Math 793C

Topology for Analysis

Spring 2020
April 13

Theorem (uniform space subspace product).

Each uniform space is uniformly isomorphic to a subspace of a product of pseudometric spaces. A uniform space with separating uniformity is uniformly isomorphic to a subspace of a product of metric spaces.

Proof. Let (X, \mathscr{D}) be a uniform space.

- Let \mathscr{P} be the family of all uniformly continuous pseudometrics on X.
- For each $d \in \mathscr{P}$, let (Y_d, d) be the pseudometric space, where $Y_d = X$.
- Let $Y = \prod \{Y_d : d \in \mathscr{P}\}$ be the uniform space with the product uniformity.
- Let $f: X \to Y$ be defined by $f(x) = (y_d)_{d \in \mathscr{P}}$, where $y_d = x$ for each $d \in \mathscr{P}$.
- It is clear that f if injective.
- We show that f is a uniform isomorphism onto f[X] (relative to \mathscr{D} and the subspace uniformity \mathscr{D}' on f[X] inherited from the product uniformity on Y).
 - − For each $d \in \mathscr{P}$, let \mathscr{D}_d be the uniformity on $Y_d = X$ that is induced by d.
 - For each $d \in \mathscr{P}$, the composition $\pi_d \circ f$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}_d , where $\pi_d : Y \to Y_d$ is the projection.
 - * $\pi_d \circ f : X \to Y_d$ is the identity function $X \to X$.
 - * Since the pseudometric d is uniformly continuous relative to \mathscr{D} , it follows that $\pi_d \circ f$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}_d .

- Let $\mathscr{D}'' = \left\{ \hat{f}^{-1}[D'] : D' \in \mathscr{D}' \right\}.$
- Since f is uniformly continuous relative to \mathscr{D} and \mathscr{D}' , it follows that $\mathscr{D}'' \subseteq \mathscr{D}$.
- Note that $\pi_d \circ f : X \to Y_d$ is uniformly continuous relative to \mathscr{D}'' and \mathscr{D}_d .

It suffices to show that $f: X \to Y$ is uniformly continuous relative to \mathscr{D}'' and the product uniformity on Y.

- * Let D be a member of the product uniformity on Y.
- * Then $D' := D \cap (f[X] \times f[X])$ is a member of \mathscr{D}' .
- * It follows that $\hat{f}^{-1}[D] = \hat{f}^{-1}[D'] \in \mathscr{D}''$.
- Since \mathscr{D} is the weak uniformity on X induced by the family $\{(\mathscr{D}_d, \pi_d \circ f), d \in \mathscr{P}\}$, it follows that $\mathscr{D} \subseteq \mathscr{D}''$.
- Thus $\mathscr{D} = \mathscr{D}''$ and so f is a uniform isomorphism onto f[X].
- Assume that \mathscr{D} is separating.
- For each $d \in \mathscr{P}$, let Z_d be a subspace of X obtained by selecting exactly one element from each equivalence class of the equivalence relation \sim_d on X defined by $x \sim_d y$ iff d(x, y) = 0.
- For each $d \in \mathscr{P}$, let \mathscr{D}'_d be the uniformity on Z_d induced by the metric d.
- Let $Z = \prod \{Z_d : d \in \mathscr{P}\}$ be the product uniform space.
- Let $g: X \to Z$ be defined by $g(x) = (z_d: d \in \mathscr{P})$, where z_d is the unique element of Z_d such that $z_d \sim_d x$.
- Since \mathscr{D} is separating and since \mathscr{D} is induced by \mathscr{P} , it follows that if $x, y \in X$ are distinct, then there is $d \in \mathscr{P}$ with d(x, y) > 0.
 - Let $x, y \in X$ be distinct.
 - Since \mathscr{D} is separating, there is $D \in \mathscr{D}$ with $\langle x, y \rangle \notin D$.
 - Since \mathscr{D} is induced by \mathscr{P} , there exists finite nonempty $\mathscr{P}' \subseteq \mathscr{P}$ such that $\bigcap \{D_d : d \in \mathscr{P}'\} \subseteq D$, where D_d is a member of the uniformity on X that is induced by d for each $d \in \mathscr{P}'$.
 - For each $d \in \mathscr{P}'$ let $\varepsilon_d > 0$ be such that $d(w, z) < \varepsilon_d$ implies that $\langle w, z \rangle \in D_d$ for any $w, z \in X$.
 - Since $\langle x, y \rangle \notin D$, it follows that there is $d \in \mathscr{P}'$ such that $d(x, y) \geq \varepsilon_d$.
 - Thus we have $d \in \mathscr{P}$ with d(x, y) > 0.
- Thus g is an injection.

- We show that g is a uniform isomorphism onto g[X] (relative to \mathscr{D} and the subspace uniformity \mathscr{E} on g[X] inherited from the product uniformity on Z).
 - For each $d \in \mathscr{P}$, let \mathscr{D}_d be the uniformity on X that is induced by the pseudometric d.
 - Note that $\mathscr{D}'_d = \mathscr{D}_d \cap (Z_d \times Z_d).$
 - We show that for each $d \in \mathscr{P}$, the composition $\pi_d \circ g$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}'_d , where $\pi_d : Z \to Z_d$ is the projection.
 - * Let $d \in \mathscr{P}$ be fixed.
 - * For each $x \in X$, denote $x_d := (\pi_d \circ g)(x)$.
 - * Let $D'\in \mathscr{D}'_d$ be arbitrary and define

 $D := \{ \langle x, y \rangle \in X \times X : \langle x_d, y_d \rangle \in D' \}.$

- * It remains to show that $D \in \mathscr{D}$.
 - Since the pseudometric d is uniformly continuous relative to \mathscr{D} , it follows that $\mathscr{D}_d \subseteq \mathscr{D}$. Thus it suffices to show that $D \in \mathscr{D}_d$.
 - · Since $D' \in \mathscr{D}'_d$, there is $\varepsilon > 0$ be such that for any $w, z \in Z_d$ with $d(w, z) < \varepsilon$ we have $\langle w, z \rangle \in D'$.
 - · Let $D'' := \{ \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon \}$. Note that $D'' \in \mathcal{D}_d$.
 - · If $\langle x, y \rangle \in D''$, then $d(x_d, y_d) = d(x, y) < \varepsilon$ so $\langle x_d, y_d \rangle \in D'$, which implies that $\langle x, y \rangle \in D$.
 - · Since $D'' \subseteq D$ and $D'' \in \mathscr{D}_d$, it follows that $D \in \mathscr{D}_d$.
- Let $\mathscr{F} = \{ \hat{g}^{-1}[E] : E \in \mathscr{E} \}.$
- Since g is uniformly continuous relative to \mathscr{D} and \mathscr{E} , the definition of \mathscr{F} implies that $\mathscr{F} \subseteq \mathscr{D}$.
- Note that $\pi_d \circ g : X \to Z_d$ is uniformly continuous relative to \mathscr{F} and \mathscr{D}'_d for each $d \in \mathscr{P}$.
 - * For each $d \in \mathscr{P}$, the projection π_d is uniformly continuous relative to the product uniformity on Z and \mathscr{D}'_d .
 - * Thus, it suffices to show that $g: X \to Z$ is uniformly continuous relative to \mathscr{F} and the product uniformity on Z.
 - * Let D be a member of the product uniformity on Z.
 - * Then $E := D \cap (g[X] \times g[X])$ is a member of \mathscr{E} .
 - * It follows that $\hat{g}^{-1}[D] = \hat{g}^{-1}[E] \in \mathscr{F}$.
- Since \mathscr{D} is the weak uniformity on X induced by the family $\{(\mathscr{D}'_d, \pi_d \circ g), d \in \mathscr{P}\}$, it follows that $\mathscr{D} \subseteq \mathscr{F}$.
- Thus $\mathscr{D} = \mathscr{F}$ and so g is a uniform isomorphism onto g[X].

Exercise (completely regular subspace product).

Let (X, τ) be a topological space. Prove that X is completely regular if and only if it is homeomorphic to a subspace of a product of pseudometric spaces.

Solution. Let A be a set and (X_{α}, d_{α}) be a pseudometric space for each $\alpha \in A$.

- Then X_{α} is completely regular for each $\alpha \in A$ so $X' := \prod \{X_{\alpha} : \alpha \in A\}$ is completely regular.
- If X is homeomorphic to a subspace of X', then X is completely regular.

Now assume that (X, τ) is a completely regular topological space.

- Let A be the set of all continuous $f: X \to [0, 1]$.
- Let $Z := X \times [0, 1]$ and let d be the pseudometric on Z given by $d(\langle x, a \rangle, \langle y, b \rangle) = |a b|$.
- Let $\varphi: X \to Z^A$ be defined as follows:
 - If $x \in X$, then let $\varphi(x) : A \to Z$ be such that $\varphi(x)(f) = \langle x, f(x) \rangle$ for every $f \in A$.
- **Hint:** Show that $\varphi : X \to \varphi[X]$ is a homeomorphism.

Exercise.

Theorem (uniformity completely regular).

Let (X, τ) be a topological space. There exists a uniformity \mathscr{D} on X that induces the topology τ if and only if τ is completely regular. It follows that there exists a separating uniformity on X that induces τ if and only if τ is Tychonoff.

Proof. Assume that there exists a uniformity \mathscr{D} on X that induces the topology τ .

- Then (X, \mathscr{D}) is uniformly isomorphic to a subspace X' of a product $Y := \prod \{X_{\alpha} : \alpha \in A\}$, where X_{α} is a pseudometric space for each $\alpha \in A$.
- Let τ_{α} be the topology on X_{α} induced by the corresponding pseudometric.
- Since τ_{α} is completely regular for each $\alpha \in A$, it follows that the subspace topology on X' induced by the product topology on Y is also completely regular.
- Thus τ is completely regular.

Assume that τ is completely regular.

- The exercise above implies that X is homeomorphic to a subspace X' of a product $Y := \prod \{X_{\alpha} : \alpha \in A\}$, where X_{α} is a pseudometric space for each $\alpha \in A$.
- Let \mathscr{D}' be the relative uniformity on X' that is induced by the product uniformity on Y.
- Let $\mathscr{D} = \left\{ \hat{h}^{-1}[D] : D \in \mathscr{D}' \right\}$, where $h : X \to X'$ is a homeomorphism.
- Then \mathscr{D} is a uniformity on X that induces τ .
 - Note that $\hat{h} : X \times X \to X' \times X'$ is a bijection such that for any $D \subseteq X \times X$ we have $\hat{h}[D] \in \mathscr{D}'$ if and only if $D \in \mathscr{D}$.
 - Let τ' be the subspace topology on X' inherited from the product topology on Y. Then τ' is induced by the uniformity \mathscr{D}' on X'.
 - Since for any $U \subseteq X$, we have $U \in \tau$ if and only if $h[U] \in \tau'$, it follows that \mathscr{D} induces τ on X.
 - * Let $x \in X$. We show that $\{D[x] : D \in \mathscr{D}\}$ is a nbhd base at x, relative to τ .
 - * If $D \in \mathscr{D}$, then $\hat{h}[D] \in \mathscr{D}'$ so $\hat{h}[D][h(x)]$ is a nbhd of h(x) with respect to τ' .
 - * It follows that $h^{-1} \left[\hat{h}[D][h(x)] \right]$ is a nbhd of x with respect to τ .
 - * We show that $h^{-1}\left[\hat{h}[D][h(x)]\right] = D[x].$

The following are equivalent:

$$\cdot y \in h^{-1} \left| h[D][h(x)] \right|$$

$$\cdot h(y) \in \hat{h}[D][h(x)],$$

- $\cdot \langle h(x), h(y) \rangle \in \hat{h}[D],$
- $\cdot \langle x, y \rangle \in D,$
- $\cdot y \in D[x].$
- * It follows that D[x] is a nbhd of x with respect to τ .
- * Let U be any nbhd of x with respect to τ .
- * We show that there is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
 - · h[U] is a nbhd of h(x) with respect to τ' , so there is $D' \in \mathscr{D}'$ with $D'[h(x)] \subseteq h[U]$.
 - · Let $D \in \mathscr{D}$ be such that $D' = \hat{h}[D]$.
 - · As proved above, we have $h^{-1}[D'[h(x)]] = D[x]$.
 - If $y \in D[x]$, then $h(y) \in D'[h(x)] \in h[U]$ so $y \in U$.
 - Thus $D[x] \subseteq U$.
- * Thus $\{D[x] : D \in \mathcal{D}\}$ is a nbhd base at x, relative to τ .

Cauchy net.

Let (X, \mathscr{D}) be a uniform space and $(x_{\alpha} : \alpha \in I)$ be a net in X. We say that the net $(x_{\alpha} : \alpha \in I)$ is Cauchy (\mathscr{D} -Cauchy, Cauchy relative to \mathscr{D}) iff for each $D \in \mathscr{D}$ there exists $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.

- (1) Assume that \mathscr{D} is induced by a pseudometric d on X.
 - We say that a net $(x_{\alpha} : \alpha \in I)$ in X is d-Cauchy iff for every $\varepsilon > 0$, there is $\gamma \in I$ such that $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$.
 - Then $(x_{\alpha} : \alpha \in I)$ is *d*-Cauchy if and only if it is \mathscr{D} -Cauchy.
 - Assume that $(x_{\alpha} : \alpha \in I)$ is d-Cauchy.
 - Let $D \in \mathscr{D}$. We show that there exists $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - * There is $\varepsilon > 0$ such that $\langle x, y \rangle \in D$ for any $x, y \in X$ with $d(x, y) < \varepsilon$.
 - * Let $\gamma \in I$ such that $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$.
 - * Then $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - Assume that $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy.
 - Let $\varepsilon > 0$. We show that there exists $\gamma \in I$ such that $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$.
 - * Let $D := \{ \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon \}$. Then $D \in \mathscr{D}$.
 - * There exists $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - * Thus $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$.

(2) Given a directed set *I*, assume that $I \times I$ has the product direction, that is let $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle$ iff $\alpha \leq \gamma$ and $\beta \leq \delta$ for any $\alpha, \beta, \gamma, \delta \in I$.

- A net $(x_{\alpha} : \alpha \in I)$ in X is \mathscr{D} -Cauchy if and only if for every $D \in \mathscr{D}$ the net $(\langle x_{\alpha}, x_{\beta} \rangle : \langle \alpha, \beta \rangle \in I \times I)$ is eventually in D. (There is $\langle \gamma, \delta \rangle \in I \times I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for all $\langle \alpha, \beta \rangle \geq \langle \gamma, \delta \rangle$.)
 - Assume that the net $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy.
 - * Let $D \in \mathscr{D}$. There is $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for all $\alpha, \beta \geq \gamma$.
 - * Then $\langle \gamma, \gamma \rangle \in I \times I$ and $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for all $\langle \alpha, \beta \rangle \geq \langle \gamma, \gamma \rangle$.
 - Assume that there is $\langle \gamma, \delta \rangle \in I \times I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for all $\langle \alpha, \beta \rangle \geq \langle \gamma, \delta \rangle$.
 - * There is $\xi \in I$ such that $\gamma, \delta \leq \xi$.
 - * Then $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for all $\alpha, \beta \geq \xi$.
 - * Thus the net $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy.

(3) A net $(x_{\alpha} : \alpha \in I)$ in X is \mathscr{D} -Cauchy if and only if there exists a subbase \mathscr{S} for \mathscr{D} such that for every $S \in \mathscr{S}$ the net $(\langle x_{\alpha}, x_{\beta} \rangle : \langle \alpha, \beta \rangle \in I \times I)$ is eventually in S.

Proof. Assume that the net $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy.

• Then $\mathscr{S} := \mathscr{D}$ satisfies the requirements.

Assume that there exists a subbase \mathscr{S} for \mathscr{D} such that for every $S \in \mathscr{S}$ the net $(\langle x_{\alpha}, x_{\beta} \rangle : \langle \alpha, \beta \rangle \in I \times I)$ is eventually in S.

- Let $D \in \mathscr{D}$.
- We show that there exists $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - We can assume $D \neq X \times X$.
 - Let $\mathscr{S}' \subseteq \mathscr{S}$ be finite, nonempty and such that $\bigcap \mathscr{S}' \subseteq D$.
 - For each $S \in \mathscr{S}'$, there is $\gamma_S \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in S$ for every $\alpha, \beta \geq \gamma_S$.
 - Let $\gamma \in I$ be such that $\gamma_S \leq \gamma$ for every $S \in \mathscr{S}'$. Such γ exists since \mathscr{S}' is finite and I is directed.
 - If $\alpha, \beta \geq \gamma$, then $\langle x_{\alpha}, x_{\beta} \rangle \in D$ as required.

(4) Let \mathscr{P} be a family of pseudometrics on X such that \mathscr{P} induces the uniformity \mathscr{D} . Then a net $(x_{\alpha} : \alpha \in I)$ in X is \mathscr{D} -Cauchy if and only if for every $d \in \mathscr{P}$ the net $(d(x_{\alpha}, x_{\beta}) : \langle \alpha, \beta \rangle \in I \times I)$ converges to 0.

Proof. Assume that $(x_{\alpha} : \alpha \in I)$ is a \mathscr{D} -Cauchy net in X.

- Let $d \in \mathscr{P}$. Let $\varepsilon > 0$.
- We show that there exists $\gamma \in I$ such that $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$.
 - Let $D := \langle \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon \rangle$. Then $D \in \mathscr{D}$.
 - There is $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - Thus $d(x_{\alpha}, x_{\beta}) < \varepsilon$ for every $\alpha, \beta \geq \gamma$ as required.

Assume that for every $d \in \mathscr{P}$ the net $(d(x_{\alpha}, x_{\beta}) : \langle \alpha, \beta \rangle \in I \times I)$ converges to 0.

- Let $D \in \mathscr{D}$.
- We show that there exists $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in D$ for every $\alpha, \beta \geq \gamma$.
 - We can assume that $D \neq X \times X$.

- There is finite $\mathscr{P}' \subseteq \mathscr{P}$ and $\varepsilon_d > 0$ for every $d \in \mathscr{P}'$ such that $\bigcap \{D_d : d \in \mathscr{P}'\} \subseteq D$, where

 $D_d = \{ \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon_d \}$

for every $d \in \mathscr{P}'$.

- For each $d \in \mathscr{P}'$, let $\gamma_d \in I$ be such that $d(x_{\alpha}, x_{\beta}) < \varepsilon_d$ for every $\alpha, \beta \geq \gamma_d$.
- Let $\gamma \in I$ be such that $\gamma \geq \gamma_d$ for each $d \in \mathscr{P}'$.
- If $\alpha, \beta \geq \gamma$, then $\langle x_{\alpha}, x_{\beta} \rangle \in D_d$ for every $d \in \mathscr{P}'$ so $\langle x_{\alpha}, x_{\beta} \rangle \in D$ as required.

Theorem (convergent net is Cauchy).

Let $(x_{\alpha} : \alpha \in I)$ be a net in a uniform space (X, \mathcal{D}) . If $(x_{\alpha} : \alpha \in I)$ converges in the topology on X that is induced by \mathcal{D} , then it is \mathcal{D} -Cauchy.

Proof. Assume that $(x_{\alpha} : \alpha \in I)$ converges to $x \in X$.

- Let $D \in \mathscr{D}$.
- Let $E \in \mathscr{D}$ be symmetric and such that $E \circ E \subseteq D$.
- There is $\gamma \in I$ such that $x_{\alpha} \in E[x]$ for every $\alpha \geq \gamma$.
- If $\alpha, \beta \geq \gamma$, then $\langle x, x_{\alpha} \rangle \in E$ and $\langle x, x_{\beta} \rangle \in E$, which implies that $\langle x_{\alpha}, x_{\beta} \rangle \in E \circ E \subseteq D$.
- Thus $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy.

Theorem (Cauchy net converges cluster).

Let $(x_{\alpha} : \alpha \in I)$ be a net in a uniform space (X, \mathscr{D}) . If $(x_{\alpha} : \alpha \in I)$ is \mathscr{D} -Cauchy and has a cluster point $x \in X$, then it converges to x in the topology induced by \mathscr{D} .

Proof. Let $D \in \mathscr{D}$.

- Let $E \in \mathscr{D}$ be such that $E \circ E \subseteq D$.
- There is $\gamma \in I$ such that $\langle x_{\alpha}, x_{\beta} \rangle \in E$ for every $\alpha, \beta \geq \gamma$.
- Since x is a cluster point of $(x_{\alpha} : \alpha \in I)$, there is $\delta \in I$ be such that $\delta \geq \gamma$ and $x_{\delta} \in E[x]$.
- If $\alpha \geq \delta$, then $\langle x_{\delta}, x_{\alpha} \rangle \in E$.
- Since $\langle x, x_{\delta} \rangle \in E$, it follows that $\langle x, x_{\alpha} \rangle \in E \circ E \subseteq D$, so $x_{\alpha} \in D[x]$.
- Thus $(x_{\alpha} : \alpha \in I)$ converges to x.

Complete uniform space.

Let (X, \mathscr{D}) be a uniform space. We say that the space is complete (or that \mathscr{D} is complete) iff every \mathscr{D} -Cauchy net converges to some $x \in X$ in the topology induced by \mathscr{D} .

Theorem. Assume that \mathscr{D} is induced by a pseudometric d on X. Then (X, \mathscr{D}) is \mathscr{D} -complete if and only if every d-Cauchy sequence in X converges to some $x \in X$ with respect to the topology on X that is induced by \mathscr{D} (which is the same as the topology induced by d).

Proof. Assume that (X, \mathscr{D}) is \mathscr{D} -complete.

• Let $(x_n : n \in \mathbb{N})$ be a *d*-Cauchy sequence in X. It follows that $(x_n : n \in \mathbb{N})$ is \mathscr{D} -Cauchy. Thus $(x_n : n \in \mathbb{N})$ converges to some $x \in X$.

Assume that every d-Cauchy sequence in X converges.

- Let $(x_{\alpha} : \alpha \in I)$ be a net in X that is \mathscr{D} -Cauchy.
- We find $x \in X$ such that $(x_{\alpha} : \alpha \in I)$ converges to x.
 - For each $n \in \mathbb{N}$, let

$$D_n := \{ \langle x, y \rangle \in X \times X : d(x, y) < 1/n \}.$$

- Then $D_n \in \mathscr{D}$.
- Let $\alpha_1 \in I$ be such that $\langle x_{\alpha}, x_{\beta} \rangle \in D_1$ for every $\alpha, \beta \geq \alpha_1$.
- Suppose $n \ge 1$ and $\alpha_n \in I$ is defined. Define $\alpha_{n+1} \in I$ to be such that $\alpha_{n+1} \ge \alpha_n$ and $\langle x_{\alpha}, x_{\beta} \rangle \in D_{n+1}$ for every $\alpha, \beta \ge \alpha_{n+1}$.
- The sequence $(x_{\alpha_n} : n \in \mathbb{N})$ is d-Cauchy.
 - * Let $\varepsilon > 0$.
 - * Take $n \in \mathbb{N}$ such that $1/n < \varepsilon$.
 - * If $m, k \ge n$, then $\alpha_m, \alpha_k \ge \alpha_n$ so $d(x_{\alpha_m}, x_{\alpha_k}) < \varepsilon$.
- There is $x \in X$ such that $(x_{\alpha_n} : n \in \mathbb{N})$ converges to x.
- We show that the net $(x_{\alpha} : \alpha \in I)$ converges to x.
 - * Let $\varepsilon > 0$.
 - * Let $n \in \mathbb{N}$ be such that $2/n < \varepsilon$ and $d(x_{\alpha_n}, x) < \varepsilon/2$.
 - * If $\alpha \geq \alpha_n$, then $d(x_\alpha, x_{\alpha_n}) < 1/n < \varepsilon/2$ so $d(x_\alpha, x) < \varepsilon$.
 - * Thus the net $(x_{\alpha} : \alpha \in I)$ converges to x.

Example (topological group uniformity).

Let (G, τ) be a topological group. For each nbhd U of the identity e of G, let

 $U_L = \left\{ \langle x, y \rangle \in G \times G : x^{-1}y \in U \right\}$

and

$$U_R = \left\{ \langle x, y \rangle \in G \times G : xy^{-1} \in U \right\}.$$

Let $\mathscr{L}' = \{U_L : U \text{ is a nbhd of } e\}$ and $\mathscr{R}' = \{U_R : U \text{ is a nbhd of } e\}.$

- Then each of \mathscr{L}' and \mathscr{R}' is a uniformity base on X.
- Let \mathscr{L} and \mathscr{R} be the uniformities on G that are induced by \mathscr{L}' and \mathscr{R}' , respectively. We call \mathscr{L} the *left uniformity* of the topological group, and \mathscr{R} is called the *right uniformity*.
- Then \mathscr{L} induces the topology τ and the same is true for \mathscr{R} .

Let G be the set of all real-valued functions on \mathbb{R} that are of the form g(x) = ax + b for some $a, b \in \mathbb{R}$ with $a \neq 0$.

• Then G is a group under composition.

Let $\mathscr{B} = \{B_{\varepsilon} : \varepsilon > 0\}$ be a family of subsets of G, where B_{ε} consists of those $g \in G$ that are of the form g(x) = ax + b with $|a - 1| < \varepsilon$ and $|b| < \varepsilon$.

- There exists a topology τ on G making it a topological group such that \mathscr{B} is a nbhd base at the identity of G.
- Let \mathscr{L} and \mathscr{R} be the left and right uniformity of G.
- In this case, we have $\mathscr{L} \neq \mathscr{R}$.

Exercise.

 There does not exist an invariant metric d on G that induces τ. (A metric d on G is *invariant* iff

$$d(g,h) = d(f \circ g, f \circ h) = d(g \circ f, h \circ f)$$

for every $f, g, h \in G$.

Exercise.