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Induced product function.

If f : X → Y , then we will denote by f̂ the function X ×X → Y × Y defined
by

f̂(〈x, y〉) = 〈f(x), f(y)〉.

If D and E are uniformities on X and Y , respectively, then f is uniformly
continuous if and only if f̂−1[E] ∈ D for every E ∈ E .

Discrete uniformity.

Let X be a set. The discrete uniformity on X is the family D of all D ⊆ X×X
such that D is a reflexive relation on X.

• It is clear that D is a uniformity.

• The topology on X induced by D is the discrete topology.

Proof.

– Let D = {〈x, x〉 : x ∈ X} be the diagonal of X. Then D ∈ D .

– Let x ∈ X. Then D [x] = {x} so {x} is open in the topology τ on X
that is induced by D

– Thus τ is the discrete topology.

Exercise (inverse image uniformity).

Let X = N, Y = {0, 1} and let E be the discrete uniformity on Y . Define
f : X → Y by f(n) = 0 if n is even and f(n) = 1 otherwise. Let D :={
f̂−1[E] : E ∈ E

}
, where f̂ : X ×X → Y × Y is the induced product function.

Prove that D is not a uniformity on X.
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Solution. Note that E = {E1, E2, E3, E4}, where

• E1 = {〈0, 0〉 , 〈1, 1〉},

• E2 = Y × Y r {〈0, 1〉},

• E3 = Y × Y r {〈1, 0〉} and

• E4 = Y × Y .

Let A := {2n : n ∈ N} and B := {2n− 1 : n ∈ N}.

• Then D =
{
f̂−1[E1], f̂

−1[E2], f̂
−1[E3], f̂

−1[E4]
}
, where

– f̂−1[E1] = A×A ∪B ×B,

– f̂−1[E2] = N× NrA×B,

– f̂−1[E3] = N× NrB ×A,
– f̂−1[E4] = N× N.

• Note that D is not a filter on X ×X since

– A×A ∪B ×B ∈ D , but

– A×A ∪B ×B ∪ {〈1, 2〉} /∈ D .

• Since a uniformity on X is a filter on X × X, it follows that D is not a
uniformity on X.

Theorem (inverse image uniformity).

Let X,Y be sets, E be a uniformity base on Y , and f : X → Y be any function.
Let B =

{
f̂−1[E] : E ∈ E

}
, where f̂ : X ×X → Y × Y is the induced product

function. Then B is a uniformity base on X.

Proof. By Theorem (uniformity base), it suffices to verify the following con-
ditions.

1. Each D ∈ B is a reflexive relation on X.

• Let D ∈ B. Then D = f̂−1[E] for some E ∈ E .

• Let x ∈ X. Then 〈f(x), f(x)〉 ∈ E since E is a reflexive relation on
Y .

• Hence 〈x, x〉 ∈ D and so D is a reflexive relation on X.

2. If D ∈ B, then there exists B ∈ B with B ⊆ D−1.

• Let D ∈ B. Then D = f̂−1[E] for some E ∈ E .
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• There is F ∈ E with F ⊆ E−1. Let B = f̂−1[F ].

• Then B ∈ B and B ⊆ D−1.

We show that B ⊆ D−1 .

– Let 〈x, y〉 ∈ B.
– Then 〈f(x), f(y)〉 ∈ F ⊆ E−1 so 〈f(y), f(x)〉 ∈ E.
– Thus 〈y, x〉 ∈ f̂−1[E] = D and 〈x, y〉 ∈ D−1.

3. If D ∈ B, then there exists B ∈ B with B ◦B ⊆ D.

• Let D ∈ B. Then D = f̂−1[E] for some E ∈ E .

• There is F ∈ E with F ◦ F ⊆ E. Let B = f̂−1[F ].

• Then B ∈ B and B ◦B ⊆ D.

We show that B ◦B ⊆ D.

– Let 〈x, z〉 ∈ B◦B. There is y ∈ X with 〈x, y〉 ∈ B and 〈y, z〉 ∈ B.
– Then 〈f(x), f(y)〉 ∈ F and 〈f(y), f(z)〉 ∈ F so 〈f(x), f(z)〉 ∈ E.
– Since f̂(〈x, z〉) ∈ E, it follows that 〈x, z〉 ∈ f̂−1[E] = D.

4. If B,D ∈ B, then there exists E ∈ B with E ⊆ B ∩D.

• Let B,D ∈ B. Then B = f̂−1[F ] andD = f̂−1[G] for some F,G ∈ E .

• Let H ∈ E be such that H ⊆ F ∩G. Let E = f̂−1[H].

• If 〈x, y〉 ∈ E, then 〈f(x), f(y)〉 ∈ H ⊆ F ∩G.
• Thus 〈x, y〉 ∈ B ∩D and so E ⊆ B ∩D.

Inverse image uniformity.

LetX,Y be sets, E be a uniformity base on Y and f : X → Y be a function. The
inverse image uniformity on X induced by E and f is the uniformity induced
by the uniformity base

{
f̂−1[E] : E ∈ E

}
.

• See Theorem (inverse image uniformity) for the proof that
{
f̂−1[E] : E ∈ E

}
is a uniformity base on X.

• In particular, if E is a uniformity on Y and f : X → Y is a func-
tion, then we get a uniformity on X induced by the uniformity base{
f̂−1[E] : E ∈ E

}
.
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Theorem (uniform continuity inverse uniformity).

Let X,Y be sets, E be a uniformity on Y , and f : X → Y be any function. Let
B =

{
f̂−1[E] : E ∈ E

}
and let D be the uniformity on X that is induced by

the uniformity base B.

• f is uniformly continuous relative to D and E .

• If D ′ is any uniformity on X such that f : X → Y is uniformly continuous
relative to D ′ and E , then D ⊆ D ′.

Proof.

• Let E ∈ E . Then f̂−1[E] ∈ B. Since B ⊆ D , it follows that f̂−1[E] ∈ D .
Thus f is uniformly continuous.

• Assume that D ′ is any uniformity on X such that f : X → Y is uniformly
continuous relative to D ′ and E . We show that D ⊆ D ′.

– Let D ∈ D . There is B ∈ B with B ⊆ D.
– There is E ∈ E be such that B = f̂−1[E].
– Since f is uniformly continuous relative to D ′ and E , it follows that
B ∈ D ′.

– Since D ′ is a uniformity, B ∈ D ′ and B ⊆ D, it follows that D ∈ D ′.

Exercise (injective inverse image uniformity).

Let X,Y be sets, E be a uniformity on Y , and f : X → Y be any injective
function. Let D =

{
f̂−1[E] : E ∈ E

}
. Prove that D is a uniformity on X.

Solution. By Theorem (inverse image uniformity), D is a uniformity base on
X.

• To prove that D is a uniformity on X, it suffices to show that D is closed
under taking supersets.

• Let D ∈ D and D ⊆ D′ ⊆ X ×X. We show that D′ ∈ D .

– Let E ∈ E be such that D = f̂−1[E]. Let E′ = f̂ [D′].

– Since f is injective, it follows that f̂ is injective.

∗ Let 〈x, y〉 , 〈z, w〉 ∈ X ×X with f̂(〈x, y〉) = f̂(〈z, w〉).
∗ Then f(x) = f(z) and f(y) = f(w).
∗ Thus x = z and y = w so 〈x, y〉 = 〈z, w〉.

– Since f̂ is injective, it follows that f̂−1[E′] = D′.
– Since D ⊆ D′, if follows that E ⊆ E′ so E′ ∈ E and hence D′ ∈ D .
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Relative uniformity.

Let (Y,E ) be a uniform space and X ⊆ Y . The relative uniformity (subspace
uniformity) on X is the uniformity D on X that is induced by the embedding
f : X → Y (f(x) = x for each x ∈ X).

• Explicitly, D is induced by the uniformity base

B =
{
f̂−1[E] : E ∈ E

}
= {E ∩ (X ×X) : E ∈ E }

which is also called the trace of E on X ×X.

• Since the embedding f : X → Y is injective, B is a uniformity on X so
D = B.

Exercise (topology relative uniformity).

Let E be a uniformity on a set Y , let τ be the topology on Y that is induced
by E , let X ⊆ Y and let D be the relative uniformity on X. Prove that the
topology on X that is induced by D is the relative (subspace) topology with
respect to τ .

Solution. Let τ ′ be the topology on X that is induced by D and τ ′′ be the
subspace topology on X inherited from τ .

• We show that τ ′ ⊆ τ ′′.

– Let U ⊆ X be open in τ ′. Let x ∈ U be arbitrary.
– There is D ∈ D such that D[x] ⊆ U .
– There is E ∈ E with D = E ∩ (X ×X).
– Then E[x] is a nbhd of x in Y with respect to τ so there is V ∈ τ

with x ∈ V ⊆ E[x].
– Since E[x] ∩X = D[x], it follows that V ∩X ⊆ D[x] ⊆ U .
– Since V ∩X ∈ τ ′′ and since x was an arbitrary point of U , it follows

that U ∈ τ ′′.

• Now we show that τ ′′ ⊆ τ ′.

– Let U ⊆ X be open in τ ′′.
– There is V ⊆ Y such that U = V ∩X and V ∈ τ .
– Let x ∈ U be arbitrary.
– There is E ∈ E with E[x] ⊆ V .
– Let D = E ∩ (X ×X). Then D ∈ D .
– Since D[x] = E[x] ∩X, it follows that D[x] ⊆ U .
– Thus U ∈ τ ′.
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