Math 793C

Topology for Analysis

Jerzy Wojciechowski
Spring 2020
Class 28
April 1

Theorem (surrounding interior).
Let \mathscr{D} be a uniformity on a set X. Consider X to be a topological space with the topology induced by \mathscr{D}. If $D \in \mathscr{D}$ and D° is the interior of D with respect to the product topology on $X \times X$, then $D^{\circ} \in \mathscr{D}$.

Proof. Let $D \in \mathscr{D}$. Note that

$$
D^{\circ}=\{\langle x, y\rangle \in D:(\exists E \in \mathscr{D}) E[x] \times E[y] \subseteq D\}
$$

Let $F \in \mathscr{D}$ be symmetric and such that $F \circ F \circ F \subseteq D$. Since

$$
F \circ F \circ F=\bigcup\{F[x] \times F[y]:\langle x, y\rangle \in F\}
$$

if follows that $F \subseteq D^{\circ}$. Thus $D^{\circ} \in \mathscr{D}$.
We show that
$F \circ F \circ F=\bigcup\{F[x] \times F[y]:\langle x, y\rangle \in F\}$.

- Proof of \subseteq.
- Let $\langle z, w\rangle \in F \circ F \circ F$.
- Then there are $x, y \in X$ such that $\langle z, x\rangle,\langle x, y\rangle,\langle y, w\rangle \in F$.
- Since F is symmetric, it follows that $\langle x, z\rangle \in F$.
- Thus $z \in F[x]$ and $w \in F[y]$ so $\langle z, w\rangle \in F[x] \times F[y]$.
- Hence $\langle z, w\rangle \in \bigcup\{F[x] \times F[y]:\langle x, y\rangle \in F\}$.
- Proof of \supseteq.
- Let $\langle z, w\rangle \in \bigcup\{F[x] \times F[y]:\langle x, y\rangle \in F\}$.
- Thus there are $x, y \in X$ with $\langle x, z\rangle,\langle x, y\rangle,\langle y, w\rangle \in F$.
- Since F is symmetric, it follows that $\langle z, x\rangle \in F$.
- Hence $\langle z, w\rangle \in F \circ F \circ F$.

Exercise (symmetric open uniformity base).

Let \mathscr{D} be a uniformity on a set X and let \mathscr{B} be the family of all members of \mathscr{D} that are symmetric and open (in the product topology on $X \times X$, where the topology on X is induced by $\mathscr{D})$. Prove that \mathscr{B} is a base for \mathscr{D}.

Solution. Since $\mathscr{B} \subseteq \mathscr{D}$, it suffices to show that for every $D \in \mathscr{D}$, there exists $B \in \mathscr{B}$ with $B \subseteq D$. Let $D \in \mathscr{D}$. Take $B:=D^{\circ} \cap\left(D^{\circ}\right)^{-1}$.

- By Theorem (surrounding interior) we have $D^{\circ} \in \mathscr{D}$, which implies that $B \in \mathscr{D}$.
- It is clear that B is symmetric.
- To show that B is open, it suffices to show that $\left(D^{\circ}\right)^{-1}$ is open.
- Let $\langle x, y\rangle \in\left(D^{\circ}\right)^{-1}$. Then $\langle y, x\rangle \in D^{\circ}$.
- Since D° is open, there is $E \in \mathscr{D}$ with $E[y] \times E[x] \subseteq D^{\circ}$.
- Then $E[x] \times E[y] \subseteq\left(D^{\circ}\right)^{-1}$ so $\left(D^{\circ}\right)^{-1}$ is open.
- Since B is open and symmetric, it follows that $B \in \mathscr{B}$.
- Since $B \subseteq D^{\circ} \subseteq D$, the proof is complete.

Theorem (closure uniform topology).

Let \mathscr{D} be a uniformity on a set X.

- If $A \subseteq X$, then the closure of A (with respect to the topology on X that is induced by \mathscr{D}) is given by

$$
\bar{A}=\bigcap\{D[A]: D \in \mathscr{D}\}
$$

where $D[A]=\bigcup\{D[x]: x \in A\}$.

- If $M \subseteq X \times X$, then the closure of M (with respect to the product topology on $X \times X$) is given by

$$
\bar{M}=\bigcap\{D \circ M \circ D: D \in \mathscr{D}\} .
$$

Proof. Let $A \subseteq X$ and $x \in X$.

- We show that $x \in \bar{A}$ if and only if $x \in D[A]$ for each $D \in \mathscr{D}$.
- We have $x \in \bar{A}$ if and only if $D[x] \cap A \neq \varnothing$ for each $D \in \mathscr{D}$.
- Given $D \in \mathscr{D}$, we have $D[x] \cap A \neq \varnothing$ if and only if $\langle x, y\rangle \in D$ for some $y \in A$ which holds if and only if $x \in D^{-1}[A]$.
- Thus $x \in \bar{A}$ if and only if $x \in D^{-1}[A]$ for each $D \in \mathscr{D}$.
- Since each $D \in \mathscr{D}$ contains a symmetric member of \mathscr{D}, it follows that $x \in \bar{A}$ if and only if $x \in D[A]$ for each $D \in \mathscr{D}$.

We show that the following are equivalent:

1. $x \in D^{-1}[A]$ for ever $D \in \mathscr{D}$;
2. $x \in D[A]$ for every $D \in \mathscr{D}$.

We prove that (1) implies (2).

* Assume that (1) holds. Let $D \in \mathscr{D}$.
* There is a symmetric $E \in \mathscr{D}$ with $E \subseteq D$.
* (1) implies that $x \in E^{-1}[A]$.
* Since E is symmetric, it follows that $x \in E[A]$.
* Thus $x \in D[A]$ and so (2) holds.

The proof the (2) implies (1) is similar.
Let $M \subseteq X \times X$ and $\langle x, y\rangle \in X \times X$.

- We show that $\langle x, y\rangle \in \bar{M}$ if and only if $\langle x, y\rangle \in D \circ M \circ D$ for every $D \in \mathscr{D}$.
- We have $\langle x, y\rangle \in \bar{M}$ if and only if $(D[x] \times D[y]) \cap M \neq \varnothing$ for each symmetric $D \in \mathscr{D}$.
- Given a symmetric $D \in \mathscr{D}$, we have $(D[x] \times D[y]) \cap M \neq \varnothing$ if and only if there exists $\langle w, z\rangle \in M$ with $\langle x, w\rangle,\langle z, y\rangle \in D$ which holds if and only if $\langle x, y\rangle \in D \circ M \circ D$.
- Thus $\langle x, y\rangle \in \bar{M}$ if and only if $\langle x, y\rangle \in D \circ M \circ D$ for every symmetric $D \in \mathscr{D}$.
- Since each $D \in \mathscr{D}$ contains a symmetric member of \mathscr{D}, it follows that $x \in \bar{M}$ if and only if $\langle x, y\rangle \in D \circ M \circ D$ for every $D \in \mathscr{D}$.

Theorem (symmetric closed uniformity base).

Let \mathscr{D} be a uniformity on a set X and let \mathscr{B} be the family consisting of all members of \mathscr{D} that are symmetric and closed (in the product topology on $X \times X$, where X has the topology induced by $\mathscr{D})$. Then \mathscr{B} is a base for \mathscr{D}.

Proof. Let $D \in \mathscr{D}$.

- We show that there exists a closed $G \in \mathscr{D}$ with $G \subseteq D$.
- There is $E \in \mathscr{D}$ with $E \circ E \circ E \subseteq D$.
- The closure of E (in the product topology on $X \times X$) is

$$
\bar{E}=\bigcap\{F \circ E \circ F: F \in \mathscr{D}\}
$$

- It follows that $\bar{E} \subseteq E \circ E \circ E \subseteq D$.
- Since $E \in \mathscr{D}$ and since \mathscr{D} is a filter on $X \times X$, it follows that $\bar{E} \in \mathscr{D}$.
- Thus $G:=\bar{E}$ is a closed member of \mathscr{D} with $G \subseteq D$.
- Since G is closed in $X \times X$, it follows that G^{-1} is also closed.
- Let $\langle x, y\rangle \in(X \times X) \backslash G^{-1}$.
- Then $\langle y, x\rangle \in(X \times X) \backslash G$.
- Since $(X \times X) \backslash G$ is open, there exists $E \in \mathscr{D}$ with

$$
E[y] \times E[x] \subseteq(X \times X) \backslash G
$$

- Then $E[x] \times E[y] \subseteq(X \times X) \backslash G^{-1}$ so $(X \times X) \backslash G^{-1}$ is open.
- If $K:=G \cap G^{-1}$, then $K \in \mathscr{D}$ and $K \subseteq D$. Moreover, K is closed and symmetric so $K \in \mathscr{B}$.

Since each $D \in \mathscr{D}$ contains a member of \mathscr{B}, it follows that \mathscr{B} is a base for \mathscr{D}.

Exercise (uniform continuity pseudometric).

Let (X, d) and (Y, ρ) be pseudometric spaces and let \mathscr{D} and \mathscr{E} be the uniformities induced by d and ρ on X and Y, respectively. Prove that $f: X \rightarrow Y$ is uniformly continuous (relative to \mathscr{D} and \mathscr{E}) (see uniform continuity) if and only if for every $\varepsilon>0$ there exists $\delta>0$ such that $\rho(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$.

Solution. Assume that f is uniformly continuous. Let $\varepsilon>0$.

- We find $\delta>0$ such that $\rho(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$.
- Define $E:=\{\langle w, z\rangle \in Y \times Y: \rho(w, z)<\varepsilon\}$. Then $E \in \mathscr{E}$.
- Define $D:=\{\langle x, y\rangle \in X \times X:\langle f(x), f(y)\rangle \in E\}$.
- Since f is uniformly continuous, it follows that $D \in \mathscr{D}$.
- Thus there exists $\delta>0$ such that $\langle x, y\rangle \in D$ whenever $d(x, y)<\delta$.
- It suffices to show that $\rho(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$.
* Let $x, y \in X$ with $d(x, y)<\delta$.
* Then $\langle x, y\rangle \in D$ so $\langle f(x), f(y)\rangle \in E$.
* Hence $\rho(f(x), f(y))<\varepsilon$ as required.

Now assume that for every $\varepsilon>0$ there exists $\delta>0$ such that $\rho(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$.

- We show that f is uniformly continuous.
- Let $E \in \mathscr{E}$. Then there exists $\varepsilon>0$ such that $\langle x, y\rangle \in E$ whenever $\rho(x, y)<\varepsilon$.
- Let $\delta>0$ be such that $\rho(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$.
- Let $D^{\prime}:=\{\langle x, y\rangle \in X \times X: d(x, y)<\delta\}$. Then $D^{\prime} \in \mathscr{D}$.
- Let $D:=\{\langle x, y\rangle \in X \times X:\langle f(x), f(y)\rangle \in E\}$.
- We verify that $D \in \mathscr{D}$ by showing that $D^{\prime} \subseteq D$.
* Let $\langle x, y\rangle \in D^{\prime}$.
* Then $d(x, y)<\delta$ so $\rho(f(x), f(y))<\varepsilon$.
* Hence $\langle f(x), f(y)\rangle \in E$, which implies that $\langle x, y\rangle \in D$.
- Since $D \in \mathscr{D}$, if follows that f is uniformly continuous.

Uniform isomorphism.

Let (X, \mathscr{D}) and (Y, \mathscr{E}) be uniform spaces and $f: X \rightarrow Y$ be a function. We say that f is a uniform isomorphism iff f is a bijection and both f and f^{-1} are uniformly continuous.

- If there exists a uniform isomorphism $f: X \rightarrow Y$, we say that (X, \mathscr{D}) and (Y, \mathscr{E}) are uniformly isomorphic or uniformly equivalent.
- The identity function $X \rightarrow X$ is a uniform isomorphism.
- If $f: X \rightarrow Y$ is a uniform isomorphism, then $f^{-1}: Y \rightarrow X$ is also a uniform isomorphism.
- If (Z, \mathscr{F}) is another uniform space with $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ being uniform isomorphisms, then the composition $h \circ f: X \rightarrow Z$ is also a uniform isomorphism.

Exercise (uniform continuity implies continuity).

Let (X, \mathscr{D}) and (Y, \mathscr{E}) be uniform spaces and $f: X \rightarrow Y$ be uniformly continuous. Prove that f is continuous when we consider X and Y as topological spaces with the topologies induced by \mathscr{D} and \mathscr{E}, respectively. Conclude that if f is a uniform isomorphism, then f is a homeomorphism.

Solution. Let $U \subseteq Y$ be open in the topology on Y that is induced by \mathscr{E}.

- We show that $f^{-1}[U]$ is open in the topology on X that is induced by \mathscr{D}.
- Let $x \in f^{-1}[U]$. Then $f(x) \in U$ so there exists $E \in \mathscr{E}$ with $E[f(x)] \subseteq U$.
- Since f is uniformly continuous, it follows that

$$
D:=\{\langle x, y\rangle \in X \times X:\langle f(x), f(y)\rangle \in E\}
$$

is a member of \mathscr{D}.

- If $y \in D[x]$, then $\langle x, y\rangle \in D$ and $\langle f(x), f(y)\rangle \in E$.
- Thus $f(y) \in E[f(x)] \subseteq U$ and $y \in f^{-1}[U]$.
- We proved that $D[x] \subseteq f^{-1}[U]$, which implies that $f^{-1}[U]$ is open.

Example (continuous not uniformly continuous).

Let X be the open interval $(-\pi / 2, \pi / 2)$. Let d be the standard metric on X (with $d(x, y)=|x-y|$) and ρ be the metric defined by

$$
\rho(x, y)=|\tan (x)-\tan (y)| .
$$

Let \mathscr{D}_{d} and \mathscr{D}_{ρ} be the uniformities induced by d and ρ, respectively.

- Recall that $\mathscr{D}_{d} \subseteq \mathscr{D}_{\rho}$ but these uniformities are distinct.
- The uniformities \mathscr{D}_{d} and \mathscr{D}_{ρ} induce the same topology on X.
- It follows that the identity function $f: X \rightarrow X$ is a homeomorphism, and is uniformly continuous but is not a uniform isomorphism from $\left(X, \mathscr{D}_{\rho}\right)$ to $\left(X, \mathscr{D}_{d}\right)$.

