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Lemma (continuous pseudometric).

Let X be a set and (Dn : n ∈ N) be a sequence of symmetric reflexive relations
on X such that D1 = X ×X and

Dn+1 ◦Dn+1 ◦Dn+1 ⊆ Dn

for each n ∈ N. Then there exists a pseudometric d on X such that

Dn ⊆ {〈x, y〉 ∈ X ×X : d(x, y) < 2−n} ⊆ Dn−1

for each n ≥ 2.

Proof. Note that D1 ⊇ D2 ⊇ . . . .

• Define f : X × X → [0,∞) by f(x, y) = 2−n, where n is the smallest
element of N with 〈x, y〉 /∈ Dn if such n exists and f(x, y) = 0 otherwise.

• For each x, y ∈ X, let S (x, y) be the set of all finite sequences in X with
at least two terms such that the first term is equal to x and the last is
equal to y.

• Define d : X ×X → [0,∞) by

d(x, y) = inf {
∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(x, y)} .

• We verify that d is a pseudometric on X.

We check that the following conditions hold:

– d(x, x) = 0 for each x ∈ X.

Let x ∈ X. Since f(x, x) = 0, it follows that d(x, x) = 0.

– d(x, y) = d(y, x) for each x, y ∈ X.

Let x, y ∈ X. Let
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P := {
∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(x, y)}

and

Q := {
∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(y, x)}.

∗ Since Di is symmetric for each i ∈ N, it follows that f(w, z) =
f(z, w) for every w, z ∈ X. Thus P = Q.

∗ Since d(x, y) = inf P and d(y, x) = inf Q, the conclusion holds.

– d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

∗ Let x, y, z ∈ X. Let
P := {

∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(x, y)},

Q := {
∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(y, z)} ,

R := {
∑n
i=1 f(xi, xi+1) : (x1, . . . , xn+1) ∈ S(x, z)}.

∗ Then p+ q ∈ R for any p ∈ P and q ∈ Q.
∗ Thus inf R ≤ p+ q for any p ∈ P and q ∈ Q.
∗ Thus inf R ≤ inf P + inf Q and the conclusion holds.

• Let n ≥ 2 and En = {〈x, y〉 ∈ X ×X : d(x, y) < 2−n}.

• We show that Dn ⊆ En.

– Let 〈x, y〉 ∈ Dn.

– If 〈x, y〉 ∈ Dm for each m ∈ N, then f(x, y) = 0, which implies that
d(x, y) = 0.

– Otherwise, there is the smallest m ∈ N such that 〈x, y〉 /∈ Dm.

– Then m > n so f(x, y) = 2−m < 2−n.

– If follows that d(x, y) ≤ f(x, y) < 2−n so 〈x, y〉 ∈ En.

• We show that En ⊆ Dn−1.

– Let 〈x, y〉 ∈ En. Then d(x, y) < 2−n.

– There is a sequence (x1, x2, . . . , xm+1) with x1 = x and xm+1 = y
such that∑m

i=1 f(xi, xi+1) < 2−n.

– We use induction on m ∈ N to show that 〈x, y〉 ∈ Dn−1.

∗ First, we prove that:
(!) if w, z ∈ X and f(w, z) < 2−n, then 〈w, z〉 ∈ Dn.

· Since f(w, z) < 2−n, it follows that either 〈w, z〉 ∈ Dk for all
k ∈ N or f(w, z) = 2−k for some k > n.
· In the former case, it is clear that 〈w, z〉 ∈ Dn.
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· In the later case, k is the smallest element of N with 〈x, y〉 /∈
Dk.
· Since k > n, it follows that 〈x, y〉 ∈ Dn.

∗ If m = 1, then f(x, y) < 2−n so (!) implies that 〈x, y〉 ∈ Dn−1.
∗ Assume that m ≥ 2 and, as inductive hypothesis, that:
· For any k ∈ N and ` ∈ {1, 2, . . . ,m− 1}, if (y1, y2, . . . , y`+1)
is a sequence of elements of X such that∑`

i=1 f(yi, yi+1) < 2−k,
then 〈y1, y`+1〉 ∈ Dk−1.

∗ We show that 〈x, y〉 ∈ Dn−1.

· We show that there exists j ∈ {1, 2, . . . ,m} such that∑j
i=1 f(xi, xi+1) < 2−n−1,

whenever j ≥ 2, and∑m
i=j+1 f(xi, xi+1) < 2−n−1,

when j ≤ m− 1.

· If
∑m
i=1 f(xi, xi+1) < 2−n−1, then taking j := m works.

· Otherwise, let j ∈ {1, 2, . . . ,m− 1} be as small as possible
with

∑j+1
i=1 f(xi, xi+1) ≥ 2−n−1.

· If j ≥ 2, then
∑j
i=1 f(xi, xi+1) < 2−n−1 as required.

· Since
∑m
i=1 f(xi, xi+1) < 2−n, it follows that∑m

i=j+1 f(xi, xi+1) < 2−n−1 as required.
· The inductive hypothesis implies that 〈x1, xj〉 ∈ Dn and
〈xj+1, xm+1〉 ∈ Dn.
· We have f(xj , xj+1) < 2−n, so (!) implies that 〈xj , xj+1〉 ∈
Dn.
· Since Dn ◦Dn ◦Dn ⊆ Dn−1, it follows that 〈x, y〉 ∈ Dn−1.

Exercise (continuous pseudometric).

Let D be a uniformity on a set X and (Dn : n ∈ N) be a sequence of symmetric
members of D such that D1 = X ×X and

Dn+1 ◦Dn+1 ◦Dn+1 ⊆ Dn

for each n ∈ N. Let d be a pseudometric on X such that

Dn ⊆ {〈x, y〉 ∈ X ×X : d(x, y) < 2−n} ⊆ Dn−1

for each n ≥ 2.

• Prove that d is uniformly continuous relative to D .

• Let B = {Dn : n ∈ N}. Prove that B is a uniformity base on X.

• Let E be the uniformity on X that is induced by B. Prove that E is the
uniformity induced by the pseudometric d.
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Solution.

• d is uniformly continuous relative to D .

– Let ε > 0 and Aε = {〈x, y〉 ∈ X ×X : d(x, y) < ε}.

– To show that d is uniformly continuous relative to D , it suffices to
show that Aε ∈ D .

– There is n ∈ N with 2−n ≤ ε. Then Dn ⊆ Aε.

– Since Dn ∈ D , it follows that Aε ∈ D .

• B is a uniformity base on X.

We need to verify the following conditions:

– Each member of B is a reflexive relation on X.

Holds by assumption.

– For each B ∈ B, there exist D ∈ B with D ⊆ B−1.

Holds since the members of B are symmetric.

– For each B ∈ B, there exists D ∈ B with D ◦D ⊆ B.

If B = Dn, then D := Dn+1 satisfies the requirements.

– For each B,D ∈ B, there exists E ∈ B with E ⊆ B ∩D.

If B = Dn and D = Dm, then let E := Dk, where k = max {n,m}.

• E is the uniformity induced by the pseudometric d.

Let E ′ be the uniformity induced by d.

– Let E ∈ E ′. We show that E ∈ E .

∗ There is ε > 0 such that Aε ⊆ E, where
Aε = {〈x, y〉 ∈ X ×X : d(x, y) < ε}.

∗ If n ∈ N satisfies 2−n ≤ ε, then Dn ⊆ Aε so Dn ⊆ E and hence
E ∈ E .

– Let E ∈ E . We show that E ∈ E ′.

∗ There is n ∈ N with Dn ⊆ E.
∗ If x, y ∈ X and d(x, y) < 2−n−1, then 〈x, y〉 ∈ Dn so 〈x, y〉 ∈ E.
∗ It follows that E ∈ E ′.
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Pseudometrizable uniform space.

A uniform space (X,D) is pseudometrizable iff there exists a pseudometric d on
X such that D is the uniformity induced by d, (see uniformity from pseudomet-
ric).

• (X,D) is metrizable iff there exists a metric d on X such that D is the
uniformity induced by d.

• Note that (X,D) is metrizable if and only if it is pseudometrizable and D
is separating.

– If (X,D) is metrizable, then it is pseudometrizable and D is sepa-
rating.

– Assume that (X,D) is pseudometrizable and D is separating.

∗ Let d be a pseudometric on X that induces D .

∗ Since D is separating, d must be a metric.

∗ Thus (X,D) is metrizable.

Theorem (pseudometrizable uniform space).

A uniform space is pseudometrizable if and only if it has a countable base.

Proof. Assume that (X,D) is a pseudo-metrizable uniform space.

• Let d be a pseudometric on X that induces D .

• Define B = {Bn : n ∈ N}, where

Bn = {〈x, y〉 ∈ X ×X : d(x, y) < 1/n}

for each n ∈ N.

• We show that B is a base for D .

– Since Bn ∈ D for each n ∈ N, we have B ⊆ D .

– It remains to show that for each D ∈ D there is n ∈ N with Bn ⊆ D.

– Let D ∈ D . There is ε > 0 such that 〈x, y〉 ∈ D for each x, y ∈ X
with d(x, y) < ε.

– Let n ∈ N be such that 1/n ≤ ε. Then Bn ⊆ D.

Now assume that D has a countable base B = {B1, B2, . . . }.
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• Let D1, D2, . . . be a sequence of members of D such that

– D1 = X ×X.

– Dn is symmetric for each n ∈ N.

– Dn+1 ◦Dn+1 ◦Dn+1 ⊆ Dn and Dn+1 ⊆ Bn for every n ∈ N.

• Let d be a pseudometric on X such that

Dn ⊆
{
〈x, y〉 ∈ X ×X : d(x, y) < 2−n

}
⊆ Dn−1

for every n ≥ 2. Such a pseudometric exists by Lemma (continuous pseu-
dometric).

• Let E be the uniformity on X that is induced by d. We show that E = D .

– We show that E ⊆ D .

∗ Let E ∈ E . There is ε > 0 such that 〈x, y〉 ∈ E for every
x, y ∈ X with d(x, y) < ε.

∗ Let n ∈ N be such that 2−n ≤ ε. Then Dn ⊆ E.

∗ Since Dn ∈ D , it follows that E ∈ D .

– We show that D ⊆ E .

∗ Let D ∈ D . There is n ∈ N with Bn ⊆ D.

∗ Then Dn+1 ⊆ Bn so Dn+1 ⊆ D. Let ε = 2−n−2 > 0.

∗ For any x, y ∈ X with d(x, y) < ε, we have 〈x, y〉 ∈ Dn+1 ⊆ D.

∗ Thus D ∈ E .

Example (nonmetrizable uniformity metrizable topology).

Let X = Ω0 (the set of all countable ordinals) and for each α ∈ X let

Bα = {〈x, y〉 ∈ X ×X : x = y or both x, y > α}.

• Then B = {Bα : α ∈ X} is a uniformity base on X.

• Let D be the uniformity on X that is induced by B. Then D is not
metrizable, in particular D is not the discrete uniformity.

• The topology on X induced by D is the discrete topology, hence the
topology is metrizable.
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Proof. We show that:

• B = {Bα : α ∈ X} is a uniformity base on X.

We show the following conditions:

– Every member of D is a reflexive relation on X.

This is clear from the definition of Bα.

– If B ∈ B, then there exists D ∈ B wit D−1 ⊆ B.

We have B−1 = B for each B ∈ B.

– If B ∈ B, then there is D ∈ B with D ◦D ⊆ B.

∗ Let α ∈ X be such that B = Bα.
∗ Since Bα ◦Bα = Bα, taking D := B works.

– If B,D ∈ B, then there is E ∈ B with E ⊆ B ∩D.

∗ Let α, β ∈ X be such that B = Bα and D = Bβ .
∗ Let γ = max {α, β}. Then E := Bγ works.

• D is not metrizable.

We show that D has no countable base. Then Theorem (pseudometrizable
uniform space) implies that D is not metrizable.

– Suppose, for a contradiction, that A is a countable base for D .

– For each A ∈ A , there is αA ∈ X with BαA
⊆ A.

– Since the set {αA : A ∈ A } is a countable subset ofX, there is β ∈ X
such that αA < β for every A ∈ A .

– Then 〈β, β + 1〉 ∈ BαA
⊆ A for any A ∈ A , but 〈β, β + 1〉 /∈ Bβ .

– Thus no member of A is a subset of Bβ (which is a member of D).

– Hence A is not a base for D , and we have a contradiction.

• The topology induced by D is the discrete topology.

– Let α ∈ X. There is β ∈ X with α < β. Let D := Bβ ∈ D .

– Then D[α] = {α} so {α} is open in the topology τ on X that is
induced by D .

– Thus τ is the discrete topology.
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Uniformity from pseudometric family.

Let P be a family of pseudometrics on a set X. For each d ∈ P, let Dd

be the uniformity on X that is induced by d and let fd : X → X be the
identity function. Let D be the weak uniformity on X induced by the family
{(Dd, fd) : d ∈P}. We say that D it the uniformity on X that is induced by
P.

(1) Theorem (union uniformity subbase) implies that S =
⋃
{Dd : d ∈P} is

a uniformity subbase on X. Note that S induces D .

• For each d ∈P and D ∈ Dd, we have f̂d
−1

[D] = D.

• Then Dd = D ′d, where D ′d =
{
f̂d
−1

[D] : D ∈ Dd

}
for each d ∈P.

• The definition of D as the weak uniformity means that D is induced by⋃
{D ′d : d ∈P} which is equal to S .

(2) D is the weakest uniformity on X making all the pseudometrics in P
uniformly continuous.

(3) Let B = {BQ,ε : Q ⊆f P, ε > 0}, where

BQ,ε = {〈x, y〉 ∈ X ×X : (∀d ∈ Q) d(x, y) < ε}

and Q ⊆f P means that Q is a finite subset of P. Then B is base for D .

Proof.

• We show that B ⊆ D .

– Let B ∈ B. Then there are Q ⊆f P and ε > 0 such that B = BQ,ε.

– If d ∈ Q, then Ed,ε ∈ Dd ⊆ D , where

Ed,ε = {〈x, y〉 ∈ X ×X : d(x, y) < ε}.

– It follows that

B =
⋂
{Ed,ε : d ∈ Q} ∈ D ,

since D is closed under finite intersections.

• We show that for every D ∈ D , there is B ∈ B with B ⊆ D.

– Let D ∈ D .
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– If D = X ×X, then B∅,1 = X ×X ⊆ D.

– Otherwise, there is finite and nonempty Q ⊆ P and Dd ∈ Dd for
each d ∈ Q so that

⋂
{Dd : d ∈ Q} ⊆ D.

– For each d ∈ Q, let εd > 0 be such that 〈x, y〉 ∈ Dd whenever
d(x, y) < εd.

– Let ε = min {εd : d ∈ Q}.

– Then BQ,ε ⊆ Dd for each d ∈ Q so BQ,ε ⊆ D.

Theorem (uniformity from pseudometric family).

Let D be a uniformity on a set X and P be the family of all pseudometrics on
X that are uniformly continuous relative to D . Then D is induced by P.

Proof. Let E be the uniformity on X that is induced by P.

• Since E is the weakest uniformity on X making all the pseudometrics in
P uniformly continuous, it follows that E ⊆ D .

• We show that D ⊆ E .

– Let D ∈ D .

– Let D1 = X × X, let D2 ∈ D be symmetric with D2 ⊆ D and,
for each n ≥ 2, let Dn+1 ∈ D be symmetric and such that Dn+1 ◦
Dn+1 ◦Dn+1 ⊆ Dn.

– Let BD = {D1, D2, . . . }.

– Lemma (continuous pseudometric) and the exercise following it show
that there exists a pseudometric d ∈ P such that BD is a base for
the uniformity Ed on X that is induced by d.

– Then D ∈ BD ⊆ Ed ⊆ E .

Exercise (uniformly continuous metric).

Consider X = R as a uniform space (with the standard uniformity on R), let A
be an uncountable set and Y = XA (that is, Y is the product of uncountably
many copies of X). Consider Y as a uniform space with the product uniformity
D . Prove that no metric on Y is uniformly continuous relative to D .
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Solution. Let d be a pseudometric on Y that is uniformly continuous relative
to D . We will show that d is not a metric.

• For each n ∈ N, let Bn = {〈f, g〉 ∈ Y × Y : d(f, g) < 1/n}.

• Since d is uniformly continuous relative to D , it follows that Bn ∈ D , for
each n ∈ N (see uniformly continuous pseudometric).

• For each α ∈ A and ε > 0, let

Sα,ε := {〈f, g〉 ∈ Y × Y : |f(α)− g(α)| < ε}.

• Then S := {Sα,ε : α ∈ A, ε > 0} is a subbase for D .

• Thus for each n ∈ N, there is finite An ⊆ A such that

{〈f, g〉 ∈ Y × Y : ∀α ∈ An f(α) = g(α)} ⊆ Bn.

• Since A is uncountable, there is β ∈ Ar
⋃
{An : n ∈ N}.

• Let f(α) = 0 for each α ∈ A, let g(α) = 0 for every α ∈ A r {β} and
g(β) = 1.

• Then 〈f, g〉 ∈
⋂
{Bn : n ∈ N}, which implies that d(f, g) = 0.

• Since f 6= g, it follows that d is not a metric.
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