Math 793C

Jerzy Wojciechowski
Class 30

Topology for Analysis

Weak uniformity.

Let A and X be sets, let $\left(X_{\alpha}, \mathscr{E}_{\alpha}\right)$ be a uniform space and $f_{\alpha}: X \rightarrow X_{\alpha}$ be any function for each $\alpha \in A$. For each $\alpha \in A$, let $\mathscr{B}_{\alpha}=\left\{\hat{f}_{\alpha}^{-1}[E]: E \in \mathscr{E}_{\alpha}\right\}$ and let $\mathscr{S}=\bigcup\left\{\mathscr{B}_{\alpha}: \alpha \in A\right\}$. Theorem (inverse image uniformity) implies that \mathscr{B}_{α} is a uniformity base for each $\alpha \in A$ and Theorem (union uniformity subbase) implies that \mathscr{S} is a uniformity subbase on X. The uniformity \mathscr{D} on X that is induced by \mathscr{S} is called the weak uniformity on X induced by the family $\left\{\left(\mathscr{E}_{\alpha}, f_{\alpha}\right): \alpha \in A\right\}$.
(1) f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α} for each $\alpha \in A$.

Proof. Let $\alpha \in A$ and $E \in \mathscr{E}_{\alpha}$.

- Then $\hat{f}_{\alpha}^{-1}[E] \in \mathscr{B}_{\alpha} \subseteq \mathscr{D}$.
- Thus f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α}.
(2) \mathscr{D} is the smallest uniformity on X such that for each $\alpha \in A$ the function f_{α} is uniformly continuous relative to \mathscr{D} and \mathscr{E}_{α}.

Proof. Let \mathscr{D}^{\prime} be a uniformity on X such that f_{α} is uniformly continuous relative to \mathscr{D}^{\prime} and \mathscr{E}_{α} for each $\alpha \in A$. We show that $\mathscr{D} \subseteq \mathscr{D}^{\prime}$.

- If $\alpha \in A$, then the uniform continuity of f_{α} implies that $\mathscr{B}_{\alpha} \subseteq \mathscr{D}^{\prime}$. Thus $\mathscr{S} \subseteq \mathscr{D}^{\prime}$.
- Since \mathscr{D} is the filter on $X \times X$ with subbase \mathscr{S}, it follows that $\mathscr{D} \subseteq \mathscr{D}^{\prime}$.

In general, if \mathscr{T} is a subbase for a filter \mathscr{F} on a set Y and \mathscr{G} is any filter on Y that contains \mathscr{T}, then $\mathscr{F} \subseteq \mathscr{G}$.

- Let $F \in \mathscr{F}$. Then $F=Y$ or $\bigcap \mathscr{T}^{\prime} \subseteq F$ for some finite and nonempty $\mathscr{T}^{\prime} \subseteq \mathscr{T}$.
- If $F=Y$, then $F \in \mathscr{G}$.
- Assume that $\bigcap \mathscr{T}^{\prime} \subseteq F$ for some finite and nonempty $\mathscr{T}^{\prime} \subseteq \mathscr{T}$.
- Since $\mathscr{T}^{\prime} \subseteq \mathscr{G}$ and since filters are closed under finite intersections and taking supersets, it follows that $F \in \mathscr{G}$.

Theorem (weak uniformity topology).

Let A and X be sets, let $\left(X_{\alpha}, \mathscr{E}_{\alpha}\right)$ be a uniform space and $f_{\alpha}: X \rightarrow X_{\alpha}$ be any function for each $\alpha \in A$. For each $\alpha \in A$, consider X_{α} to be a topological space with the topology induced by \mathscr{E}_{α}. Let \mathscr{D} be the weak uniformity on X induced by the family $\left\{\left(\mathscr{E}_{\alpha}, f_{\alpha}\right): \alpha \in A\right\}$ and τ be the weak topology on X induced by the same family of functions (and the topologies τ_{α} on X_{α} induced by \mathscr{E}_{α}). Then τ is the topology induced by \mathscr{D}.

Proof. Let τ^{\prime} be the topology induced by \mathscr{D}.

- We show that $\tau^{\prime} \subseteq \tau$.
- Assume that $U \in \tau^{\prime}$. If $U=X$ or $U=\varnothing$, then $U \in \tau$.
- Assume that $\varnothing \neq U \neq X$. Let $x \in U$.
- There is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
- We find $U_{x} \in \tau$ with $x \in U_{x} \subseteq D[x]$.
* Since $D \neq X \times X$, there is finite nonempty $A^{\prime} \subseteq A$ and $E_{\alpha} \in \mathscr{E}_{\alpha}$ for each $\alpha \in A^{\prime}$ such that

$$
\bigcap\left\{{\hat{f_{\alpha}}}^{-1}\left[E_{\alpha}\right]: \alpha \in A^{\prime}\right\} \subseteq D
$$

* For each $\alpha \in A^{\prime}$, let $V_{\alpha} \in \tau_{\alpha}$ be such that

$$
f_{\alpha}(x) \in V_{\alpha} \subseteq E_{\alpha}\left[f_{\alpha}(x)\right]
$$

* Then $f_{\alpha}^{-1}\left[V_{\alpha}\right] \in \tau$ for each $\alpha \in A^{\prime}$ so
$U_{x}:=\bigcap\left\{f_{\alpha}^{-1}\left[V_{\alpha}\right]: \alpha \in A^{\prime}\right\} \in \tau$.
* Since $f_{\alpha}(x) \in V_{\alpha}$ for each $\alpha \in A^{\prime}$, it follows that $x \in U_{x}$.
* We show that $U_{x} \subseteq D[x]$.
- Let $y \in U_{x}$.
- Then $f_{\alpha}(y) \in V_{\alpha} \subseteq E_{\alpha}\left[f_{\alpha}(x)\right]$ for each $\alpha \in A^{\prime}$.
- Thus $\left\langle f_{\alpha}(x), f_{\alpha}(y)\right\rangle \in E_{\alpha}$ for each $\alpha \in A^{\prime}$ so $\langle x, y\rangle \in D$.
- Thus $y \in D[x]$.
- Then $U=\bigcup\left\{U_{x}: x \in U\right\}$ so $U \in \tau$.
- We show that $\tau \subseteq \tau^{\prime}$.
- Assume that $U \in \tau$. If $U=X$ or $X=\varnothing$, then $U \in \tau^{\prime}$.
- Assume that $\varnothing \neq U \neq X$. Let $x \in U$.
- We find $D \in \mathscr{D}$ with $D[x] \subseteq U$.
* Since $U \neq X$, there is finite nonempty $A^{\prime} \subseteq A$ and $V_{\alpha} \in \tau_{\alpha}$ for each $\alpha \in A^{\prime}$ such that

$$
x \in \bigcap\left\{f_{\alpha}^{-1}\left[V_{\alpha}\right]: \alpha \in A^{\prime}\right\} \subseteq U
$$

* For each $\alpha \in A^{\prime}$, we have $f_{\alpha}(x) \in V_{\alpha}$ so there is $E_{\alpha} \in \mathscr{E}_{\alpha}$ such that $E_{\alpha}\left[f_{\alpha}(x)\right] \subseteq V_{\alpha}$.
* Let $D:=\bigcap\left\{\hat{f}_{\alpha}^{-1}\left[E_{\alpha}\right]: \alpha \in A^{\prime}\right\}$. Then $D \in \mathscr{D}$.
* We show that $D[x] \subseteq U$.
- Let $y \in D[x]$. Then $\langle x, y\rangle \in D$.
- Thus $\left\langle f_{\alpha}(x), f_{\alpha}(y)\right\rangle \in E_{\alpha}$ for each $\alpha \in A^{\prime}$.
- It follows that

$$
f_{\alpha}(y) \in E_{\alpha}\left[f_{\alpha}(x)\right] \subseteq V_{\alpha}
$$

so $y \in f_{\alpha}^{-1}\left[V_{\alpha}\right]$ for each $\alpha \in A^{\prime}$.

- Thus $y \in U$.
- It follows that $U \in \tau^{\prime}$.

Theorem (uniform continuity weak uniformity).

Let A and X be sets, let $\left(X_{\alpha}, \mathscr{E}_{\alpha}\right)$ be a uniform space and $f_{\alpha}: X \rightarrow X_{\alpha}$ be any function for each $\alpha \in A$. Let \mathscr{D} be the weak uniformity on X induced by the family $\left\{\left(\mathscr{E}_{\alpha}, f_{\alpha}\right): \alpha \in A\right\}$. Let $\{Y, \mathscr{E}\}$ be a uniform space and $g: Y \rightarrow X$ be a function. Then g is uniformly continuous (relative to \mathscr{E} and \mathscr{D}) if and only if the composition $f_{\alpha} \circ g$ is uniformly continuous (relative to \mathscr{E} and \mathscr{E}_{α}).

Proof. Assume that g is uniformly continuous.

- For each $\alpha \in A$, the function f_{α} is uniformly continuous, so $f_{\alpha} \circ g$ is uniformly continuous.

Now assume that $f_{\alpha} \circ g$ is uniformly continuous for each $\alpha \in A$.

- Let $D \in \mathscr{D}$. We show that $\hat{g}^{-1}[D] \in \mathscr{E}$.
- If $D=X \times X$, then $\hat{g}^{-1}[D]=Y \times Y \in \mathscr{E}$.
- Otherwise, there exists finite nonempty $A^{\prime} \subseteq A$ and $E_{\alpha} \in \mathscr{E}_{\alpha}$ for each $\alpha \in A^{\prime}$ such that

$$
B:=\bigcap\left\{{\hat{f_{\alpha}}}^{-1}\left[E_{\alpha}\right]: \alpha \in A^{\prime}\right\} \subseteq D
$$

- Since $f_{\alpha} \circ g$ is uniformly continuous for each $\alpha \in A^{\prime}$, it follows that

$$
\hat{g}^{-1}\left[{\hat{f_{\alpha}}}^{-1}\left[E_{\alpha}\right]\right]={\widehat{f_{\alpha} \circ g}}^{-1}\left[E_{\alpha}\right] \in \mathscr{E}
$$

for each $\alpha \in A^{\prime}$.

- Thus $\hat{g}^{-1}[B] \in \mathscr{E}$.
- Since $\hat{g}^{-1}[B] \subseteq \hat{g}^{-1}[D]$, it follows that $\hat{g}^{-1}[D] \in \mathscr{E}$.
- Thus g is uniformly continuous.

Product uniformity.

Let A be a set and $\left(X_{\alpha}, \mathscr{E}_{\alpha}\right)$ be a uniform space for each $\alpha \in A$. Let $X=$ $\Pi\left\{X_{\alpha}: \alpha \in A\right\}$. The product uniformity \mathscr{D} on X is the weak uniformity induced by the family $\left\{\left(\mathscr{E}_{\alpha}, \pi_{\alpha}\right): \alpha \in A\right\}$, where $\pi_{\alpha}: X \rightarrow X_{\alpha}$ is the projection.

- For each $\alpha \in A$, let $\mathscr{B}_{\alpha}=\left\{\hat{\pi}_{\alpha}^{-1}[E]: E \in \mathscr{E}_{\alpha}\right\}$ and let $\mathscr{S}=\bigcup\left\{\mathscr{B}_{\alpha}: \alpha \in A\right\}$. Then \mathscr{S} is a subbase for \mathscr{D}.
- The product uniformity on X is the smallest uniformity such that π_{α} is uniformly continuous for each $\alpha \in A$.

Corollary (product uniformity topology).

Let A be a set and ($X_{\alpha}, \mathscr{E}_{\alpha}$) be a uniform space for each $\alpha \in A$. Let $X=$ $\prod\left\{X_{\alpha}: \alpha \in A\right\}$ with the product uniformity \mathscr{D}. For each $\alpha \in A$, consider X_{α} to be a topological space with the topology induced by \mathscr{E}_{α}. Then the product topology on X is the topology induced by \mathscr{D}.

Proof. It is a special case of Theorem (weak uniformity topology).

Corollary (uniform continuity product uniformity).

Let A be a set and $\left(X_{\alpha}, \mathscr{E}_{\alpha}\right)$ be a uniform space for each $\alpha \in A$. Let $X=$ $\Pi\left\{X_{\alpha}: \alpha \in A\right\}$ with the product uniformity \mathscr{D}. Let $\{Y, \mathscr{E}\}$ be a uniform space and $g: Y \rightarrow X$ be a function. Then g is uniformly continuous (relative to \mathscr{E} and \mathscr{D}) if and only if the composition $\pi_{\alpha} \circ g$ is uniformly continuous (relative to \mathscr{E} and \mathscr{E}_{α}).

Proof. It is a special case of Theorem (uniform continuity weak uniformity).

Theorem (uniformly continuous pseudometric).

Let \mathscr{D} be a uniformity on a set X and d be a pseudometric on X. Consider $X \times X$ equipped with the product uniformity and let \mathbb{R} have the standard uniformity (uniformity induced by the standard metric on \mathbb{R}). The function $d: X \times X \rightarrow \mathbb{R}$ is uniformly continuous if and only if the identity function $g: X \rightarrow X$ is uniformly continuous relative to \mathscr{D} and the uniformity \mathscr{E} on X that is induced by d (which holds if and only if $\mathscr{E} \subseteq \mathscr{D}$).

Proof. Assume that d is uniformly continuous.

- We show that $\mathscr{E} \subseteq \mathscr{D}$.
- Let $E \in \mathscr{E}$.
- There exists $\varepsilon>0$ such that $\langle x, y\rangle \in E$ for any $x, y \in X$ with $d(x, y)<\varepsilon$.
- Let $S=\{\langle a, b\rangle \in \mathbb{R} \times \mathbb{R}:|a-b|<\varepsilon\}$. Then S is a member of the standard uniformity on \mathbb{R}.
- Since d is uniformly continuous, it follows that $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.
- Thus there exist $B, D \in \mathscr{D}$ with

$$
{\hat{\pi_{1}}}^{-1}[B] \cap{\hat{\pi_{2}}}^{-1}[D] \subseteq \hat{d}^{-1}[S],
$$

where $\pi_{1}, \pi_{2}: X \times X \rightarrow X$ are the projections.

- We prove that $B \subseteq E$.
* Let $\langle x, y\rangle \in B$.
* Note that

$$
\hat{\pi}_{1}^{-1}[B]=\left\{\langle\langle s, t\rangle,\langle w, z\rangle\rangle \in X^{2} \times X^{2}:\langle s, w\rangle \in B\right\} .
$$

and

$$
{\hat{\pi_{2}}}^{-1}[D]=\left\{\langle\langle s, t\rangle,\langle w, z\rangle\rangle \in X^{2} \times X^{2}:\langle t, z\rangle \in D\right\} .
$$

* Moreover

$$
\hat{d}^{-1}[S]=\left\{\langle\langle s, t\rangle,\langle w, z\rangle\rangle \in X^{2} \times X^{2}:|d(s, t)-d(w, z)|<\varepsilon\right\} .
$$

* Since $\langle x, y\rangle \in B$ and $\langle x, x\rangle \in D$, it follows that $\langle\langle x, y\rangle,\langle x, x\rangle\rangle \in$ $\hat{d}^{-1}[S]$ so $d(x, y)<\varepsilon$.
* Thus $\langle x, y\rangle \in E$.
- Thus $E \in \mathscr{D}$.

Assume that that $\mathscr{E} \subseteq \mathscr{D}$.

- We show that d is uniformly continuous.
- Let S be a member of the standard uniformity on \mathbb{R}.
- There is $\varepsilon>0$ such that $\langle a, b\rangle \in S$ for any $a, b \in \mathbb{R}$ with $|a-b|<\varepsilon$.
- We show that $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.
* Let $D=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon / 2\}$. Then $D \in \mathscr{E}$.
* Since $\mathscr{E} \subseteq \mathscr{D}$, it follows that $D \in \mathscr{D}$.
* We show that ${\hat{\pi_{1}}}^{-1}[D] \cap{\hat{\pi_{2}}}^{-1}[D] \subseteq \hat{d}^{-1}[S]$.
- Let $\langle\langle s, t\rangle,\langle w, z\rangle\rangle \in{\hat{\pi_{1}}}^{-1}[D] \cap{\hat{\pi_{2}}}^{-1}[D]$.
- Then $\langle s, w\rangle \in D$ and $\langle t, z\rangle \in D$ so $d(s, w)<\varepsilon / 2$ and $d(t, z)<$ $\varepsilon / 2$.
- It follows that $|d(s, t)-d(w, z)|<\varepsilon$.
- Thus $\langle\langle s, t\rangle,\langle w, z\rangle\rangle \in \hat{d}^{-1}[S]$.
* Thus $\hat{d}^{-1}[S]$ is a member of the product uniformity on $X \times X$.
- Thus d is uniformly continuous.

Uniformly continuous pseudometric.

Let \mathscr{D} be a uniformity on a set X and d be a pseudometric on X. We say that d is uniformly continuous (relative to \mathscr{D}) iff it is uniformly continuous as a function $d: X \times X \rightarrow \mathbb{R}$, where $X \times X$ has the product uniformity and \mathbb{R} has the standard uniformity (uniformity induced by the standard metric on \mathbb{R}).

Actually, d is uniformly continuous if and only if the identity function g : $X \rightarrow X$ is uniformly continuous relative to \mathscr{D} and the uniformity \mathscr{E} on X that is induced by d (which holds if and only if $\mathscr{E} \subseteq \mathscr{D}$).

- See the Theorem (uniformly continuous pseudometric) for a proof of the above characterization.

Explicitly, d is uniformly continuous if and only if for every $\varepsilon>0$ the set

$$
D_{\varepsilon}:=\{\langle x, y\rangle \in X \times X: d(x, y)<\varepsilon\}
$$

is a member of \mathscr{D}.

Proof. Assume that $D_{\varepsilon} \in \mathscr{D}$ for every $\varepsilon>0$.

- We show that the identity function $g: X \rightarrow X$ is uniformly continuous relative to \mathscr{D} and \mathscr{E}.
- Let $E \in \mathscr{E}$. There exists $\varepsilon>0$ such that $\langle x, y\rangle \in E$ whenever $d(x, y)<\varepsilon$.
- Then $\hat{g}^{-1}[E]=E$ and $D_{\varepsilon} \subseteq E$, implying that $\hat{g}^{-1}[E] \in \mathscr{D}$.

Now assume that the identity function $g: X \rightarrow X$ is uniformly continuous relative to \mathscr{D} and \mathscr{E}.

- We show that $D_{\varepsilon} \in \mathscr{D}$ for every $\varepsilon>0$.
- Let $\varepsilon>0$. Then $D_{\varepsilon} \in \mathscr{E}$.
- The uniform continuity of g implies that $\hat{g}^{-1}\left[D_{\varepsilon}\right] \in \mathscr{D}$.
- Since $\hat{g}^{-1}\left[D_{\varepsilon}\right]=D_{\varepsilon}$, it follows that that $D_{\varepsilon} \in \mathscr{D}$.

