Math 793C

Topology for Analysis

Jerzy Wojciechowski	Spring 2020
Class 29	April 3

Induced product function.

If $f: X \to Y$, then we will denote by \hat{f} the function $X \times X \to Y \times Y$ defined by

 $\hat{f}(\langle x, y \rangle) = \langle f(x), f(y) \rangle.$

If \mathscr{D} and \mathscr{E} are uniformities on X and Y, respectively, then f is uniformly continuous if and only if $\hat{f}^{-1}[E] \in \mathscr{D}$ for every $E \in \mathscr{E}$.

Discrete uniformity.

Let X be a set. The *discrete uniformity* on X is the family \mathscr{D} of all $D \subseteq X \times X$ such that D is a reflexive relation on X.

- It is clear that \mathscr{D} is a uniformity.
- The topology on X induced by \mathscr{D} is the discrete topology.

Proof.

- Let $D = \{ \langle x, x \rangle : x \in X \}$ be the diagonal of X. Then $D \in \mathscr{D}$.
- Let $x \in X$. Then $D[x] = \{x\}$ so $\{x\}$ is open in the topology τ on X that is induced by \mathscr{D}
- Thus τ is the discrete topology.

Exercise (inverse image uniformity).

Let $X = \mathbb{N}$, $Y = \{0, 1\}$ and let \mathscr{E} be the discrete uniformity on Y. Define $f : X \to Y$ by f(n) = 0 if n is even and f(n) = 1 otherwise. Let $\mathscr{D} := \{\hat{f}^{-1}[E] : E \in \mathscr{E}\}$, where $\hat{f} : X \times X \to Y \times Y$ is the induced product function. Prove that \mathscr{D} is not a uniformity on X.

Solution. Note that $\mathscr{E} = \{E_1, E_2, E_3, E_4\}$, where

- $E_1 = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle \},\$
- $E_2 = Y \times Y \smallsetminus \{\langle 0, 1 \rangle\},\$
- $E_3 = Y \times Y \setminus \{\langle 1, 0 \rangle\}$ and
- $E_4 = Y \times Y$.

Let $A := \{2n : n \in \mathbb{N}\}$ and $B := \{2n - 1 : n \in \mathbb{N}\}.$

- Then $\mathscr{D} = \left\{ \hat{f}^{-1}[E_1], \hat{f}^{-1}[E_2], \hat{f}^{-1}[E_3], \hat{f}^{-1}[E_4] \right\}$, where $-\hat{f}^{-1}[E_1] = A \times A \cup B \times B,$ $-\hat{f}^{-1}[E_2] = \mathbb{N} \times \mathbb{N} \smallsetminus A \times B,$ $-\hat{f}^{-1}[E_3] = \mathbb{N} \times \mathbb{N} \smallsetminus B \times A,$ $-\hat{f}^{-1}[E_4] = \mathbb{N} \times \mathbb{N}.$
- Note that \mathscr{D} is not a filter on $X \times X$ since
 - $-A \times A \cup B \times B \in \mathscr{D}, \text{ but}$ $-A \times A \cup B \times B \cup \{\langle 1, 2 \rangle\} \notin \mathscr{D}.$
- Since a uniformity on X is a filter on $X \times X$, it follows that \mathscr{D} is not a uniformity on X.

Theorem (inverse image uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity base on Y, and $f: X \to Y$ be any function. Let $\mathscr{B} = \left\{ \hat{f}^{-1}[E] : E \in \mathscr{E} \right\}$, where $\hat{f}: X \times X \to Y \times Y$ is the induced product function. Then \mathscr{B} is a uniformity base on X.

Proof. By Theorem (uniformity base), it suffices to verify the following conditions.

1. Each $D \in \mathscr{B}$ is a reflexive relation on X.

- Let $D \in \mathscr{B}$. Then $D = \hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.
- Let $x \in X$. Then $\langle f(x), f(x) \rangle \in E$ since E is a reflexive relation on Y.
- Hence $\langle x, x \rangle \in D$ and so D is a reflexive relation on X.

2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.

• Let $D \in \mathscr{B}$. Then $D = \hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.

- There is $F \in \mathscr{E}$ with $F \subseteq E^{-1}$. Let $B = \hat{f}^{-1}[F]$.
- Then $B \in \mathscr{B}$ and $B \subseteq D^{-1}$.

We show that $B \subseteq D^{-1}$.

- Let $\langle x, y \rangle \in B$.
- Then $\langle f(x), f(y) \rangle \in F \subseteq E^{-1}$ so $\langle f(y), f(x) \rangle \in E$.
- Thus $\langle y, x \rangle \in \hat{f}^{-1}[E] = D$ and $\langle x, y \rangle \in D^{-1}$.
- 3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.
 - Let $D \in \mathscr{B}$. Then $D = \hat{f}^{-1}[E]$ for some $E \in \mathscr{E}$.
 - There is $F \in \mathscr{E}$ with $F \circ F \subseteq E$. Let $B = \hat{f}^{-1}[F]$.
 - Then $B \in \mathscr{B}$ and $B \circ B \subseteq D$.

We show that $B \circ B \subseteq D$.

- Let $\langle x, z \rangle \in B \circ B$. There is $y \in X$ with $\langle x, y \rangle \in B$ and $\langle y, z \rangle \in B$.
- Then $\langle f(x), f(y) \rangle \in F$ and $\langle f(y), f(z) \rangle \in F$ so $\langle f(x), f(z) \rangle \in E$.
- Since $\hat{f}(\langle x, z \rangle) \in E$, it follows that $\langle x, z \rangle \in \hat{f}^{-1}[E] = D$.
- 4. If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.
 - Let $B, D \in \mathscr{B}$. Then $B = \hat{f}^{-1}[F]$ and $D = \hat{f}^{-1}[G]$ for some $F, G \in \mathscr{E}$.
 - Let $H \in \mathscr{E}$ be such that $H \subseteq F \cap G$. Let $E = \hat{f}^{-1}[H]$.
 - If $\langle x, y \rangle \in E$, then $\langle f(x), f(y) \rangle \in H \subseteq F \cap G$.
 - Thus $\langle x, y \rangle \in B \cap D$ and so $E \subseteq B \cap D$.

Inverse image uniformity.

Let X, Y be sets, \mathscr{E} be a uniformity base on Y and $f: X \to Y$ be a function. The *inverse image uniformity* on X induced by \mathscr{E} and f is the uniformity induced by the uniformity base $\left\{ \hat{f}^{-1}[E] : E \in \mathscr{E} \right\}$.

- See Theorem (inverse image uniformity) for the proof that $\left\{ \hat{f}^{-1}[E] : E \in \mathscr{E} \right\}$ is a uniformity base on X.
- In particular, if \mathscr{E} is a uniformity on Y and $f : X \to Y$ is a function, then we get a uniformity on X induced by the uniformity base $\left\{\hat{f}^{-1}[E]: E \in \mathscr{E}\right\}$.

Theorem (uniform continuity inverse uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity on Y, and $f: X \to Y$ be any function. Let $\mathscr{B} = \left\{ \hat{f}^{-1}[E] : E \in \mathscr{E} \right\}$ and let \mathscr{D} be the uniformity on X that is induced by the uniformity base \mathscr{B} .

- f is uniformly continuous relative to \mathcal{D} and \mathcal{E} .
- If \mathscr{D}' is any uniformity on X such that $f: X \to Y$ is uniformly continuous relative to \mathscr{D}' and \mathscr{E} , then $\mathscr{D} \subseteq \mathscr{D}'$.

Proof.

- Let $E \in \mathscr{E}$. Then $\hat{f}^{-1}[E] \in \mathscr{B}$. Since $\mathscr{B} \subseteq \mathscr{D}$, it follows that $\hat{f}^{-1}[E] \in \mathscr{D}$. Thus f is uniformly continuous.
- Assume that \mathscr{D}' is any uniformity on X such that $f: X \to Y$ is uniformly continuous relative to \mathscr{D}' and \mathscr{E} . We show that $\mathscr{D} \subseteq \mathscr{D}'$.
 - Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
 - There is $E \in \mathscr{E}$ be such that $B = \hat{f}^{-1}[E]$.
 - Since f is uniformly continuous relative to \mathscr{D}' and \mathscr{E} , it follows that $B \in \mathscr{D}'$.
 - Since \mathscr{D}' is a uniformity, $B \in \mathscr{D}'$ and $B \subseteq D$, it follows that $D \in \mathscr{D}'$.

Exercise (injective inverse image uniformity).

Let X, Y be sets, \mathscr{E} be a uniformity on Y, and $f : X \to Y$ be any injective function. Let $\mathscr{D} = \left\{ \widehat{f}^{-1}[E] : E \in \mathscr{E} \right\}$. Prove that \mathscr{D} is a uniformity on X.

Solution. By Theorem (inverse image uniformity), \mathscr{D} is a uniformity base on X.

- To prove that \mathscr{D} is a uniformity on X, it suffices to show that \mathscr{D} is closed under taking supersets.
- Let $D \in \mathscr{D}$ and $D \subseteq D' \subseteq X \times X$. We show that $D' \in \mathscr{D}$.
 - Let $E \in \mathscr{E}$ be such that $D = \hat{f}^{-1}[E]$. Let $E' = \hat{f}[D']$.
 - Since f is injective, it follows that \hat{f} is injective.
 - * Let $\langle x, y \rangle, \langle z, w \rangle \in X \times X$ with $\hat{f}(\langle x, y \rangle) = \hat{f}(\langle z, w \rangle)$.
 - * Then f(x) = f(z) and f(y) = f(w).
 - * Thus x = z and y = w so $\langle x, y \rangle = \langle z, w \rangle$.
 - Since \hat{f} is injective, it follows that $\hat{f}^{-1}[E'] = D'$.
 - Since $D \subseteq D'$, if follows that $E \subseteq E'$ so $E' \in \mathscr{E}$ and hence $D' \in \mathscr{D}$.

Relative uniformity.

Let (Y, \mathscr{E}) be a uniform space and $X \subseteq Y$. The relative uniformity (subspace uniformity) on X is the uniformity \mathscr{D} on X that is induced by the embedding $f: X \to Y$ (f(x) = x for each $x \in X$).

• Explicitly, \mathcal{D} is induced by the uniformity base

$$\mathscr{B} = \left\{ \hat{f}^{-1}[E] : E \in \mathscr{E} \right\} = \left\{ E \cap (X \times X) : E \in \mathscr{E} \right\}$$

which is also called the *trace* of \mathscr{E} on $X \times X$.

• Since the embedding $f: X \to Y$ is injective, \mathscr{B} is a uniformity on X so $\mathscr{D} = \mathscr{B}$.

Exercise (topology relative uniformity).

Let \mathscr{E} be a uniformity on a set Y, let τ be the topology on Y that is induced by \mathscr{E} , let $X \subseteq Y$ and let \mathscr{D} be the relative uniformity on X. Prove that the topology on X that is induced by \mathscr{D} is the relative (subspace) topology with respect to τ .

Solution. Let τ' be the topology on X that is induced by \mathscr{D} and τ'' be the subspace topology on X inherited from τ .

- We show that $\tau' \subseteq \tau''$.
 - Let $U \subseteq X$ be open in τ' . Let $x \in U$ be arbitrary.
 - There is $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
 - There is $E \in \mathscr{E}$ with $D = E \cap (X \times X)$.
 - Then E[x] is a nbhd of x in Y with respect to τ so there is $V \in \tau$ with $x \in V \subseteq E[x]$.
 - Since $E[x] \cap X = D[x]$, it follows that $V \cap X \subseteq D[x] \subseteq U$.
 - Since $V \cap X \in \tau''$ and since x was an arbitrary point of U, it follows that $U \in \tau''$.
- Now we show that $\tau'' \subseteq \tau'$.
 - Let $U \subseteq X$ be open in τ'' .
 - There is $V \subseteq Y$ such that $U = V \cap X$ and $V \in \tau$.
 - Let $x \in U$ be arbitrary.
 - There is $E \in \mathscr{E}$ with $E[x] \subseteq V$.
 - Let $D = E \cap (X \times X)$. Then $D \in \mathscr{D}$.
 - Since $D[x] = E[x] \cap X$, it follows that $D[x] \subseteq U$.
 - Thus $U \in \tau'$.