Math 793C

Topology for Analysis

Jerzy Wojciechowski
Spring 2020
Class 29
April 3

Induced product function.

If $f: X \rightarrow Y$, then we will denote by \hat{f} the function $X \times X \rightarrow Y \times Y$ defined by

$$
\hat{f}(\langle x, y\rangle)=\langle f(x), f(y)\rangle .
$$

If \mathscr{D} and \mathscr{E} are uniformities on X and Y, respectively, then f is uniformly continuous if and only if $\hat{f}^{-1}[E] \in \mathscr{D}$ for every $E \in \mathscr{E}$.

Discrete uniformity.

Let X be a set. The discrete uniformity on X is the family \mathscr{D} of all $D \subseteq X \times X$ such that D is a reflexive relation on X.

- It is clear that \mathscr{D} is a uniformity.
- The topology on X induced by \mathscr{D} is the discrete topology.

Proof.

- Let $D=\{\langle x, x\rangle: x \in X\}$ be the diagonal of X. Then $D \in \mathscr{D}$.
- Let $x \in X$. Then $D[x]=\{x\}$ so $\{x\}$ is open in the topology τ on X that is induced by \mathscr{D}
- Thus τ is the discrete topology.

Exercise (inverse image uniformity).

Let $X=\mathbb{N}, Y=\{0,1\}$ and let \mathscr{E} be the discrete uniformity on Y. Define $f: X \rightarrow Y$ by $f(n)=0$ if n is even and $f(n)=1$ otherwise. Let $\mathscr{D}:=$
$\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$, where $\hat{f}: X \times X \rightarrow Y \times Y$ is the induced product function. Prove that \mathscr{D} is not a uniformity on X.

Solution. Note that $\mathscr{E}=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$, where

- $E_{1}=\{\langle 0,0\rangle,\langle 1,1\rangle\}$,
- $E_{2}=Y \times Y \backslash\{\langle 0,1\rangle\}$,
- $E_{3}=Y \times Y \backslash\{\langle 1,0\rangle\}$ and
- $E_{4}=Y \times Y$.

Let $A:=\{2 n: n \in \mathbb{N}\}$ and $B:=\{2 n-1: n \in \mathbb{N}\}$.

- Then $\mathscr{D}=\left\{\hat{f}^{-1}\left[E_{1}\right], \hat{f}^{-1}\left[E_{2}\right], \hat{f}^{-1}\left[E_{3}\right], \hat{f}^{-1}\left[E_{4}\right]\right\}$, where
$-\hat{f}^{-1}\left[E_{1}\right]=A \times A \cup B \times B$,
$-\hat{f}^{-1}\left[E_{2}\right]=\mathbb{N} \times \mathbb{N} \backslash A \times B$,
$-\hat{f}^{-1}\left[E_{3}\right]=\mathbb{N} \times \mathbb{N} \backslash B \times A$,
$-\hat{f}^{-1}\left[E_{4}\right]=\mathbb{N} \times \mathbb{N}$.
- Note that \mathscr{D} is not a filter on $X \times X$ since
- $A \times A \cup B \times B \in \mathscr{D}$, but
$-A \times A \cup B \times B \cup\{\langle 1,2\rangle\} \notin \mathscr{D}$.
- Since a uniformity on X is a filter on $X \times X$, it follows that \mathscr{D} is not a uniformity on X.

Theorem (inverse image uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity base on Y, and $f: X \rightarrow Y$ be any function. Let $\mathscr{B}=\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$, where $\hat{f}: X \times X \rightarrow Y \times Y$ is the induced product function. Then \mathscr{B} is a uniformity base on X.

Proof. By Theorem (uniformity base), it suffices to verify the following conditions.

1. Each $D \in \mathscr{B}$ is a reflexive relation on X.

- Let $D \in \mathscr{B}$. Then $D=\hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.
- Let $x \in X$. Then $\langle f(x), f(x)\rangle \in E$ since E is a reflexive relation on Y.
- Hence $\langle x, x\rangle \in D$ and so D is a reflexive relation on X.

2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.

- Let $D \in \mathscr{B}$. Then $D=\hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.
- There is $F \in \mathscr{E}$ with $F \subseteq E^{-1}$. Let $B=\hat{f}^{-1}[F]$.
- Then $B \in \mathscr{B}$ and $B \subseteq D^{-1}$.

We show that $B \subseteq D^{-1}$.

- Let $\langle x, y\rangle \in B$.
- Then $\langle f(x), f(y)\rangle \in F \subseteq E^{-1}$ so $\langle f(y), f(x)\rangle \in E$.
- Thus $\langle y, x\rangle \in \hat{f}^{-1}[E]=D$ and $\langle x, y\rangle \in D^{-1}$.

3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.

- Let $D \in \mathscr{B}$. Then $D=\hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.
- There is $F \in \mathscr{E}$ with $F \circ F \subseteq E$. Let $B=\hat{f}^{-1}[F]$.
- Then $B \in \mathscr{B}$ and $B \circ B \subseteq D$.

We show that $B \circ B \subseteq D$.

- Let $\langle x, z\rangle \in B \circ B$. There is $y \in X$ with $\langle x, y\rangle \in B$ and $\langle y, z\rangle \in B$.
- Then $\langle f(x), f(y)\rangle \in F$ and $\langle f(y), f(z)\rangle \in F$ so $\langle f(x), f(z)\rangle \in E$.
- Since $\hat{f}(\langle x, z\rangle) \in E$, it follows that $\langle x, z\rangle \in \hat{f}^{-1}[E]=D$.

4. If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.

- Let $B, D \in \mathscr{B}$. Then $B=\hat{f}^{-1}[F]$ and $D=\hat{f}^{-1}[G]$ for some $F, G \in \mathscr{E}$.
- Let $H \in \mathscr{E}$ be such that $H \subseteq F \cap G$. Let $E=\hat{f}^{-1}[H]$.
- If $\langle x, y\rangle \in E$, then $\langle f(x), f(y)\rangle \in H \subseteq F \cap G$.
- Thus $\langle x, y\rangle \in B \cap D$ and so $E \subseteq B \cap D$.

Inverse image uniformity.

Let X, Y be sets, \mathscr{E} be a uniformity base on Y and $f: X \rightarrow Y$ be a function. The inverse image uniformity on X induced by \mathscr{E} and f is the uniformity induced by the uniformity base $\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$.

- See Theorem (inverse image uniformity) for the proof that $\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$ is a uniformity base on X.
- In particular, if \mathscr{E} is a uniformity on Y and $f: X \rightarrow Y$ is a function, then we get a uniformity on X induced by the uniformity base $\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$.

Theorem (uniform continuity inverse uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity on Y, and $f: X \rightarrow Y$ be any function. Let $\mathscr{B}=\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$ and let \mathscr{D} be the uniformity on X that is induced by the uniformity base \mathscr{B}.

- f is uniformly continuous relative to \mathscr{D} and \mathscr{E}.
- If \mathscr{D}^{\prime} is any uniformity on X such that $f: X \rightarrow Y$ is uniformly continuous relative to \mathscr{D}^{\prime} and \mathscr{E}, then $\mathscr{D} \subseteq \mathscr{D}^{\prime}$.

Proof.

- Let $E \in \mathscr{E}$. Then $\hat{f}^{-1}[E] \in \mathscr{B}$. Since $\mathscr{B} \subseteq \mathscr{D}$, it follows that $\hat{f}^{-1}[E] \in \mathscr{D}$. Thus f is uniformly continuous.
- Assume that \mathscr{D}^{\prime} is any uniformity on X such that $f: X \rightarrow Y$ is uniformly continuous relative to \mathscr{D}^{\prime} and \mathscr{E}. We show that $\mathscr{D} \subseteq \mathscr{D}^{\prime}$.
- Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
- There is $E \in \mathscr{E}$ be such that $B=\hat{f}^{-1}[E]$.
- Since f is uniformly continuous relative to \mathscr{D}^{\prime} and \mathscr{E}, it follows that $B \in \mathscr{D}^{\prime}$.
- Since \mathscr{D}^{\prime} is a uniformity, $B \in \mathscr{D}^{\prime}$ and $B \subseteq D$, it follows that $D \in \mathscr{D}^{\prime}$.

Exercise (injective inverse image uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity on Y, and $f: X \rightarrow Y$ be any injective function. Let $\mathscr{D}=\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$. Prove that \mathscr{D} is a uniformity on X.

Solution. By Theorem (inverse image uniformity), \mathscr{D} is a uniformity base on X.

- To prove that \mathscr{D} is a uniformity on X, it suffices to show that \mathscr{D} is closed under taking supersets.
- Let $D \in \mathscr{D}$ and $D \subseteq D^{\prime} \subseteq X \times X$. We show that $D^{\prime} \in \mathscr{D}$.
- Let $E \in \mathscr{E}$ be such that $D=\hat{f}^{-1}[E]$. Let $E^{\prime}=\hat{f}\left[D^{\prime}\right]$.
- Since f is injective, it follows that \hat{f} is injective.
* Let $\langle x, y\rangle,\langle z, w\rangle \in X \times X$ with $\hat{f}(\langle x, y\rangle)=\hat{f}(\langle z, w\rangle)$.
* Then $f(x)=f(z)$ and $f(y)=f(w)$.
* Thus $x=z$ and $y=w$ so $\langle x, y\rangle=\langle z, w\rangle$.
- Since \hat{f} is injective, it follows that $\hat{f}^{-1}\left[E^{\prime}\right]=D^{\prime}$.
- Since $D \subseteq D^{\prime}$, if follows that $E \subseteq E^{\prime}$ so $E^{\prime} \in \mathscr{E}$ and hence $D^{\prime} \in \mathscr{D}$.

Relative uniformity.

Let (Y, \mathscr{E}) be a uniform space and $X \subseteq Y$. The relative uniformity (subspace uniformity) on X is the uniformity \mathscr{D} on X that is induced by the embedding $f: X \rightarrow Y(f(x)=x$ for each $x \in X)$.

- Explicitly, \mathscr{D} is induced by the uniformity base

$$
\mathscr{B}=\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}=\{E \cap(X \times X): E \in \mathscr{E}\}
$$

which is also called the trace of \mathscr{E} on $X \times X$.

- Since the embedding $f: X \rightarrow Y$ is injective, \mathscr{B} is a uniformity on X so $\mathscr{D}=\mathscr{B}$.

Exercise (topology relative uniformity).

Let \mathscr{E} be a uniformity on a set Y, let τ be the topology on Y that is induced by \mathscr{E}, let $X \subseteq Y$ and let \mathscr{D} be the relative uniformity on X. Prove that the topology on X that is induced by \mathscr{D} is the relative (subspace) topology with respect to τ.

Solution. Let τ^{\prime} be the topology on X that is induced by \mathscr{D} and $\tau^{\prime \prime}$ be the subspace topology on X inherited from τ.

- We show that $\tau^{\prime} \subseteq \tau^{\prime \prime}$.
- Let $U \subseteq X$ be open in τ^{\prime}. Let $x \in U$ be arbitrary.
- There is $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
- There is $E \in \mathscr{E}$ with $D=E \cap(X \times X)$.
- Then $E[x]$ is a nbhd of x in Y with respect to τ so there is $V \in \tau$ with $x \in V \subseteq E[x]$.
- Since $E[x] \cap X=D[x]$, it follows that $V \cap X \subseteq D[x] \subseteq U$.
- Since $V \cap X \in \tau^{\prime \prime}$ and since x was an arbitrary point of U, it follows that $U \in \tau^{\prime \prime}$.
- Now we show that $\tau^{\prime \prime} \subseteq \tau^{\prime}$.
- Let $U \subseteq X$ be open in $\tau^{\prime \prime}$.
- There is $V \subseteq Y$ such that $U=V \cap X$ and $V \in \tau$.
- Let $x \in U$ be arbitrary.
- There is $E \in \mathscr{E}$ with $E[x] \subseteq V$.
- Let $D=E \cap(X \times X)$. Then $D \in \mathscr{D}$.
- Since $D[x]=E[x] \cap X$, it follows that $D[x] \subseteq U$.
- Thus $U \in \tau^{\prime}$.

