Math 793C

Topology for Analysis

Jerzy Wojciechowski
Spring 2020
Class 32
April 13

Theorem (uniform space subspace product).

Each uniform space is uniformly isomorphic to a subspace of a product of pseudometric spaces. A uniform space with separating uniformity is uniformly isomorphic to a subspace of a product of metric spaces.

Proof. Let (X, \mathscr{D}) be a uniform space.

- Let \mathscr{P} be the family of all uniformly continuous pseudometrics on X.
- For each $d \in \mathscr{P}$, let $\left(Y_{d}, d\right)$ be the pseudometric space, where $Y_{d}=X$.
- Let $Y=\prod\left\{Y_{d}: d \in \mathscr{P}\right\}$ be the uniform space with the product uniformity.
- Let $f: X \rightarrow Y$ be defined by $f(x)=\left(y_{d}\right)_{d \in \mathscr{P}}$, where $y_{d}=x$ for each $d \in \mathscr{P}$.
- It is clear that f if injective.
- We show that f is a uniform isomorphism onto $f[X]$ (relative to \mathscr{D} and the subspace uniformity \mathscr{D}^{\prime} on $f[X]$ inherited from the product uniformity on Y).
- For each $d \in \mathscr{P}$, let \mathscr{D}_{d} be the uniformity on $Y_{d}=X$ that is induced by d.
- For each $d \in \mathscr{P}$, the composition $\pi_{d} \circ f$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}_{d}, where $\pi_{d}: Y \rightarrow Y_{d}$ is the projection.
* $\pi_{d} \circ f: X \rightarrow Y_{d}$ is the identity function $X \rightarrow X$.
* Since the pseudometric d is uniformly continuous relative to \mathscr{D}, it follows that $\pi_{d} \circ f$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}_{d}.
- Let $\mathscr{D}^{\prime \prime}=\left\{\hat{f}^{-1}\left[D^{\prime}\right]: D^{\prime} \in \mathscr{D}^{\prime}\right\}$.
- Since f is uniformly continuous relative to \mathscr{D} and \mathscr{D}^{\prime}, it follows that $\mathscr{D}^{\prime \prime} \subseteq \mathscr{D}$.
- Note that $\pi_{d} \circ f: X \rightarrow Y_{d}$ is uniformly continuous relative to $\mathscr{D}^{\prime \prime}$ and \mathscr{D}_{d}.

It suffices to show that $f: X \rightarrow Y$ is uniformly continuous relative to $\mathscr{D}^{\prime \prime}$ and the product uniformity on Y.

* Let D be a member of the product uniformity on Y.
* Then $D^{\prime}:=D \cap(f[X] \times f[X])$ is a member of \mathscr{D}^{\prime}.
* It follows that $\hat{f}^{-1}[D]=\hat{f}^{-1}\left[D^{\prime}\right] \in \mathscr{D}^{\prime \prime}$.
- Since \mathscr{D} is the weak uniformity on X induced by the family $\left\{\left(\mathscr{D}_{d}, \pi_{d} \circ f\right), d \in \mathscr{P}\right\}$, it follows that $\mathscr{D} \subseteq \mathscr{D}^{\prime \prime}$.
- Thus $\mathscr{D}=\mathscr{D}^{\prime \prime}$ and so f is a uniform isomorphism onto $f[X]$.
- Assume that \mathscr{D} is separating.
- For each $d \in \mathscr{P}$, let Z_{d} be a subspace of X obtained by selecting exactly one element from each equivalence class of the equivalence relation \sim_{d} on X defined by $x \sim_{d} y$ iff $d(x, y)=0$.
- For each $d \in \mathscr{P}$, let \mathscr{D}_{d}^{\prime} be the uniformity on Z_{d} induced by the metric d.
- Let $Z=\prod\left\{Z_{d}: d \in \mathscr{P}\right\}$ be the product uniform space.
- Let $g: X \rightarrow Z$ be defined by $g(x)=\left(z_{d}: d \in \mathscr{P}\right)$, where z_{d} is the unique element of Z_{d} such that $z_{d} \sim_{d} x$.
- Since \mathscr{D} is separating and since \mathscr{D} is induced by \mathscr{P}, it follows that if $x, y \in X$ are distinct, then there is $d \in \mathscr{P}$ with $d(x, y)>0$.
- Let $x, y \in X$ be distinct.
- Since \mathscr{D} is separating, there is $D \in \mathscr{D}$ with $\langle x, y\rangle \notin D$.
- Since \mathscr{D} is induced by \mathscr{P}, there exists finite nonempty $\mathscr{P}^{\prime} \subseteq \mathscr{P}$ such that $\bigcap\left\{D_{d}: d \in \mathscr{P}^{\prime}\right\} \subseteq D$, where D_{d} is a member of the uniformity on X that is induced by d for each $d \in \mathscr{P}^{\prime}$.
- For each $d \in \mathscr{P}^{\prime}$ let $\varepsilon_{d}>0$ be such that $d(w, z)<\varepsilon_{d}$ implies that $\langle w, z\rangle \in D_{d}$ for any $w, z \in X$.
- Since $\langle x, y\rangle \notin D$, it follows that there is $d \in \mathscr{P}^{\prime}$ such that $d(x, y) \geq \varepsilon_{d}$.
- Thus we have $d \in \mathscr{P}$ with $d(x, y)>0$.
- Thus g is an injection.
- We show that g is a uniform isomorphism onto $g[X]$ (relative to \mathscr{D} and the subspace uniformity \mathscr{E} on $g[X]$ inherited from the product uniformity on Z).
- For each $d \in \mathscr{P}$, let \mathscr{D}_{d} be the uniformity on X that is induced by the pseudometric d.
- Note that $\mathscr{D}_{d}^{\prime}=\mathscr{D}_{d} \cap\left(Z_{d} \times Z_{d}\right)$.
- We show that for each $d \in \mathscr{P}$, the composition $\pi_{d} \circ g$ is uniformly continuous relative to \mathscr{D} and \mathscr{D}_{d}^{\prime}, where $\pi_{d}: Z \rightarrow Z_{d}$ is the projection.
* Let $d \in \mathscr{P}$ be fixed.
* For each $x \in X$, denote $x_{d}:=\left(\pi_{d} \circ g\right)(x)$.
* Let $D^{\prime} \in \mathscr{D}_{d}^{\prime}$ be arbitrary and define

$$
D:=\left\{\langle x, y\rangle \in X \times X:\left\langle x_{d}, y_{d}\right\rangle \in D^{\prime}\right\} .
$$

* It remains to show that $D \in \mathscr{D}$.
- Since the pseudometric d is uniformly continuous relative to \mathscr{D}, it follows that $\mathscr{D}_{d} \subseteq \mathscr{D}$. Thus it suffices to show that $D \in \mathscr{D}_{d}$.
- Since $D^{\prime} \in \mathscr{D}_{d}^{\prime}$, there is $\varepsilon>0$ be such that for any $w, z \in Z_{d}$ with $d(w, z)<\varepsilon$ we have $\langle w, z\rangle \in D^{\prime}$.
- Let $D^{\prime \prime}:=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\}$. Note that $D^{\prime \prime} \in$ \mathscr{D}_{d}.
- If $\langle x, y\rangle \in D^{\prime \prime}$, then $d\left(x_{d}, y_{d}\right)=d(x, y)<\varepsilon$ so $\left\langle x_{d}, y_{d}\right\rangle \in D^{\prime}$, which implies that $\langle x, y\rangle \in D$.
- Since $D^{\prime \prime} \subseteq D$ and $D^{\prime \prime} \in \mathscr{D}_{d}$, it follows that $D \in \mathscr{D}_{d}$.
- Let $\mathscr{F}=\left\{\hat{g}^{-1}[E]: E \in \mathscr{E}\right\}$.
- Since g is uniformly continuous relative to \mathscr{D} and \mathscr{E}, the definition of \mathscr{F} implies that $\mathscr{F} \subseteq \mathscr{D}$.
- Note that $\pi_{d} \circ g: X \rightarrow Z_{d}$ is uniformly continuous relative to \mathscr{F} and \mathscr{D}_{d}^{\prime} for each $d \in \mathscr{P}$.
* For each $d \in \mathscr{P}$, the projection π_{d} is uniformly continuous relative to the product uniformity on Z and \mathscr{D}_{d}^{\prime}.
* Thus, it suffices to show that $g: X \rightarrow Z$ is uniformly continuous relative to \mathscr{F} and the product uniformity on Z.
* Let D be a member of the product uniformity on Z.
* Then $E:=D \cap(g[X] \times g[X])$ is a member of \mathscr{E}.
* It follows that $\hat{g}^{-1}[D]=\hat{g}^{-1}[E] \in \mathscr{F}$.
- Since \mathscr{D} is the weak uniformity on X induced by the family $\left\{\left(\mathscr{D}_{d}^{\prime}, \pi_{d} \circ g\right), d \in \mathscr{P}\right\}$, it follows that $\mathscr{D} \subseteq \mathscr{F}$.
- Thus $\mathscr{D}=\mathscr{F}$ and so g is a uniform isomorphism onto $g[X]$.

Exercise (completely regular subspace product).

Let (X, τ) be a topological space. Prove that X is completely regular if and only if it is homeomorphic to a subspace of a product of pseudometric spaces.

Solution. Let A be a set and $\left(X_{\alpha}, d_{\alpha}\right)$ be a pseudometric space for each $\alpha \in A$.

- Then X_{α} is completely regular for each $\alpha \in A$ so $X^{\prime}:=\prod\left\{X_{\alpha}: \alpha \in A\right\}$ is completely regular.
- If X is homeomorphic to a subspace of X^{\prime}, then X is completely regular.

Now assume that (X, τ) is a completely regular topological space.

- Let A be the set of all continuous $f: X \rightarrow[0,1]$.
- Let $Z:=X \times[0,1]$ and let d be the pseudometric on Z given by $d(\langle x, a\rangle,\langle y, b\rangle)=$ $|a-b|$.
- Let $\varphi: X \rightarrow Z^{A}$ be defined as follows:
- If $x \in X$, then let $\varphi(x): A \rightarrow Z$ be such that $\varphi(x)(f)=\langle x, f(x)\rangle$ for every $f \in A$.

Hint: Show that $\varphi: X \rightarrow \varphi[X]$ is a homeomorphism.
Exercise.

Theorem (uniformity completely regular).

Let (X, τ) be a topological space. There exists a uniformity \mathscr{D} on X that induces the topology τ if and only if τ is completely regular. It follows that there exists a separating uniformity on X that induces τ if and only if τ is Tychonoff.

Proof. Assume that there exists a uniformity \mathscr{D} on X that induces the topology τ.

- Then (X, \mathscr{D}) is uniformly isomorphic to a subspace X^{\prime} of a product $Y:=$ $\prod\left\{X_{\alpha}: \alpha \in A\right\}$, where X_{α} is a pseudometric space for each $\alpha \in A$.
- Let τ_{α} be the topology on X_{α} induced by the corresponding pseudometric.
- Since τ_{α} is completely regular for each $\alpha \in A$, it follows that the subspace topology on X^{\prime} induced by the product topology on Y is also completely regular.
- Thus τ is completely regular.

Assume that τ is completely regular.

- The exercise above implies that X is homeomorphic to a subspace X^{\prime} of a product $Y:=\prod\left\{X_{\alpha}: \alpha \in A\right\}$, where X_{α} is a pseudometric space for each $\alpha \in A$.
- Let \mathscr{D}^{\prime} be the relative uniformity on X^{\prime} that is induced by the product uniformity on Y.
- Let $\mathscr{D}=\left\{\hat{h}^{-1}[D]: D \in \mathscr{D}^{\prime}\right\}$, where $h: X \rightarrow X^{\prime}$ is a homeomorphism.
- Then \mathscr{D} is a uniformity on X that induces τ.
- Note that $\hat{h}: X \times X \rightarrow X^{\prime} \times X^{\prime}$ is a bijection such that for any $D \subseteq X \times X$ we have $\hat{h}[D] \in \mathscr{D}^{\prime}$ if and only if $D \in \mathscr{D}$.
- Let τ^{\prime} be the subspace topology on X^{\prime} inherited from the product topology on Y. Then τ^{\prime} is induced by the uniformity \mathscr{D}^{\prime} on X^{\prime}.
- Since for any $U \subseteq X$, we have $U \in \tau$ if and only if $h[U] \in \tau^{\prime}$, it follows that \mathscr{D} induces τ on X.
* Let $x \in X$. We show that $\{D[x]: D \in \mathscr{D}\}$ is a nbhd base at x, relative to τ.
* If $D \in \mathscr{D}$, then $\hat{h}[D] \in \mathscr{D}^{\prime}$ so $\hat{h}[D][h(x)]$ is a nbhd of $h(x)$ with respect to τ^{\prime}.
* It follows that $h^{-1}[\hat{h}[D][h(x)]]$ is a nbhd of x with respect to τ.
* We show that $h^{-1}[\hat{h}[D][h(x)]]=D[x]$.

The following are equivalent:

- $y \in h^{-1}[\hat{h}[D][h(x)]]$,
- $h(y) \in \hat{h}[D][h(x)]$,
- $\langle h(x), h(y)\rangle \in \hat{h}[D]$,
- $\langle x, y\rangle \in D$,
- $y \in D[x]$.
* It follows that $D[x]$ is a nbhd of x with respect to τ.
* Let U be any nbhd of x with respect to τ.
* We show that there is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
- $h[U]$ is a nbhd of $h(x)$ with respect to τ^{\prime}, so there is $D^{\prime} \in \mathscr{D}^{\prime}$ with $D^{\prime}[h(x)] \subseteq h[U]$.
- Let $D \in \mathscr{D}$ be such that $D^{\prime}=\hat{h}[D]$.
- As proved above, we have $h^{-1}\left[D^{\prime}[h(x)]\right]=D[x]$.
- If $y \in D[x]$, then $h(y) \in D^{\prime}[h(x)] \in h[U]$ so $y \in U$.
- Thus $D[x] \subseteq U$.
* Thus $\{D[x]: D \in \mathscr{D}\}$ is a nbhd base at x, relative to τ.

Cauchy net.

Let (X, \mathscr{D}) be a uniform space and $\left(x_{\alpha}: \alpha \in I\right)$ be a net in X. We say that the net $\left(x_{\alpha}: \alpha \in I\right)$ is Cauchy (\mathscr{D}-Cauchy, Cauchy relative to \mathscr{D}) iff for each $D \in \mathscr{D}$ there exists $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
(1) Assume that \mathscr{D} is induced by a pseudometric d on X.

- We say that a net $\left(x_{\alpha}: \alpha \in I\right)$ in X is d-Cauchy iff for every $\varepsilon>0$, there is $\gamma \in I$ such that $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$.
- Then $\left(x_{\alpha}: \alpha \in I\right)$ is d-Cauchy if and only if it is \mathscr{D}-Cauchy.
- Assume that $\left(x_{\alpha}: \alpha \in I\right)$ is d-Cauchy.
- Let $D \in \mathscr{D}$. We show that there exists $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
* There is $\varepsilon>0$ such that $\langle x, y\rangle \in D$ for any $x, y \in X$ with $d(x, y)<\varepsilon$.
* Let $\gamma \in I$ such that $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$.
* Then $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
- Assume that $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy.
- Let $\varepsilon>0$. We show that there exists $\gamma \in I$ such that $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$.
* Let $D:=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\}$. Then $D \in \mathscr{D}$.
* There exists $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
* Thus $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$.
(2) Given a directed set I, assume that $I \times I$ has the product direction, that is let $\langle\alpha, \beta\rangle \leq\langle\gamma, \delta\rangle$ iff $\alpha \leq \gamma$ and $\beta \leq \delta$ for any $\alpha, \beta, \gamma, \delta \in I$.
- A net $\left(x_{\alpha}: \alpha \in I\right)$ in X is \mathscr{D}-Cauchy if and only if for every $D \in \mathscr{D}$ the net $\left(\left\langle x_{\alpha}, x_{\beta}\right\rangle:\langle\alpha, \beta\rangle \in I \times I\right)$ is eventually in D. (There is $\langle\gamma, \delta\rangle \in I \times I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for all $\langle\alpha, \beta\rangle \geq\langle\gamma, \delta\rangle$.)
- Assume that the net $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy.
* Let $D \in \mathscr{D}$. There is $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for all $\alpha, \beta \geq \gamma$.
* Then $\langle\gamma, \gamma\rangle \in I \times I$ and $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for all $\langle\alpha, \beta\rangle \geq\langle\gamma, \gamma\rangle$.
- Assume that there is $\langle\gamma, \delta\rangle \in I \times I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for all $\langle\alpha, \beta\rangle \geq\langle\gamma, \delta\rangle$.
* There is $\xi \in I$ such that $\gamma, \delta \leq \xi$.
* Then $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for all $\alpha, \beta \geq \xi$.
* Thus the net $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy.
(3) A net $\left(x_{\alpha}: \alpha \in I\right)$ in X is \mathscr{D}-Cauchy if and only if there exists a subbase \mathscr{S} for \mathscr{D} such that for every $S \in \mathscr{S}$ the net $\left(\left\langle x_{\alpha}, x_{\beta}\right\rangle:\langle\alpha, \beta\rangle \in I \times I\right)$ is eventually in S.

Proof. Assume that the net $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy.

- Then $\mathscr{S}:=\mathscr{D}$ satisfies the requirements.

Assume that there exists a subbase \mathscr{S} for \mathscr{D} such that for every $S \in \mathscr{S}$ the net $\left(\left\langle x_{\alpha}, x_{\beta}\right\rangle:\langle\alpha, \beta\rangle \in I \times I\right)$ is eventually in S.

- Let $D \in \mathscr{D}$.
- We show that there exists $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
- We can assume $D \neq X \times X$.
- Let $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ be finite, nonempty and such that $\bigcap \mathscr{S}^{\prime} \subseteq D$.
- For each $S \in \mathscr{S}^{\prime}$, there is $\gamma_{S} \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in S$ for every $\alpha, \beta \geq \gamma_{S}$.
- Let $\gamma \in I$ be such that $\gamma_{S} \leq \gamma$ for every $S \in \mathscr{S}^{\prime}$. Such γ exists since \mathscr{S}^{\prime} is finite and I is directed.
- If $\alpha, \beta \geq \gamma$, then $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ as required.
(4) Let \mathscr{P} be a family of pseudometrics on X such that \mathscr{P} induces the uniformity \mathscr{D}. Then a net $\left(x_{\alpha}: \alpha \in I\right)$ in X is \mathscr{D}-Cauchy if and only if for every $d \in \mathscr{P}$ the net $\left(d\left(x_{\alpha}, x_{\beta}\right):\langle\alpha, \beta\rangle \in I \times I\right)$ converges to 0 .

Proof. Assume that $\left(x_{\alpha}: \alpha \in I\right)$ is a \mathscr{D}-Cauchy net in X.

- Let $d \in \mathscr{P}$. Let $\varepsilon>0$.
- We show that there exists $\gamma \in I$ such that $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$.
- Let $D:=\langle\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\rangle$. Then $D \in \mathscr{D}$.
- There is $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
- Thus $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon$ for every $\alpha, \beta \geq \gamma$ as required.

Assume that for every $d \in \mathscr{P}$ the net $\left(d\left(x_{\alpha}, x_{\beta}\right):\langle\alpha, \beta\rangle \in I \times I\right)$ converges to 0 .

- Let $D \in \mathscr{D}$.
- We show that there exists $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ for every $\alpha, \beta \geq \gamma$.
- We can assume that $D \neq X \times X$.
- There is finite $\mathscr{P}^{\prime} \subseteq \mathscr{P}$ and $\varepsilon_{d}>0$ for every $d \in \mathscr{P}^{\prime}$ such that $\bigcap\left\{D_{d}: d \in \mathscr{P}^{\prime}\right\} \subseteq D$, where

$$
D_{d}=\left\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon_{d}\right\}
$$

for every $d \in \mathscr{P}^{\prime}$.

- For each $d \in \mathscr{P}^{\prime}$, let $\gamma_{d} \in I$ be such that $d\left(x_{\alpha}, x_{\beta}\right)<\varepsilon_{d}$ for every $\alpha, \beta \geq \gamma_{d}$.
- Let $\gamma \in I$ be such that $\gamma \geq \gamma_{d}$ for each $d \in \mathscr{P}^{\prime}$.
- If $\alpha, \beta \geq \gamma$, then $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D_{d}$ for every $d \in \mathscr{P}^{\prime}$ so $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D$ as required.

Theorem (convergent net is Cauchy).

Let $\left(x_{\alpha}: \alpha \in I\right)$ be a net in a uniform space (X, \mathscr{D}). If $\left(x_{\alpha}: \alpha \in I\right)$ converges in the topology on X that is induced by \mathscr{D}, then it is \mathscr{D}-Cauchy.

Proof. Assume that $\left(x_{\alpha}: \alpha \in I\right)$ converges to $x \in X$.

- Let $D \in \mathscr{D}$.
- Let $E \in \mathscr{D}$ be symmetric and such that $E \circ E \subseteq D$.
- There is $\gamma \in I$ such that $x_{\alpha} \in E[x]$ for every $\alpha \geq \gamma$.
- If $\alpha, \beta \geq \gamma$, then $\left\langle x, x_{\alpha}\right\rangle \in E$ and $\left\langle x, x_{\beta}\right\rangle \in E$, which implies that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in E \circ E \subseteq D$.
- Thus $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy.

Theorem (Cauchy net converges cluster).

Let $\left(x_{\alpha}: \alpha \in I\right)$ be a net in a uniform space (X, \mathscr{D}). If $\left(x_{\alpha}: \alpha \in I\right)$ is \mathscr{D}-Cauchy and has a cluster point $x \in X$, then it converges to x in the topology induced by \mathscr{D}.

Proof. Let $D \in \mathscr{D}$.

- Let $E \in \mathscr{D}$ be such that $E \circ E \subseteq D$.
- There is $\gamma \in I$ such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in E$ for every $\alpha, \beta \geq \gamma$.
- Since x is a cluster point of $\left(x_{\alpha}: \alpha \in I\right)$, there is $\delta \in I$ be such that $\delta \geq \gamma$ and $x_{\delta} \in E[x]$.
- If $\alpha \geq \delta$, then $\left\langle x_{\delta}, x_{\alpha}\right\rangle \in E$.
- Since $\left\langle x, x_{\delta}\right\rangle \in E$, it follows that $\left\langle x, x_{\alpha}\right\rangle \in E \circ E \subseteq D$, so $x_{\alpha} \in D[x]$.
- Thus $\left(x_{\alpha}: \alpha \in I\right)$ converges to x.

Complete uniform space.

Let (X, \mathscr{D}) be a uniform space. We say that the space is complete (or that \mathscr{D} is complete) iff every \mathscr{D}-Cauchy net converges to some $x \in X$ in the topology induced by \mathscr{D}.

Theorem. Assume that \mathscr{D} is induced by a pseudometric d on X. Then (X, \mathscr{D}) is \mathscr{D}-complete if and only if every d-Cauchy sequence in X converges to some $x \in X$ with respect to the topology on X that is induced by \mathscr{D} (which is the same as the topology induced by d).

Proof. Assume that (X, \mathscr{D}) is \mathscr{D}-complete.

- Let $\left(x_{n}: n \in \mathbb{N}\right)$ be a d-Cauchy sequence in X. It follows that $\left(x_{n}: n \in \mathbb{N}\right)$ is \mathscr{D}-Cauchy. Thus $\left(x_{n}: n \in \mathbb{N}\right)$ converges to some $x \in X$.

Assume that every d-Cauchy sequence in X converges.

- Let $\left(x_{\alpha}: \alpha \in I\right)$ be a net in X that is \mathscr{D}-Cauchy.
- We find $x \in X$ such that $\left(x_{\alpha}: \alpha \in I\right)$ converges to x.
- For each $n \in \mathbb{N}$, let

$$
D_{n}:=\{\langle x, y\rangle \in X \times X: d(x, y)<1 / n\} .
$$

Then $D_{n} \in \mathscr{D}$.

- Let $\alpha_{1} \in I$ be such that $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D_{1}$ for every $\alpha, \beta \geq \alpha_{1}$.
- Suppose $n \geq 1$ and $\alpha_{n} \in I$ is defined. Define $\alpha_{n+1} \in I$ to be such that $\alpha_{n+1} \geq \alpha_{n}$ and $\left\langle x_{\alpha}, x_{\beta}\right\rangle \in D_{n+1}$ for every $\alpha, \beta \geq \alpha_{n+1}$.
- The sequence $\left(x_{\alpha_{n}}: n \in \mathbb{N}\right)$ is d-Cauchy.
* Let $\varepsilon>0$.
* Take $n \in \mathbb{N}$ such that $1 / n<\varepsilon$.
* If $m, k \geq n$, then $\alpha_{m}, \alpha_{k} \geq \alpha_{n}$ so $d\left(x_{\alpha_{m}}, x_{\alpha_{k}}\right)<\varepsilon$.
- There is $x \in X$ such that $\left(x_{\alpha_{n}}: n \in \mathbb{N}\right)$ converges to x.
- We show that the net $\left(x_{\alpha}: \alpha \in I\right)$ converges to x.
* Let $\varepsilon>0$.
* Let $n \in \mathbb{N}$ be such that $2 / n<\varepsilon$ and $d\left(x_{\alpha_{n}}, x\right)<\varepsilon / 2$.
* If $\alpha \geq \alpha_{n}$, then $d\left(x_{\alpha}, x_{\alpha_{n}}\right)<1 / n<\varepsilon / 2$ so $d\left(x_{\alpha}, x\right)<\varepsilon$.
* Thus the net $\left(x_{\alpha}: \alpha \in I\right)$ converges to x.

Example (topological group uniformity).

Let (G, τ) be a topological group. For each nbhd U of the identity e of G, let

$$
U_{L}=\left\{\langle x, y\rangle \in G \times G: x^{-1} y \in U\right\}
$$

and

$$
U_{R}=\left\{\langle x, y\rangle \in G \times G: x y^{-1} \in U\right\} .
$$

Let $\mathscr{L}^{\prime}=\left\{U_{L}: U\right.$ is a nbhd of $\left.e\right\}$ and $\mathscr{R}^{\prime}=\left\{U_{R}: U\right.$ is a nbhd of $\left.e\right\}$.

- Then each of \mathscr{L}^{\prime} and \mathscr{R}^{\prime} is a uniformity base on X.
- Let \mathscr{L} and \mathscr{R} be the uniformities on G that are induced by \mathscr{L}^{\prime} and \mathscr{R}^{\prime}, respectively. We call \mathscr{L} the left uniformity of the topological group, and \mathscr{R} is called the right uniformity.
- Then \mathscr{L} induces the topology τ and the same is true for \mathscr{R}.

Let G be the set of all real-valued functions on \mathbb{R} that are of the form $g(x)=a x+b$ for some $a, b \in \mathbb{R}$ with $a \neq 0$.

- Then G is a group under composition.

Let $\mathscr{B}=\left\{B_{\varepsilon}: \varepsilon>0\right\}$ be a family of subsets of G, where B_{ε} consists of those $g \in G$ that are of the form $g(x)=a x+b$ with $|a-1|<\varepsilon$ and $|b|<\varepsilon$.

- There exists a topology τ on G making it a topological group such that \mathscr{B} is a nbhd base at the identity of G.
- Let \mathscr{L} and \mathscr{R} be the left and right uniformity of G.
- In this case, we have $\mathscr{L} \neq \mathscr{R}$.

Exercise.

- There does not exist an invariant metric d on G that induces τ. (A metric d on G is invariant iff

$$
d(g, h)=d(f \circ g, f \circ h)=d(g \circ f, h \circ f)
$$

for every $f, g, h \in G$.
Exercise.

