Math 793C

Topology for Analysis

Jerzy Wojciechowski
Spring 2020
Class 31
April 8

Lemma (continuous pseudometric).

Let X be a set and $\left(D_{n}: n \in \mathbb{N}\right)$ be a sequence of symmetric reflexive relations on X such that $D_{1}=X \times X$ and

$$
D_{n+1} \circ D_{n+1} \circ D_{n+1} \subseteq D_{n}
$$

for each $n \in \mathbb{N}$. Then there exists a pseudometric d on X such that

$$
D_{n} \subseteq\left\{\langle x, y\rangle \in X \times X: d(x, y)<2^{-n}\right\} \subseteq D_{n-1}
$$

for each $n \geq 2$.

Proof. Note that $D_{1} \supseteq D_{2} \supseteq \ldots$

- Define $f: X \times X \rightarrow[0, \infty)$ by $f(x, y)=2^{-n}$, where n is the smallest element of \mathbb{N} with $\langle x, y\rangle \notin D_{n}$ if such n exists and $f(x, y)=0$ otherwise.
- For each $x, y \in X$, let $S(x, y)$ be the set of all finite sequences in X with at least two terms such that the first term is equal to x and the last is equal to y.
- Define $d: X \times X \rightarrow[0, \infty)$ by

$$
d(x, y)=\inf \left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(x, y)\right\}
$$

- We verify that d is a pseudometric on X.

We check that the following conditions hold:
$-d(x, x)=0$ for each $x \in X$.
Let $x \in X$. Since $f(x, x)=0$, it follows that $d(x, x)=0$.
$-d(x, y)=d(y, x)$ for each $x, y \in X$.
Let $x, y \in X$. Let

$$
P:=\left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(x, y)\right\}
$$

and

$$
Q:=\left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(y, x)\right\} .
$$

* Since D_{i} is symmetric for each $i \in \mathbb{N}$, it follows that $f(w, z)=$ $f(z, w)$ for every $w, z \in X$. Thus $P=Q$.
* Since $d(x, y)=\inf P$ and $d(y, x)=\inf Q$, the conclusion holds.
$-d(x, z) \leq d(x, y)+d(y, z)$ for any $x, y, z \in X$.
* Let $x, y, z \in X$. Let

$$
\begin{aligned}
P & :=\left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(x, y)\right\}, \\
Q & :=\left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(y, z)\right\}, \\
R & :=\left\{\sum_{i=1}^{n} f\left(x_{i}, x_{i+1}\right):\left(x_{1}, \ldots, x_{n+1}\right) \in S(x, z)\right\} .
\end{aligned}
$$

* Then $p+q \in R$ for any $p \in P$ and $q \in Q$.
* Thus inf $R \leq p+q$ for any $p \in P$ and $q \in Q$.
* Thus $\inf R \leq \inf P+\inf Q$ and the conclusion holds.
- Let $n \geq 2$ and $E_{n}=\left\{\langle x, y\rangle \in X \times X: d(x, y)<2^{-n}\right\}$.
- We show that $D_{n} \subseteq E_{n}$.
- Let $\langle x, y\rangle \in D_{n}$.
- If $\langle x, y\rangle \in D_{m}$ for each $m \in \mathbb{N}$, then $f(x, y)=0$, which implies that $d(x, y)=0$.
- Otherwise, there is the smallest $m \in \mathbb{N}$ such that $\langle x, y\rangle \notin D_{m}$.
- Then $m>n$ so $f(x, y)=2^{-m}<2^{-n}$.
- If follows that $d(x, y) \leq f(x, y)<2^{-n}$ so $\langle x, y\rangle \in E_{n}$.
- We show that $E_{n} \subseteq D_{n-1}$.
- Let $\langle x, y\rangle \in E_{n}$. Then $d(x, y)<2^{-n}$.
- There is a sequence $\left(x_{1}, x_{2}, \ldots, x_{m+1}\right)$ with $x_{1}=x$ and $x_{m+1}=y$ such that

$$
\sum_{i=1}^{m} f\left(x_{i}, x_{i+1}\right)<2^{-n}
$$

- We use induction on $m \in \mathbb{N}$ to show that $\langle x, y\rangle \in D_{n-1}$.
* First, we prove that:
(!) if $w, z \in X$ and $f(w, z)<2^{-n}$, then $\langle w, z\rangle \in D_{n}$.
- Since $f(w, z)<2^{-n}$, it follows that either $\langle w, z\rangle \in D_{k}$ for all $k \in \mathbb{N}$ or $f(w, z)=2^{-k}$ for some $k>n$.
- In the former case, it is clear that $\langle w, z\rangle \in D_{n}$.
- In the later case, k is the smallest element of \mathbb{N} with $\langle x, y\rangle \notin$ D_{k}.
- Since $k>n$, it follows that $\langle x, y\rangle \in D_{n}$.
* If $m=1$, then $f(x, y)<2^{-n}$ so (!) implies that $\langle x, y\rangle \in D_{n-1}$.
* Assume that $m \geq 2$ and, as inductive hypothesis, that:
- For any $k \in \mathbb{N}$ and $\ell \in\{1,2, \ldots, m-1\}$, if $\left(y_{1}, y_{2}, \ldots, y_{\ell+1}\right)$
is a sequence of elements of X such that

$$
\sum_{i=1}^{\ell} f\left(y_{i}, y_{i+1}\right)<2^{-k}
$$

then $\left\langle y_{1}, y_{\ell+1}\right\rangle \in D_{k-1}$.

* We show that $\langle x, y\rangle \in D_{n-1}$.
- We show that there exists $j \in\{1,2, \ldots, m\}$ such that

$$
\sum_{i=1}^{j} f\left(x_{i}, x_{i+1}\right)<2^{-n-1}
$$

whenever $j \geq 2$, and

$$
\sum_{i=j+1}^{m} f\left(x_{i}, x_{i+1}\right)<2^{-n-1}
$$

when $j \leq m-1$.

- If $\sum_{i=1}^{m} f\left(x_{i}, x_{i+1}\right)<2^{-n-1}$, then taking $j:=m$ works.
- Otherwise, let $j \in\{1,2, \ldots, m-1\}$ be as small as possible with $\sum_{i=1}^{j+1} f\left(x_{i}, x_{i+1}\right) \geq 2^{-n-1}$.
- If $j \geq 2$, then $\sum_{i=1}^{j} f\left(x_{i}, x_{i+1}\right)<2^{-n-1}$ as required.
- Since $\sum_{i=1}^{m} f\left(x_{i}, x_{i+1}\right)<2^{-n}$, it follows that

$$
\sum_{i=j+1}^{m} f\left(x_{i}, x_{i+1}\right)<2^{-n-1} \text { as required. }
$$

- The inductive hypothesis implies that $\left\langle x_{1}, x_{j}\right\rangle \in D_{n}$ and $\left\langle x_{j+1}, x_{m+1}\right\rangle \in D_{n}$.
- We have $f\left(x_{j}, x_{j+1}\right)<2^{-n}$, so (!) implies that $\left\langle x_{j}, x_{j+1}\right\rangle \in$ D_{n}.
- Since $D_{n} \circ D_{n} \circ D_{n} \subseteq D_{n-1}$, it follows that $\langle x, y\rangle \in D_{n-1}$.

Exercise (continuous pseudometric).

Let \mathscr{D} be a uniformity on a set X and $\left(D_{n}: n \in \mathbb{N}\right)$ be a sequence of symmetric members of \mathscr{D} such that $D_{1}=X \times X$ and

$$
D_{n+1} \circ D_{n+1} \circ D_{n+1} \subseteq D_{n}
$$

for each $n \in \mathbb{N}$. Let d be a pseudometric on X such that

$$
D_{n} \subseteq\left\{\langle x, y\rangle \in X \times X: d(x, y)<2^{-n}\right\} \subseteq D_{n-1}
$$

for each $n \geq 2$.

- Prove that d is uniformly continuous relative to \mathscr{D}.
- Let $\mathscr{B}=\left\{D_{n}: n \in \mathbb{N}\right\}$. Prove that \mathscr{B} is a uniformity base on X.
- Let \mathscr{E} be the uniformity on X that is induced by \mathscr{B}. Prove that \mathscr{E} is the uniformity induced by the pseudometric d.

Solution.

- d is uniformly continuous relative to \mathscr{D}.
- Let $\varepsilon>0$ and $A_{\varepsilon}=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\}$.
- To show that d is uniformly continuous relative to \mathscr{D}, it suffices to show that $A_{\varepsilon} \in \mathscr{D}$.
- There is $n \in \mathbb{N}$ with $2^{-n} \leq \varepsilon$. Then $D_{n} \subseteq A_{\varepsilon}$.
- Since $D_{n} \in \mathscr{D}$, it follows that $A_{\varepsilon} \in \mathscr{D}$.
- \mathscr{B} is a uniformity base on X.

We need to verify the following conditions:

- Each member of \mathscr{B} is a reflexive relation on X.

Holds by assumption.

- For each $B \in \mathscr{B}$, there exist $D \in \mathscr{B}$ with $D \subseteq B^{-1}$.

Holds since the members of \mathscr{B} are symmetric.

- For each $B \in \mathscr{B}$, there exists $D \in \mathscr{B}$ with $D \circ D \subseteq B$.

If $B=D_{n}$, then $D:=D_{n+1}$ satisfies the requirements.

- For each $B, D \in \mathscr{B}$, there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.

If $B=D_{n}$ and $D=D_{m}$, then let $E:=D_{k}$, where $k=\max \{n, m\}$.

- \mathscr{E} is the uniformity induced by the pseudometric d.

Let \mathscr{E}^{\prime} be the uniformity induced by d.

- Let $E \in \mathscr{E}^{\prime}$. We show that $E \in \mathscr{E}$.
* There is $\varepsilon>0$ such that $A_{\varepsilon} \subseteq E$, where

$$
A_{\varepsilon}=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\} .
$$

* If $n \in \mathbb{N}$ satisfies $2^{-n} \leq \varepsilon$, then $D_{n} \subseteq A_{\varepsilon}$ so $D_{n} \subseteq E$ and hence $E \in \mathscr{E}$.
- Let $E \in \mathscr{E}$. We show that $E \in \mathscr{E}^{\prime}$.
* There is $n \in \mathbb{N}$ with $D_{n} \subseteq E$.
* If $x, y \in X$ and $d(x, y)<2^{-n-1}$, then $\langle x, y\rangle \in D_{n}$ so $\langle x, y\rangle \in E$.
* It follows that $E \in \mathscr{E}$ 。

Pseudometrizable uniform space.

A uniform space (X, \mathscr{D}) is pseudometrizable iff there exists a pseudometric d on X such that \mathscr{D} is the uniformity induced by d, (see uniformity from pseudometric).

- (X, \mathscr{D}) is metrizable iff there exists a metric d on X such that \mathscr{D} is the uniformity induced by d.
- Note that (X, \mathscr{D}) is metrizable if and only if it is pseudometrizable and \mathscr{D} is separating.
- If (X, \mathscr{D}) is metrizable, then it is pseudometrizable and \mathscr{D} is separating.
- Assume that (X, \mathscr{D}) is pseudometrizable and \mathscr{D} is separating.
* Let d be a pseudometric on X that induces \mathscr{D}.
* Since \mathscr{D} is separating, d must be a metric.
* Thus (X, \mathscr{D}) is metrizable.

Theorem (pseudometrizable uniform space).

A uniform space is pseudometrizable if and only if it has a countable base.

Proof. Assume that (X, \mathscr{D}) is a pseudo-metrizable uniform space.

- Let d be a pseudometric on X that induces \mathscr{D}.
- Define $\mathscr{B}=\left\{B_{n}: n \in \mathbb{N}\right\}$, where

$$
B_{n}=\{\langle x, y\rangle \in X \times X: d(x, y)<1 / n\}
$$

for each $n \in \mathbb{N}$.

- We show that \mathscr{B} is a base for \mathscr{D}.
- Since $B_{n} \in \mathscr{D}$ for each $n \in \mathbb{N}$, we have $\mathscr{B} \subseteq \mathscr{D}$.
- It remains to show that for each $D \in \mathscr{D}$ there is $n \in \mathbb{N}$ with $B_{n} \subseteq D$.
- Let $D \in \mathscr{D}$. There is $\varepsilon>0$ such that $\langle x, y\rangle \in D$ for each $x, y \in X$ with $d(x, y)<\varepsilon$.
- Let $n \in \mathbb{N}$ be such that $1 / n \leq \varepsilon$. Then $B_{n} \subseteq D$.

Now assume that \mathscr{D} has a countable base $\mathscr{B}=\left\{B_{1}, B_{2}, \ldots\right\}$.

- Let D_{1}, D_{2}, \ldots be a sequence of members of \mathscr{D} such that
$-D_{1}=X \times X$.
$-D_{n}$ is symmetric for each $n \in \mathbb{N}$.
$-D_{n+1} \circ D_{n+1} \circ D_{n+1} \subseteq D_{n}$ and $D_{n+1} \subseteq B_{n}$ for every $n \in \mathbb{N}$.
- Let d be a pseudometric on X such that

$$
D_{n} \subseteq\left\{\langle x, y\rangle \in X \times X: d(x, y)<2^{-n}\right\} \subseteq D_{n-1}
$$

for every $n \geq 2$. Such a pseudometric exists by Lemma (continuous pseudometric).

- Let \mathscr{E} be the uniformity on X that is induced by d. We show that $\mathscr{E}=\mathscr{D}$.
- We show that $\mathscr{E} \subseteq \mathscr{D}$.
* Let $E \in \mathscr{E}$. There is $\varepsilon>0$ such that $\langle x, y\rangle \in E$ for every $x, y \in X$ with $d(x, y)<\varepsilon$.
* Let $n \in \mathbb{N}$ be such that $2^{-n} \leq \varepsilon$. Then $D_{n} \subseteq E$.
* Since $D_{n} \in \mathscr{D}$, it follows that $E \in \mathscr{D}$.
- We show that $\mathscr{D} \subseteq \mathscr{E}$.
* Let $D \in \mathscr{D}$. There is $n \in \mathbb{N}$ with $B_{n} \subseteq D$.
* Then $D_{n+1} \subseteq B_{n}$ so $D_{n+1} \subseteq D$. Let $\varepsilon=2^{-n-2}>0$.
* For any $x, y \in X$ with $d(x, y)<\varepsilon$, we have $\langle x, y\rangle \in D_{n+1} \subseteq D$.
* Thus $D \in \mathscr{E}$.

Example (nonmetrizable uniformity metrizable topology).

Let $X=\Omega_{0}$ (the set of all countable ordinals) and for each $\alpha \in X$ let

$$
B_{\alpha}=\{\langle x, y\rangle \in X \times X: x=y \text { or both } x, y>\alpha\}
$$

- Then $\mathscr{B}=\left\{B_{\alpha}: \alpha \in X\right\}$ is a uniformity base on X.
- Let \mathscr{D} be the uniformity on X that is induced by \mathscr{B}. Then \mathscr{D} is not metrizable, in particular \mathscr{D} is not the discrete uniformity.
- The topology on X induced by \mathscr{D} is the discrete topology, hence the topology is metrizable.

Proof. We show that:

- $\mathscr{B}=\left\{B_{\alpha}: \alpha \in X\right\}$ is a uniformity base on X.

We show the following conditions:

- Every member of \mathscr{D} is a reflexive relation on X.

This is clear from the definition of B_{α}.

- If $B \in \mathscr{B}$, then there exists $D \in \mathscr{B}$ wit $D^{-1} \subseteq B$.

We have $B^{-1}=B$ for each $B \in \mathscr{B}$.

- If $B \in \mathscr{B}$, then there is $D \in \mathscr{B}$ with $D \circ D \subseteq B$.
* Let $\alpha \in X$ be such that $B=B_{\alpha}$.
* Since $B_{\alpha} \circ B_{\alpha}=B_{\alpha}$, taking $D:=B$ works.
- If $B, D \in \mathscr{B}$, then there is $E \in \mathscr{B}$ with $E \subseteq B \cap D$.
* Let $\alpha, \beta \in X$ be such that $B=B_{\alpha}$ and $D=B_{\beta}$.
* Let $\gamma=\max \{\alpha, \beta\}$. Then $E:=B_{\gamma}$ works.
- \mathscr{D} is not metrizable.

We show that \mathscr{D} has no countable base. Then Theorem (pseudometrizable uniform space) implies that \mathscr{D} is not metrizable.

- Suppose, for a contradiction, that \mathscr{A} is a countable base for \mathscr{D}.
- For each $A \in \mathscr{A}$, there is $\alpha_{A} \in X$ with $B_{\alpha_{A}} \subseteq A$.
- Since the set $\left\{\alpha_{A}: A \in \mathscr{A}\right\}$ is a countable subset of X, there is $\beta \in X$ such that $\alpha_{A}<\beta$ for every $A \in \mathscr{A}$.
- Then $\langle\beta, \beta+1\rangle \in B_{\alpha_{A}} \subseteq A$ for any $A \in \mathscr{A}$, but $\langle\beta, \beta+1\rangle \notin B_{\beta}$.
- Thus no member of \mathscr{A} is a subset of B_{β} (which is a member of \mathscr{D}).
- Hence \mathscr{A} is not a base for \mathscr{D}, and we have a contradiction.
- The topology induced by \mathscr{D} is the discrete topology.
- Let $\alpha \in X$. There is $\beta \in X$ with $\alpha<\beta$. Let $D:=B_{\beta} \in \mathscr{D}$.
- Then $D[\alpha]=\{\alpha\}$ so $\{\alpha\}$ is open in the topology τ on X that is induced by \mathscr{D}.
- Thus τ is the discrete topology.

Uniformity from pseudometric family.

Let \mathscr{P} be a family of pseudometrics on a set X. For each $d \in \mathscr{P}$, let \mathscr{D}_{d} be the uniformity on X that is induced by d and let $f_{d}: X \rightarrow X$ be the identity function. Let \mathscr{D} be the weak uniformity on X induced by the family $\left\{\left(\mathscr{D}_{d}, f_{d}\right): d \in \mathscr{P}\right\}$. We say that \mathscr{D} it the uniformity on X that is induced by \mathscr{P}.
(1) Theorem (union uniformity subbase) implies that $\mathscr{S}=\bigcup\left\{\mathscr{D}_{d}: d \in \mathscr{P}\right\}$ is a uniformity subbase on X. Note that \mathscr{S} induces \mathscr{D}.

- For each $d \in \mathscr{P}$ and $D \in \mathscr{D}_{d}$, we have $\hat{f}_{d}^{-1}[D]=D$.
- Then $\mathscr{D}_{d}=\mathscr{D}_{d}^{\prime}$, where $\mathscr{D}_{d}^{\prime}=\left\{\hat{f}_{d}^{-1}[D]: D \in \mathscr{D}_{d}\right\}$ for each $d \in \mathscr{P}$.
- The definition of \mathscr{D} as the weak uniformity means that \mathscr{D} is induced by $\bigcup\left\{\mathscr{D}_{d}^{\prime}: d \in \mathscr{P}\right\}$ which is equal to \mathscr{S}.
(2) \mathscr{D} is the weakest uniformity on X making all the pseudometrics in \mathscr{P} uniformly continuous.
(3) Let $\mathscr{B}=\left\{B_{\mathscr{Q}, \varepsilon}: \mathscr{Q} \subseteq_{f} \mathscr{P}, \varepsilon>0\right\}$, where

$$
B_{\mathscr{Q}, \varepsilon}=\{\langle x, y\rangle \in X \times X:(\forall d \in \mathscr{Q}) d(x, y)<\varepsilon\}
$$

and $\mathscr{Q} \subseteq_{f} \mathscr{P}$ means that \mathscr{Q} is a finite subset of \mathscr{P}. Then \mathscr{B} is base for \mathscr{D}.

Proof.

- We show that $\mathscr{B} \subseteq \mathscr{D}$.
- Let $B \in \mathscr{B}$. Then there are $\mathscr{Q} \subseteq_{f} \mathscr{P}$ and $\varepsilon>0$ such that $B=B_{\mathscr{Q}, \varepsilon}$.
- If $d \in \mathscr{Q}$, then $E_{d, \varepsilon} \in \mathscr{D}_{d} \subseteq \mathscr{D}$, where

$$
E_{d, \varepsilon}=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\} .
$$

- It follows that

$$
B=\bigcap\left\{E_{d, \varepsilon}: d \in \mathscr{Q}\right\} \in \mathscr{D},
$$

since \mathscr{D} is closed under finite intersections.

- We show that for every $D \in \mathscr{D}$, there is $B \in \mathscr{B}$ with $B \subseteq D$.
- Let $D \in \mathscr{D}$.
- If $D=X \times X$, then $B_{\varnothing, 1}=X \times X \subseteq D$.
- Otherwise, there is finite and nonempty $\mathscr{Q} \subseteq \mathscr{P}$ and $D_{d} \in \mathscr{D}_{d}$ for each $d \in \mathscr{Q}$ so that $\bigcap\left\{D_{d}: d \in \mathscr{Q}\right\} \subseteq D$.
- For each $d \in \mathscr{Q}$, let $\varepsilon_{d}>0$ be such that $\langle x, y\rangle \in D_{d}$ whenever $d(x, y)<\varepsilon_{d}$.
- Let $\varepsilon=\min \left\{\varepsilon_{d}: d \in \mathscr{Q}\right\}$.
- Then $B_{\mathscr{Q}, \varepsilon} \subseteq D_{d}$ for each $d \in \mathscr{Q}$ so $B_{\mathscr{Q}, \varepsilon} \subseteq D$.

Theorem (uniformity from pseudometric family).
Let \mathscr{D} be a uniformity on a set X and \mathscr{P} be the family of all pseudometrics on X that are uniformly continuous relative to \mathscr{D}. Then \mathscr{D} is induced by \mathscr{P}.

Proof. Let \mathscr{E} be the uniformity on X that is induced by \mathscr{P}.

- Since \mathscr{E} is the weakest uniformity on X making all the pseudometrics in \mathscr{P} uniformly continuous, it follows that $\mathscr{E} \subseteq \mathscr{D}$.
- We show that $\mathscr{D} \subseteq \mathscr{E}$.
- Let $D \in \mathscr{D}$.
- Let $D_{1}=X \times X$, let $D_{2} \in \mathscr{D}$ be symmetric with $D_{2} \subseteq D$ and, for each $n \geq 2$, let $D_{n+1} \in \mathscr{D}$ be symmetric and such that $D_{n+1} \circ$ $D_{n+1} \circ D_{n+1} \subseteq D_{n}$.
- Let $\mathscr{B}_{D}=\left\{D_{1}, D_{2}, \ldots\right\}$.
- Lemma (continuous pseudometric) and the exercise following it show that there exists a pseudometric $d \in \mathscr{P}$ such that \mathscr{B}_{D} is a base for the uniformity \mathscr{E}_{d} on X that is induced by d.
- Then $D \in \mathscr{B}_{D} \subseteq \mathscr{E}_{d} \subseteq \mathscr{E}$.

Exercise (uniformly continuous metric).

Consider $X=\mathbb{R}$ as a uniform space (with the standard uniformity on \mathbb{R}), let A be an uncountable set and $Y=X^{A}$ (that is, Y is the product of uncountably many copies of X). Consider Y as a uniform space with the product uniformity \mathscr{D}. Prove that no metric on Y is uniformly continuous relative to \mathscr{D}.

Solution. Let d be a pseudometric on Y that is uniformly continuous relative to \mathscr{D}. We will show that d is not a metric.

- For each $n \in \mathbb{N}$, let $B_{n}=\{\langle f, g\rangle \in Y \times Y: d(f, g)<1 / n\}$.
- Since d is uniformly continuous relative to \mathscr{D}, it follows that $B_{n} \in \mathscr{D}$, for each $n \in \mathbb{N}$ (see uniformly continuous pseudometric).
- For each $\alpha \in A$ and $\varepsilon>0$, let

$$
S_{\alpha, \varepsilon}:=\{\langle f, g\rangle \in Y \times Y:|f(\alpha)-g(\alpha)|<\varepsilon\}
$$

- Then $\mathscr{S}:=\left\{S_{\alpha, \varepsilon}: \alpha \in A, \varepsilon>0\right\}$ is a subbase for \mathscr{D}.
- Thus for each $n \in \mathbb{N}$, there is finite $A_{n} \subseteq A$ such that

$$
\left\{\langle f, g\rangle \in Y \times Y: \forall \alpha \in A_{n} f(\alpha)=g(\alpha)\right\} \subseteq B_{n}
$$

- Since A is uncountable, there is $\beta \in A \backslash \bigcup\left\{A_{n}: n \in \mathbb{N}\right\}$.
- Let $f(\alpha)=0$ for each $\alpha \in A$, let $g(\alpha)=0$ for every $\alpha \in A \backslash\{\beta\}$ and $g(\beta)=1$.
- Then $\langle f, g\rangle \in \bigcap\left\{B_{n}: n \in \mathbb{N}\right\}$, which implies that $d(f, g)=0$.
- Since $f \neq g$, it follows that d is not a metric.

