Math 793C

Topology for Analysis

Jerzy Wojciechowski	Spring 2020
Class 30	April 6

Weak uniformity.

Let A and X be sets, let $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space and $f_{\alpha} : X \to X_{\alpha}$ be any function for each $\alpha \in A$. For each $\alpha \in A$, let $\mathscr{B}_{\alpha} = \left\{ \widehat{f}_{\alpha}^{-1}[E] : E \in \mathscr{E}_{\alpha} \right\}$ and let $\mathscr{S} = \bigcup \{ \mathscr{B}_{\alpha} : \alpha \in A \}$. Theorem (inverse image uniformity) implies that \mathscr{B}_{α} is a uniformity base for each $\alpha \in A$ and Theorem (union uniformity subbase) implies that \mathscr{S} is a uniformity subbase on X. The uniformity \mathscr{D} on X that is induced by \mathscr{S} is called the *weak uniformity* on X induced by the family $\{(\mathscr{E}_{\alpha}, f_{\alpha}) : \alpha \in A\}$.

(1) f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α} for each $\alpha \in A$.

Proof. Let $\alpha \in A$ and $E \in \mathscr{E}_{\alpha}$.

- Then $\hat{f}_{\alpha}^{-1}[E] \in \mathscr{B}_{\alpha} \subseteq \mathscr{D}$.
- Thus f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α} .

(2) \mathscr{D} is the smallest uniformity on X such that for each $\alpha \in A$ the function f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α} .

Proof. Let \mathscr{D}' be a uniformity on X such that f_{α} is uniformly continuous relative to \mathscr{D}' and \mathscr{E}_{α} for each $\alpha \in A$. We show that $\mathscr{D} \subseteq \mathscr{D}'$.

- If $\alpha \in A$, then the uniform continuity of f_{α} implies that $\mathscr{B}_{\alpha} \subseteq \mathscr{D}'$. Thus $\mathscr{S} \subseteq \mathscr{D}'$.
- Since \mathscr{D} is the filter on $X \times X$ with subbase \mathscr{S} , it follows that $\mathscr{D} \subseteq \mathscr{D}'$.

In general, if \mathscr{T} is a subbase for a filter \mathscr{F} on a set Y and \mathscr{G} is any filter on Y that contains \mathscr{T} , then $\mathscr{F} \subseteq \mathscr{G}$.

- Let $F \in \mathscr{F}$. Then F = Y or $\bigcap \mathscr{T}' \subseteq F$ for some finite and nonempty $\mathscr{T}' \subseteq \mathscr{T}$.
- If F = Y, then $F \in \mathscr{G}$.
- Assume that $\bigcap \mathscr{T}' \subseteq F$ for some finite and nonempty $\mathscr{T}' \subseteq \mathscr{T}$.
- Since $\mathscr{T}' \subseteq \mathscr{G}$ and since filters are closed under finite intersections and taking supersets, it follows that $F \in \mathscr{G}$.

Theorem (weak uniformity topology).

Let A and X be sets, let $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space and $f_{\alpha} : X \to X_{\alpha}$ be any function for each $\alpha \in A$. For each $\alpha \in A$, consider X_{α} to be a topological space with the topology induced by \mathscr{E}_{α} . Let \mathscr{D} be the weak uniformity on X induced by the family $\{(\mathscr{E}_{\alpha}, f_{\alpha}) : \alpha \in A\}$ and τ be the weak topology on X induced by the same family of functions (and the topologies τ_{α} on X_{α} induced by \mathscr{E}_{α}). Then τ is the topology induced by \mathscr{D} .

Proof. Let τ' be the topology induced by \mathscr{D} .

- We show that $\tau' \subseteq \tau$.
 - Assume that $U \in \tau'$. If U = X or $U = \emptyset$, then $U \in \tau$.
 - Assume that $\emptyset \neq U \neq X$. Let $x \in U$.
 - There is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
 - We find $U_x \in \tau$ with $x \in U_x \subseteq D[x]$.
 - * Since $D \neq X \times X$, there is finite nonempty $A' \subseteq A$ and $E_{\alpha} \in \mathscr{E}_{\alpha}$ for each $\alpha \in A'$ such that

$$\bigcap \left\{ \hat{f}_{\alpha} \quad \left[E_{\alpha} \right] : \alpha \in A' \right\} \subseteq D.$$

- * For each $\alpha \in A'$, let $V_{\alpha} \in \tau_{\alpha}$ be such that $f_{\alpha}(x) \in V_{\alpha} \subseteq E_{\alpha}[f_{\alpha}(x)].$
- * Then $f_{\alpha}^{-1}[V_{\alpha}] \in \tau$ for each $\alpha \in A'$ so $U_x := \bigcap \{ f_{\alpha}^{-1}[V_{\alpha}] : \alpha \in A' \} \in \tau.$
- * Since $f_{\alpha}(x) \in V_{\alpha}$ for each $\alpha \in A'$, it follows that $x \in U_x$.
- * We show that $U_x \subseteq D[x]$.
 - Let $y \in U_x$.
 - Then $f_{\alpha}(y) \in V_{\alpha} \subseteq E_{\alpha}[f_{\alpha}(x)]$ for each $\alpha \in A'$.
 - Thus $\langle f_{\alpha}(x), f_{\alpha}(y) \rangle \in E_{\alpha}$ for each $\alpha \in A'$ so $\langle x, y \rangle \in D$.
 - Thus $y \in D[x]$.
- Then $U = \bigcup \{ U_x : x \in U \}$ so $U \in \tau$.
- We show that $\tau \subseteq \tau'$.

- Assume that $U \in \tau$. If U = X or $X = \emptyset$, then $U \in \tau'$.
- Assume that $\emptyset \neq U \neq X$. Let $x \in U$.
- We find $D \in \mathscr{D}$ with $D[x] \subseteq U$.
 - * Since $U \neq X$, there is finite nonempty $A' \subseteq A$ and $V_{\alpha} \in \tau_{\alpha}$ for each $\alpha \in A'$ such that
 - $x \in \bigcap \left\{ f_{\alpha}^{-1}[V_{\alpha}] : \alpha \in A' \right\} \subseteq U.$
 - * For each $\alpha \in A'$, we have $f_{\alpha}(x) \in V_{\alpha}$ so there is $E_{\alpha} \in \mathscr{E}_{\alpha}$ such that $E_{\alpha}[f_{\alpha}(x)] \subseteq V_{\alpha}$.
 - * Let $D := \bigcap \left\{ \hat{f_{\alpha}}^{-1}[E_{\alpha}] : \alpha \in A' \right\}$. Then $D \in \mathscr{D}$.
 - * We show that $D[x] \subseteq U$.

• Let
$$y \in D[x]$$
. Then $\langle x, y \rangle \in D$.

- · Thus $\langle f_{\alpha}(x), f_{\alpha}(y) \rangle \in E_{\alpha}$ for each $\alpha \in A'$.
- $\cdot\,$ It follows that

$$f_{\alpha}(y) \in E_{\alpha}[f_{\alpha}(x)] \subseteq V_{\alpha}$$

so $y \in f_{\alpha}^{-1}[V_{\alpha}]$ for each $\alpha \in A'$.
Thus $y \in U$.

- It follows that $U \in \tau'$.

Theorem (uniform continuity weak uniformity).

Let A and X be sets, let $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space and $f_{\alpha} : X \to X_{\alpha}$ be any function for each $\alpha \in A$. Let \mathscr{D} be the weak uniformity on X induced by the family $\{(\mathscr{E}_{\alpha}, f_{\alpha}) : \alpha \in A\}$. Let $\{Y, \mathscr{E}\}$ be a uniform space and $g : Y \to X$ be a function. Then g is uniformly continuous (relative to \mathscr{E} and \mathscr{D}) if and only if the composition $f_{\alpha} \circ g$ is uniformly continuous (relative to \mathscr{E} and \mathscr{E}_{α}).

Proof. Assume that g is uniformly continuous.

• For each $\alpha \in A$, the function f_{α} is uniformly continuous, so $f_{\alpha} \circ g$ is uniformly continuous.

Now assume that $f_{\alpha} \circ g$ is uniformly continuous for each $\alpha \in A$.

- Let $D \in \mathscr{D}$. We show that $\hat{g}^{-1}[D] \in \mathscr{E}$.
 - If $D = X \times X$, then $\hat{g}^{-1}[D] = Y \times Y \in \mathscr{E}$.
 - Otherwise, there exists finite nonempty $A' \subseteq A$ and $E_{\alpha} \in \mathscr{E}_{\alpha}$ for each $\alpha \in A'$ such that

$$B := \bigcap \left\{ \hat{f_{\alpha}}^{-1}[E_{\alpha}] : \alpha \in A' \right\} \subseteq D.$$

- Since $f_{\alpha} \circ g$ is uniformly continuous for each $\alpha \in A'$, it follows that

$$\hat{g}^{-1}\left[\hat{f}_{\alpha}^{-1}[E_{\alpha}]\right] = \widehat{f_{\alpha} \circ g}^{-1}[E_{\alpha}] \in \mathscr{E}$$

for each $\alpha \in A'$.
- Thus $\hat{g}^{-1}[B] \in \mathscr{E}$.
- Since $\hat{g}^{-1}[B] \subseteq \hat{g}^{-1}[D]$, it follows that $\hat{g}^{-1}[D] \in \mathscr{E}$.

• Thus *q* is uniformly continuous.

Product uniformity.

Let A be a set and $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space for each $\alpha \in A$. Let $X = \prod \{X_{\alpha} : \alpha \in A\}$. The product uniformity \mathscr{D} on X is the weak uniformity induced by the family $\{(\mathscr{E}_{\alpha}, \pi_{\alpha}) : \alpha \in A\}$, where $\pi_{\alpha} : X \to X_{\alpha}$ is the projection.

- For each $\alpha \in A$, let $\mathscr{B}_{\alpha} = \{\hat{\pi}_{\alpha}^{-1}[E] : E \in \mathscr{E}_{\alpha}\}$ and let $\mathscr{S} = \bigcup \{\mathscr{B}_{\alpha} : \alpha \in A\}$. Then \mathscr{S} is a subbase for \mathscr{D} .
- The product uniformity on X is the smallest uniformity such that π_{α} is uniformly continuous for each $\alpha \in A$.

Corollary (product uniformity topology).

Let A be a set and $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space for each $\alpha \in A$. Let $X = \prod \{X_{\alpha} : \alpha \in A\}$ with the product uniformity \mathscr{D} . For each $\alpha \in A$, consider X_{α} to be a topological space with the topology induced by \mathscr{E}_{α} . Then the product topology on X is the topology induced by \mathscr{D} .

Proof. It is a special case of Theorem (weak uniformity topology).

Corollary (uniform continuity product uniformity).

Let A be a set and $(X_{\alpha}, \mathscr{E}_{\alpha})$ be a uniform space for each $\alpha \in A$. Let $X = \prod \{X_{\alpha} : \alpha \in A\}$ with the product uniformity \mathscr{D} . Let $\{Y, \mathscr{E}\}$ be a uniform space and $g : Y \to X$ be a function. Then g is uniformly continuous (relative to \mathscr{E} and \mathscr{D}) if and only if the composition $\pi_{\alpha} \circ g$ is uniformly continuous (relative to \mathscr{E} and \mathscr{E}_{α}).

Proof. It is a special case of Theorem (uniform continuity weak uniformity).

Theorem (uniformly continuous pseudometric).

Let \mathscr{D} be a uniformity on a set X and d be a pseudometric on X. Consider $X \times X$ equipped with the product uniformity and let \mathbb{R} have the standard uniformity (uniformity induced by the standard metric on \mathbb{R}). The function $d: X \times X \to \mathbb{R}$ is uniformly continuous if and only if the identity function $g: X \to X$ is uniformly continuous relative to \mathscr{D} and the uniformity \mathscr{E} on X that is induced by d (which holds if and only if $\mathscr{E} \subseteq \mathscr{D}$).

Proof. Assume that d is uniformly continuous.

- We show that $\mathscr{E} \subseteq \mathscr{D}$.
 - Let $E \in \mathscr{E}$.
 - There exists $\varepsilon > 0$ such that $\langle x, y \rangle \in E$ for any $x, y \in X$ with $d(x, y) < \varepsilon$.
 - Let $S = \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} : |a b| < \varepsilon \}$. Then S is a member of the standard uniformity on \mathbb{R} .
 - Since d is uniformly continuous, it follows that $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.
 - Thus there exist $B, D \in \mathscr{D}$ with

$$\hat{\pi_1}^{-1}[B] \cap \hat{\pi_2}^{-1}[D] \subseteq \hat{d}^{-1}[S],$$

- where $\pi_1, \pi_2: X \times X \to X$ are the projections.
- We prove that $B \subseteq E$.

 $\begin{array}{l} * \text{ Let } \langle x,y\rangle \in B. \\ * \text{ Note that} \\ & \hat{\pi_1}^{-1}[B] = \left\{ \langle \langle s,t\rangle \,, \langle w,z\rangle \rangle \in X^2 \times X^2 : \langle s,w\rangle \in B \right\}. \\ \text{ and} \\ & \hat{\pi_2}^{-1}[D] = \left\{ \langle \langle s,t\rangle \,, \langle w,z\rangle \rangle \in X^2 \times X^2 : \langle t,z\rangle \in D \right\}. \\ * \text{ Moreover} \\ & \hat{d}^{-1}[S] = \left\{ \langle \langle s,t\rangle \,, \langle w,z\rangle \rangle \in X^2 \times X^2 : |d(s,t) - d(w,z)| < \varepsilon \right\}. \\ * \text{ Since } \langle x,y\rangle \in B \text{ and } \langle x,x\rangle \in D, \text{ it follows that } \langle \langle x,y\rangle \,, \langle x,x\rangle \rangle \in \\ & \hat{d}^{-1}[S] \text{ so } d(x,y) < \varepsilon. \\ * \text{ Thus } \langle x,y\rangle \in E. \\ - \text{ Thus } E \in \mathscr{D}. \end{array}$

Assume that that $\mathscr{E} \subseteq \mathscr{D}$.

- We show that *d* is uniformly continuous.
 - Let S be a member of the standard uniformity on \mathbb{R} .
 - There is $\varepsilon > 0$ such that $\langle a, b \rangle \in S$ for any $a, b \in \mathbb{R}$ with $|a b| < \varepsilon$.
 - We show that $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.
 - * Let $D = \{ \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon/2 \}$. Then $D \in \mathscr{E}$.
 - * Since $\mathscr{E} \subseteq \mathscr{D}$, it follows that $D \in \mathscr{D}$.
 - * We show that $\hat{\pi_1}^{-1}[D] \cap \hat{\pi_2}^{-1}[D] \subseteq \hat{d}^{-1}[S].$
 - Let $\langle \langle s, t \rangle, \langle w, z \rangle \rangle \in \hat{\pi_1}^{-1}[D] \cap \hat{\pi_2}^{-1}[D]$.

- · Then $\langle s, w \rangle \in D$ and $\langle t, z \rangle \in D$ so $d(s, w) < \varepsilon/2$ and $d(t, z) < \varepsilon/2$.
- It follows that $|d(s,t) d(w,z)| < \varepsilon$.
- Thus $\langle \langle s, t \rangle, \langle w, z \rangle \rangle \in \hat{d}^{-1}[S].$

* Thus $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.

- Thus d is uniformly continuous.

Uniformly continuous pseudometric.

Let \mathscr{D} be a uniformity on a set X and d be a pseudometric on X. We say that d is *uniformly continuous* (relative to \mathscr{D}) iff it is uniformly continuous as a function $d: X \times X \to \mathbb{R}$, where $X \times X$ has the product uniformity and \mathbb{R} has the standard uniformity (uniformity induced by the standard metric on \mathbb{R}).

Actually, d is uniformly continuous if and only if the identity function $g : X \to X$ is uniformly continuous relative to \mathscr{D} and the uniformity \mathscr{E} on X that is induced by d (which holds if and only if $\mathscr{E} \subseteq \mathscr{D}$).

• See the Theorem (uniformly continuous pseudometric) for a proof of the above characterization.

Explicitly, d is uniformly continuous if and only if for every $\varepsilon > 0$ the set

$$D_{\varepsilon} := \{ \langle x, y \rangle \in X \times X : d(x, y) < \varepsilon \}$$

is a member of \mathscr{D} .

Proof. Assume that $D_{\varepsilon} \in \mathscr{D}$ for every $\varepsilon > 0$.

- We show that the identity function $g: X \to X$ is uniformly continuous relative to \mathcal{D} and \mathscr{E} .
 - Let $E \in \mathscr{E}$. There exists $\varepsilon > 0$ such that $\langle x, y \rangle \in E$ whenever $d(x,y) < \varepsilon$.
 - Then $\hat{g}^{-1}[E] = E$ and $D_{\varepsilon} \subseteq E$, implying that $\hat{g}^{-1}[E] \in \mathscr{D}$.

Now assume that the identity function $g:X\to X$ is uniformly continuous relative to $\mathscr D$ and $\mathscr E.$

- We show that $D_{\varepsilon} \in \mathscr{D}$ for every $\varepsilon > 0$.
 - Let $\varepsilon > 0$. Then $D_{\varepsilon} \in \mathscr{E}$.
 - The uniform continuity of g implies that $\hat{g}^{-1}[D_{\varepsilon}] \in \mathscr{D}$.
 - Since $\hat{g}^{-1}[D_{\varepsilon}] = D_{\varepsilon}$, it follows that that $D_{\varepsilon} \in \mathscr{D}$.