w′′
2 , and finally we identify the last vertex of w′

1 with the first vertex of w′′
2 .

It can be checked directly that for d = 2 the conditions (10)–(13) are satisfied. Given d ≥ 2, let us

assume that the conditions (10)–(13) are satisfied for d. We shall prove that they are satisfied for d+ 1.

Proof of Condition (10). If (k, l) ∈ I \ {(1, 1)}, then

Φk,l
d+1(1) = ϕσ1 ◦ Φk,3

d (1) = ϕσ1(e
1
k) = e1k,

and

Φk,l
d+1(2

d+1) = ϕ+
σ2
◦ Φσ−1

2 (l),4

d (1) = ϕ+
σ2

(e1
σ−1
2 (l)

) = e2l .

For (k, l) = (1, 1) the proof is analogous.

Proof of Condition (11). We have to show that if 1 ≤ i ≤ 2d+1 − 1, then Φk,l
d+1(i) and Φk,l

d+1(i + 1)

have exactly one vertex in common, which belongs to {a1, . . . , a5} for i even and to {b1, b2} for i odd. If

i 6= 2d, it follows from condition (11) of the induction hypothesis and condition (6) of Lemma 2. If i = 2d

and (k, l) 6= (1, 1), then the edges

Φk,l
d+1(i) = ϕσ1 ◦ Φk,3

d (2d) = ϕσ1(e
2
3) = e25,

and

Φk,l
d+1(i+ 1) = ϕ+

σ2
◦ Φσ−1

2 (l),4

d (2d) = ϕ+
σ2

(e24) = e15,
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have the vertex a5 in common, so (11) holds. If (k, l) = (1, 1), then the proof is analogous.

Proof of Condition (12). We have to show that if 2 ≤ i ≤ 2d+1 − 1 and (k, l) 6= (1, 1) 6= (k′, l′) then

Φk,l
d+1(i) = Φk′,l′

d+1(i). If 2d 6= i 6= 2d + 1, then this follows from the condition (12) of the induction hypothesis,

otherwise

Φk,l
d+1(2

d) = e25 = Φk′,l′

d+1(2d),

and

Φk,l
d+1(2

d + 1) = e15 = Φk′,l′

d+1(2d + 1).

Proof of Condition (13). Let us fix i < j such that

(Hd+1(i),Hd+1(j)) ∈ E(I[d+ 1]) \ E(Hd+1).

We have to show that for each (k, l) ∈ I, Φk,l
d+1(i) and Φk,l

d+1(j) are vertex disjoint.

In the proof we shall assume that (k, l) 6= (1, 1). For (k, l) = (1, 1) the proof is analogous. By Lemma

1, one of the conditions (1)–(5) holds.

If (1) holds, then by condition (13) of the induction hypothesis, Φk,3
d (i) and Φk,3

d (j) are vertex disjoint.

By condition (6) of Lemma 2, Φk,l
d+1(i) and Φk,l

d+1(j) are vertex disjoint.

If (3) holds, then by condition (13) of the induction hypothesis, Φσ−1
2 (l),4

d (Rd(i)) and Φσ−1
2 (l),4

d (Rd(j))

are vertex disjoint. By condition (6) of Lemma 2, Φk,l
d+1(i) and Φk,l

d+1(j) are vertex disjoint.

If (2) holds, then Φk,l
d+1(i) = e1k, Φk,l

d+1(j) = e25, and if (4) holds, then Φk,l
d+1(i) = e15, Φk,l

d+1(j) = e2l are

vertex disjoint.

If (5) holds, then by condition (12) of the induction hypothesis,

Φk,3
d (i) = Φσ−1

2 (l),4

d (i) = e,

for some e ∈ E(G). Hence

Φk,l
d+1(i) = ϕσ1(e),

and

Φk,l
d+1(j) = ϕ+

σ2
(e).

By condition (7) of Lemma 2, the edges Φk,l
d+1(i) and Φk,l

d+1(j) are vertex disjoint., completing the proof of

Lemma 3.
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3. The Lower Bound

In this section we shall prove the main result of this note.

Theorem 4. For each d0 ≥ 2, the length S(d0) of the longest induced cycle in I[d0] satisfies the following

lower bound

S(d0) ≥
9
64

2d0 .

Proof. It is known [3,5,6] that S(2) = 4, S(3) = 6, S(4) = 8, S(5) = 14, S(6) = 26, so we can assume that

d0 ≥ 7.

Let us fix d0 = d+ 5, d ≥ 2. Assume that we have a sequence of induced paths

(v1
1 , v

2
1 , . . . , v

r1
1 ), (v1

2 , v
2
2 , . . . , v

r2
2 ), . . . , (v1

2d , . . . , v
r2d

2d )

in I[5] such that

(14) if 1 ≤ i ≤ 2d − 1 and j = i+ 1 (or i = 2d and j = 1), then the paths (v1
i , . . . , v

ri
i ) and (v1

j , . . . , v
rj

j ) have

only the vertex vri
i = v1

j in common,

(15) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd) (Hd and Hd are defined in section 1), then (v1
i , . . . , v

ri
i ) and

(v1
j , . . . , v

rj

j ) are vertex disjoint,

(16) if 1 ≤ i ≤ 2d, then ri = 4 for i ≡ 1 or 2 (mod 4), and ri = 5 for i ≡ 3 or 0 (mod 4).

Let us regard I[d+ 5] as I[d]× I[5]. To construct an induced cycle Cd+5 in I[d+ 5] we consider I[d+ 5]

as the d-dimensional cube I[d] with each vertex being a copy of I[5]. Let us take the jth path (v1
j , . . . , v

rj

j )

in the copy of I[5] corresponding to the vertex Hd(j) in I[d]; see Figure 2 for the case d = 3.

Then, let us join vri
i from the ith copy of I[5] with v1

j from the jth copy of I[5] for all i ∈ {1, . . . , 2d − 1},

j = i+ 1 and i = 2d, j = 1. Hence we have

Cd+5 = ((Hd(1), v1
1), (Hd(1), v2

1), . . . , (Hd(1), vr1
1 ), (Hd(2), v1

2), . . . , (Hd(2), vr2
2 ), . . . ,

(Hd(2d), v1
2d), . . . , (Hd(2d), vr2d

2d ), (Hd(1), v1
1)).

It is clear that Cd+5 is a cycle in I[d+ 5]. We claim that it is an induced cycle. Assume that

((Hd(i), vk
i ), (Hd(j), vl

j)) ∈ E(I[d+ 5]).

Then Hd(i) = Hd(j) or vk
i = vl

j . If Hd(i) = Hd(j), then i = j and vk
i , vl

j are neighbours in I[5], so

((Hd(i), vk
i ), (Hd(j), vl

j)) ∈ E(Cd+5),
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1 , . . . , v

r1
1 v1

6 , . . . , v
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6
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8 , . . . , v

r8
8 v1

7 , . . . , v
r7
7

v1
2 , . . . , v

r2
2 v1

5 , . . . , v
r5
5

v1
3 , . . . , v

r3
3 v1

4 , . . . , v
r4
4

Fig. 2. The cycle C8

since the path (v1
i , . . . , v

ri
i ) is an induced path. If vk

i = vl
j , then Hd(i) and Hd(j) are neighbours in I[d], and

by (15),

(Hd(i),Hd(j)) ∈ E(Hd).

By (14), k = ri and l = 1, so

((Hd(i), vk
i ), (Hd(j), vl

j)) ∈ E(Cd+5),

and the claim is proved.

By (16), the length of Cd+5 is equal to

9 · 2d−1 =
9
64

2d+5,

so to complete the proof of the theorem it is enough to construct a sequence of induced paths satisfying

conditions (14)–(16).

Let G′ be the subdivision of G obtained by subdividing e1k with two new vertices c1k and c2k in such a

way that we get the path (b1, c1k, c
2
k, ak), and subdividing e2k with three new vertices c4k, c5k and c6k, giving

rise to the path (ak, c
4
k, c

5
k, c

6
k, b2), for each k ≤ 5. Let c3k = ak and

ξ : V [G′] → V (I[5])

be defined as follows. Set

ξ(b1) = (0, 0, 0, 0, 0),
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ξ(c11) = (1, 0, 0, 0, 0),

ξ(c21) = (1, 1, 0, 0, 0),

ξ(c31) = (1, 1, 0, 1, 0),

ξ(c41) = (0, 1, 0, 1, 0),

ξ(c51) = (0, 1, 1, 1, 0),

ξ(c61) = (0, 1, 1, 1, 1),

ξ(b2) = (1, 1, 1, 1, 1),

and if ξ(ci1) = (α1, . . . , α5), then let

ξ(cik) = (αk, . . . , α5, α1, . . . , αk−1).

It is clear that the function ξ defines an embedding of G′ into I[5] such that the image of the subdivision of

any edge of G is an induced path in I[5]. By Lemma 3, we have the function Φd : [2d] → E(G) satisfying

conditions (8) and (9). Let us define the path (v1
i , . . . , v

ri
i ) to be the image under ξ of the subdivision of the

edge Φd(i). Now (16) can be checked directly and, since ξ is an embedding, (8) implies (14), and (9) implies

(15), completing the proof of Theorem 4.

4. Remarks

There is still a gap between the lower bound on the length of snake-in-the-box codes proved in this paper

and the best known upper bound. The best upper bound is due to Deimer [5], who showed that

S(d) ≤ 2d−1 − 2d−1

d(d− 5) + 7
for d ≥ 7.

We believe that the upper bound can be further improved to the form of c2d, where c is a constant smaller

than 1/2.

Acknowledgements. This research is intended to be a part of a Ph.D. thesis written at the University

of Cambridge under the direction of Dr Béla Bollobás. I am grateful to my supervisor for pointing out the

problem and his comprehensive help during the writing of this note.

Note added in proof. I was informed by the referees that the lower bound of the form λ2d was first

obtained by Evdokimov [6]. The constant λ he got is very small (λ = 2−11), but he stated that after certain

changes in his construction λ can be increased to 2−9S(8).
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The idea of his proof is similar to this used in the present proof in the sense that the snake in I[d] =

I[d − d0] × I[d0] (where d0 is a constant) is constructed in such a way that its projection on I[d − d0] is a

Hamiltonian cycle. The rest of the cycle is constructed in quite different way.

In [9] Glagolev and Evdokimov proved a theorem about the chromatic number of a certain infinite graph

and stated that it can be used to further increase the constant λ so that λ ∈ ( 3
16 ,

1
4 ). One of the referees

informed me also that in his dissertation, Evdokimov [7] proved that S(d) ≥ 0.26 · 2d.

Recently Abbot and Katchalski [2] found completely different way of proving a lower bound of the form

λ2d. They use induction in a way resembling the proof of Danzer and Klee [3], but construct the so called

accessible snake, which is a snake with some additional paths between its vertices, allowing to keep the

induction going without decreasing the ratio of vertices used by the snake (what could not be avoided in the

proof of Danzer and Klee).

The upper bound has been lately improved by Solov’jeva [13], who got

S(d) ≤ 2d−1(1− 2
d2 − d+ 2

) for d ≥ 7.
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