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Theorem (uniform space subspace product).

Each uniform space is uniformly isomorphic to a subspace of a product of pseu-
dometric spaces. A uniform space with separating uniformity is uniformly iso-
morphic to a subspace of a product of metric spaces.

Proof. Let (X,D) be a uniform space.

• Let P be the family of all uniformly continuous pseudometrics on X.

• For each d ∈P, let (Yd, d) be the pseudometric space, where Yd = X.

• Let Y =
∏
{Yd : d ∈P} be the uniform space with the product unifor-

mity.

• Let f : X → Y be defined by f(x) = (yd)d∈P , where yd = x for each
d ∈P.

• It is clear that f if injective.

• We show that f is a uniform isomorphism onto f [X] (relative to D and
the subspace uniformity D ′ on f [X] inherited from the product uniformity
on Y ).

– For each d ∈P, let Dd be the uniformity on Yd = X that is induced
by d.

– For each d ∈ P, the composition πd ◦ f is uniformly continuous
relative to D and Dd, where πd : Y → Yd is the projection.

∗ πd ◦ f : X → Yd is the identity function X → X.
∗ Since the pseudometric d is uniformly continuous relative to D ,

it follows that πd ◦ f is uniformly continuous relative to D and
Dd.
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– Let D ′′ =
{
f̂−1[D′] : D′ ∈ D ′

}
.

– Since f is uniformly continuous relative to D and D ′, it follows that
D ′′ ⊆ D .

– Note that πd ◦ f : X → Yd is uniformly continuous relative to D ′′

and Dd.

It suffices to show that f : X → Y is uniformly continuous relative
to D ′′ and the product uniformity on Y .

∗ Let D be a member of the product uniformity on Y .
∗ Then D′ := D ∩ (f [X]× f [X]) is a member of D ′.
∗ It follows that f̂−1[D] = f̂−1[D′] ∈ D ′′.

– Since D is the weak uniformity onX induced by the family {(Dd, πd ◦ f) , d ∈P},
it follows that D ⊆ D ′′.

– Thus D = D ′′ and so f is a uniform isomorphism onto f [X].

• Assume that D is separating.

• For each d ∈P, let Zd be a subspace of X obtained by selecting exactly
one element from each equivalence class of the equivalence relation ∼d on
X defined by x ∼d y iff d(x, y) = 0.

• For each d ∈P, let D ′d be the uniformity on Zd induced by the metric d.

• Let Z =
∏
{Zd : d ∈P} be the product uniform space.

• Let g : X → Z be defined by g(x) = (zd : d ∈P), where zd is the unique
element of Zd such that zd ∼d x.

• Since D is separating and since D is induced by P, it follows that if
x, y ∈ X are distinct, then there is d ∈P with d(x, y) > 0.

– Let x, y ∈ X be distinct.

– Since D is separating, there is D ∈ D with 〈x, y〉 /∈ D.

– Since D is induced by P, there exists finite nonempty P ′ ⊆P such
that

⋂
{Dd : d ∈P ′} ⊆ D, where Dd is a member of the uniformity

on X that is induced by d for each d ∈P ′.

– For each d ∈ P ′ let εd > 0 be such that d(w, z) < εd implies that
〈w, z〉 ∈ Dd for any w, z ∈ X.

– Since 〈x, y〉 /∈ D, it follows that there is d ∈P ′ such that d(x, y) ≥ εd.
– Thus we have d ∈P with d(x, y) > 0.

• Thus g is an injection.
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• We show that g is a uniform isomorphism onto g[X] (relative to D and
the subspace uniformity E on g[X] inherited from the product uniformity
on Z).

– For each d ∈ P, let Dd be the uniformity on X that is induced by
the pseudometric d.

– Note that D ′d = Dd ∩ (Zd × Zd).
– We show that for each d ∈ P, the composition πd ◦ g is uniformly

continuous relative to D and D ′d, where πd : Z → Zd is the projection.

∗ Let d ∈P be fixed.
∗ For each x ∈ X, denote xd := (πd ◦ g) (x).
∗ Let D′ ∈ D ′d be arbitrary and define

D := {〈x, y〉 ∈ X ×X : 〈xd, yd〉 ∈ D′}.
∗ It remains to show that D ∈ D .

· Since the pseudometric d is uniformly continuous relative to
D , it follows that Dd ⊆ D . Thus it suffices to show that
D ∈ Dd.
· Since D′ ∈ D ′d, there is ε > 0 be such that for any w, z ∈ Zd
with d(w, z) < ε we have 〈w, z〉 ∈ D′.
· Let D′′ := {〈x, y〉 ∈ X ×X : d(x, y) < ε}. Note that D′′ ∈

Dd.
· If 〈x, y〉 ∈ D′′, then d(xd, yd) = d(x, y) < ε so 〈xd, yd〉 ∈ D′,
which implies that 〈x, y〉 ∈ D.
· Since D′′ ⊆ D and D′′ ∈ Dd, it follows that D ∈ Dd.

– Let F =
{
ĝ−1[E] : E ∈ E

}
.

– Since g is uniformly continuous relative to D and E , the definition
of F implies that F ⊆ D .

– Note that πd ◦ g : X → Zd is uniformly continuous relative to F and
D ′d for each d ∈P.

∗ For each d ∈P, the projection πd is uniformly continuous rela-
tive to the product uniformity on Z and D ′d.

∗ Thus, it suffices to show that g : X → Z is uniformly continuous
relative to F and the product uniformity on Z.

∗ Let D be a member of the product uniformity on Z.
∗ Then E := D ∩ (g[X]× g[X]) is a member of E .
∗ It follows that ĝ−1[D] = ĝ−1[E] ∈ F .

– Since D is the weak uniformity onX induced by the family {(D ′d, πd ◦ g) , d ∈P},
it follows that D ⊆ F .

– Thus D = F and so g is a uniform isomorphism onto g[X].
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Exercise (completely regular subspace product).

Let (X, τ) be a topological space. Prove that X is completely regular if and
only if it is homeomorphic to a subspace of a product of pseudometric spaces.

Solution. Let A be a set and (Xα, dα) be a pseudometric space for each α ∈ A.

• Then Xα is completely regular for each α ∈ A so X ′ :=
∏
{Xα : α ∈ A}

is completely regular.

• If X is homeomorphic to a subspace of X ′, then X is completely regular.

Now assume that (X, τ) is a completely regular topological space.

• Let A be the set of all continuous f : X → [0, 1].

• Let Z := X×[0, 1] and let d be the pseudometric on Z given by d(〈x, a〉 , 〈y, b〉) =
|a− b|.

• Let ϕ : X → ZA be defined as follows:

– If x ∈ X, then let ϕ(x) : A→ Z be such that ϕ(x)(f) = 〈x, f(x)〉 for
every f ∈ A.

Hint: Show that ϕ : X → ϕ[X] is a homeomorphism.

Exercise.

Theorem (uniformity completely regular).

Let (X, τ) be a topological space. There exists a uniformity D onX that induces
the topology τ if and only if τ is completely regular. It follows that there exists
a separating uniformity on X that induces τ if and only if τ is Tychonoff.

Proof. Assume that there exists a uniformity D on X that induces the topol-
ogy τ .

• Then (X,D) is uniformly isomorphic to a subspace X ′ of a product Y :=∏
{Xα : α ∈ A}, where Xα is a pseudometric space for each α ∈ A.

• Let τα be the topology on Xα induced by the corresponding pseudometric.

• Since τα is completely regular for each α ∈ A, it follows that the subspace
topology on X ′ induced by the product topology on Y is also completely
regular.

• Thus τ is completely regular.

Assume that τ is completely regular.
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• The exercise above implies that X is homeomorphic to a subspace X ′ of
a product Y :=

∏
{Xα : α ∈ A}, where Xα is a pseudometric space for

each α ∈ A.

• Let D ′ be the relative uniformity on X ′ that is induced by the product
uniformity on Y .

• Let D =
{
ĥ−1[D] : D ∈ D ′

}
, where h : X → X ′ is a homeomorphism.

• Then D is a uniformity on X that induces τ .

– Note that ĥ : X × X → X ′ × X ′ is a bijection such that for any
D ⊆ X ×X we have ĥ[D] ∈ D ′ if and only if D ∈ D .

– Let τ ′ be the subspace topology on X ′ inherited from the product
topology on Y . Then τ ′ is induced by the uniformity D ′ on X ′.

– Since for any U ⊆ X, we have U ∈ τ if and only if h[U ] ∈ τ ′, it
follows that D induces τ on X.

∗ Let x ∈ X. We show that {D[x] : D ∈ D} is a nbhd base at x,
relative to τ .

∗ If D ∈ D , then ĥ[D] ∈ D ′ so ĥ[D][h(x)] is a nbhd of h(x) with
respect to τ ′.

∗ It follows that h−1
[
ĥ[D][h(x)]

]
is a nbhd of x with respect to τ .

∗ We show that h−1
[
ĥ[D][h(x)]

]
= D[x].

The following are equivalent:

· y ∈ h−1
[
ĥ[D][h(x)]

]
,

· h(y) ∈ ĥ[D][h(x)],
· 〈h(x), h(y)〉 ∈ ĥ[D],
· 〈x, y〉 ∈ D,
· y ∈ D[x].

∗ It follows that D[x] is a nbhd of x with respect to τ .
∗ Let U be any nbhd of x with respect to τ .
∗ We show that there is D ∈ D with D[x] ⊆ U .

· h[U ] is a nbhd of h(x) with respect to τ ′, so there is D′ ∈ D ′

with D′[h(x)] ⊆ h[U ].
· Let D ∈ D be such that D′ = ĥ[D].
· As proved above, we have h−1[D′[h(x)]] = D[x].
· If y ∈ D[x], then h(y) ∈ D′[h(x)] ∈ h[U ] so y ∈ U .
· Thus D[x] ⊆ U .

∗ Thus {D[x] : D ∈ D} is a nbhd base at x, relative to τ .
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Cauchy net.

Let (X,D) be a uniform space and (xα : α ∈ I) be a net in X. We say that the
net (xα : α ∈ I) is Cauchy (D-Cauchy, Cauchy relative to D) iff for each D ∈ D
there exists γ ∈ I such that 〈xα, xβ〉 ∈ D for every α, β ≥ γ.

(1) Assume that D is induced by a pseudometric d on X.

• We say that a net (xα : α ∈ I) in X is d-Cauchy iff for every ε > 0, there
is γ ∈ I such that d(xα, xβ) < ε for every α, β ≥ γ.

• Then (xα : α ∈ I) is d-Cauchy if and only if it is D-Cauchy.

– Assume that (xα : α ∈ I) is d-Cauchy.
– Let D ∈ D . We show that there exists γ ∈ I such that 〈xα, xβ〉 ∈ D

for every α, β ≥ γ.

∗ There is ε > 0 such that 〈x, y〉 ∈ D for any x, y ∈ X with
d(x, y) < ε.

∗ Let γ ∈ I such that d(xα, xβ) < ε for every α, β ≥ γ.
∗ Then 〈xα, xβ〉 ∈ D for every α, β ≥ γ.

– Assume that (xα : α ∈ I) is D-Cauchy.
– Let ε > 0. We show that there exists γ ∈ I such that d(xα, xβ) < ε

for every α, β ≥ γ.

∗ Let D := {〈x, y〉 ∈ X ×X : d(x, y) < ε}. Then D ∈ D .
∗ There exists γ ∈ I such that 〈xα, xβ〉 ∈ D for every α, β ≥ γ.
∗ Thus d(xα, xβ) < ε for every α, β ≥ γ.

(2) Given a directed set I, assume that I × I has the product direction, that
is let 〈α, β〉 ≤ 〈γ, δ〉 iff α ≤ γ and β ≤ δ for any α, β, γ, δ ∈ I.

• A net (xα : α ∈ I) in X is D-Cauchy if and only if for every D ∈ D the
net (〈xα, xβ〉 : 〈α, β〉 ∈ I × I) is eventually in D. (There is 〈γ, δ〉 ∈ I × I
such that 〈xα, xβ〉 ∈ D for all 〈α, β〉 ≥ 〈γ, δ〉.)

– Assume that the net (xα : α ∈ I) is D-Cauchy.
∗ Let D ∈ D . There is γ ∈ I such that 〈xα, xβ〉 ∈ D for all
α, β ≥ γ.

∗ Then 〈γ, γ〉 ∈ I × I and 〈xα, xβ〉 ∈ D for all 〈α, β〉 ≥ 〈γ, γ〉.
– Assume that there is 〈γ, δ〉 ∈ I × I such that 〈xα, xβ〉 ∈ D for all
〈α, β〉 ≥ 〈γ, δ〉.
∗ There is ξ ∈ I such that γ, δ ≤ ξ.
∗ Then 〈xα, xβ〉 ∈ D for all α, β ≥ ξ.
∗ Thus the net (xα : α ∈ I) is D-Cauchy.
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(3) A net (xα : α ∈ I) inX is D-Cauchy if and only if there exists a subbase S
for D such that for every S ∈ S the net (〈xα, xβ〉 : 〈α, β〉 ∈ I × I) is eventually
in S.

Proof. Assume that the net (xα : α ∈ I) is D-Cauchy.

• Then S := D satisfies the requirements.

Assume that there exists a subbase S for D such that for every S ∈ S the net
(〈xα, xβ〉 : 〈α, β〉 ∈ I × I) is eventually in S.

• Let D ∈ D .

• We show that there exists γ ∈ I such that 〈xα, xβ〉 ∈ D for every α, β ≥ γ.

– We can assume D 6= X ×X.

– Let S ′ ⊆ S be finite, nonempty and such that
⋂

S ′ ⊆ D.

– For each S ∈ S ′, there is γS ∈ I such that 〈xα, xβ〉 ∈ S for every
α, β ≥ γS .

– Let γ ∈ I be such that γS ≤ γ for every S ∈ S ′. Such γ exists since
S ′ is finite and I is directed.

– If α, β ≥ γ, then 〈xα, xβ〉 ∈ D as required.

(4) Let P be a family of pseudometrics on X such that P induces the uni-
formity D . Then a net (xα : α ∈ I) in X is D-Cauchy if and only if for every
d ∈P the net (d(xα, xβ) : 〈α, β〉 ∈ I × I) converges to 0.

Proof. Assume that (xα : α ∈ I) is a D-Cauchy net in X.

• Let d ∈P. Let ε > 0.

• We show that there exists γ ∈ I such that d(xα, xβ) < ε for every α, β ≥ γ.

– Let D := 〈〈x, y〉 ∈ X ×X : d(x, y) < ε〉. Then D ∈ D .

– There is γ ∈ I such that 〈xα, xβ〉 ∈ D for every α, β ≥ γ.
– Thus d(xα, xβ) < ε for every α, β ≥ γ as required.

Assume that for every d ∈ P the net (d(xα, xβ) : 〈α, β〉 ∈ I × I) converges to
0.

• Let D ∈ D .

• We show that there exists γ ∈ I such that 〈xα, xβ〉 ∈ D for every α, β ≥ γ.

– We can assume that D 6= X ×X.
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– There is finite P ′ ⊆ P and εd > 0 for every d ∈ P ′ such that⋂
{Dd : d ∈P ′} ⊆ D, where

Dd = {〈x, y〉 ∈ X ×X : d(x, y) < εd}
for every d ∈P ′.

– For each d ∈ P ′, let γd ∈ I be such that d(xα, xβ) < εd for every
α, β ≥ γd.

– Let γ ∈ I be such that γ ≥ γd for each d ∈P ′.

– If α, β ≥ γ, then 〈xα, xβ〉 ∈ Dd for every d ∈P ′ so 〈xα, xβ〉 ∈ D as
required.

Theorem (convergent net is Cauchy).

Let (xα : α ∈ I) be a net in a uniform space (X,D). If (xα : α ∈ I) converges
in the topology on X that is induced by D , then it is D-Cauchy.

Proof. Assume that (xα : α ∈ I) converges to x ∈ X.

• Let D ∈ D .

• Let E ∈ D be symmetric and such that E ◦ E ⊆ D.

• There is γ ∈ I such that xα ∈ E[x] for every α ≥ γ.

• If α, β ≥ γ, then 〈x, xα〉 ∈ E and 〈x, xβ〉 ∈ E, which implies that
〈xα, xβ〉 ∈ E ◦ E ⊆ D.

• Thus (xα : α ∈ I) is D-Cauchy.

Theorem (Cauchy net converges cluster).

Let (xα : α ∈ I) be a net in a uniform space (X,D). If (xα : α ∈ I) is D-Cauchy
and has a cluster point x ∈ X, then it converges to x in the topology induced
by D .

Proof. Let D ∈ D .

• Let E ∈ D be such that E ◦ E ⊆ D.

• There is γ ∈ I such that 〈xα, xβ〉 ∈ E for every α, β ≥ γ.

• Since x is a cluster point of (xα : α ∈ I), there is δ ∈ I be such that δ ≥ γ
and xδ ∈ E[x].

• If α ≥ δ, then 〈xδ, xα〉 ∈ E.

• Since 〈x, xδ〉 ∈ E, it follows that 〈x, xα〉 ∈ E ◦ E ⊆ D, so xα ∈ D[x].

• Thus (xα : α ∈ I) converges to x.
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Complete uniform space.

Let (X,D) be a uniform space. We say that the space is complete (or that D
is complete) iff every D-Cauchy net converges to some x ∈ X in the topology
induced by D .

Theorem. Assume that D is induced by a pseudometric d on X. Then (X,D)
is D-complete if and only if every d-Cauchy sequence in X converges to some
x ∈ X with respect to the topology on X that is induced by D (which is the
same as the topology induced by d).

Proof. Assume that (X,D) is D-complete.

• Let (xn : n ∈ N) be a d-Cauchy sequence in X. It follows that (xn : n ∈ N)
is D-Cauchy. Thus (xn : n ∈ N) converges to some x ∈ X.

Assume that every d-Cauchy sequence in X converges.

• Let (xα : α ∈ I) be a net in X that is D-Cauchy.

• We find x ∈ X such that (xα : α ∈ I) converges to x.

– For each n ∈ N, let
Dn := {〈x, y〉 ∈ X ×X : d(x, y) < 1/n}.

Then Dn ∈ D .

– Let α1 ∈ I be such that 〈xα, xβ〉 ∈ D1 for every α, β ≥ α1.

– Suppose n ≥ 1 and αn ∈ I is defined. Define αn+1 ∈ I to be such
that αn+1 ≥ αn and 〈xα, xβ〉 ∈ Dn+1 for every α, β ≥ αn+1.

– The sequence (xαn : n ∈ N) is d-Cauchy.

∗ Let ε > 0.
∗ Take n ∈ N such that 1/n < ε.
∗ If m, k ≥ n, then αm, αk ≥ αn so d(xαm

, xαk
) < ε.

– There is x ∈ X such that (xαn : n ∈ N) converges to x.
– We show that the net (xα : α ∈ I) converges to x.

∗ Let ε > 0.
∗ Let n ∈ N be such that 2/n < ε and d(xαn , x) < ε/2.
∗ If α ≥ αn, then d(xα, xαn

) < 1/n < ε/2 so d(xα, x) < ε.
∗ Thus the net (xα : α ∈ I) converges to x.
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Example (topological group uniformity).

Let (G, τ) be a topological group. For each nbhd U of the identity e of G, let

UL =
{
〈x, y〉 ∈ G×G : x−1y ∈ U

}
and

UR =
{
〈x, y〉 ∈ G×G : xy−1 ∈ U

}
.

Let L ′ = {UL : U is a nbhd of e} and R′ = {UR : U is a nbhd of e}.

• Then each of L ′ and R′ is a uniformity base on X.

• Let L and R be the uniformities on G that are induced by L ′ and R′,
respectively. We call L the left uniformity of the topological group, and
R is called the right uniformity.

• Then L induces the topology τ and the same is true for R.

Let G be the set of all real-valued functions on R that are of the form
g(x) = ax+ b for some a, b ∈ R with a 6= 0.

• Then G is a group under composition.

Let B = {Bε : ε > 0} be a family of subsets of G, where Bε consists of those
g ∈ G that are of the form g(x) = ax+ b with |a− 1| < ε and |b| < ε.

• There exists a topology τ on G making it a topological group such that
B is a nbhd base at the identity of G.

• Let L and R be the left and right uniformity of G.

• In this case, we have L 6= R.

Exercise.

• There does not exist an invariant metric d on G that induces τ . (A metric
d on G is invariant iff

d(g, h) = d(f ◦ g, f ◦ h) = d(g ◦ f, h ◦ f)

for every f, g, h ∈ G.

Exercise.
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