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Exercise (pseudometric uniformity topology).

Let X be a set, d be a pseudometric on X and D be the uniformity on X that
is induced by d. Prove that both d and D induce the same topology on X.

Solution. If x ∈ X and ε > 0, then let

Bd (x, ε) = {y ∈ X : d (x, y) < ε}

be the open ball (with respect to d) centered at x with radius ε.

• Let τ be the topology on X that is induced by d and τ ′ be the topology
induced by D .

• Let U ∈ τ . To show that U ∈ τ ′, we take any x ∈ U and find D ∈ D such
that D [x] ⊆ U.

– Let x ∈ U . There is ε > 0 such that Bd (x, ε) ⊆ U .

– Let D = {〈y, z〉 ∈ X ×X : d (x, y) < ε}. Then D ∈ D .

– Moreover, D [x] = Bd(x, ε) implying that D [x] ⊆ U .

• Let U ∈ τ ′. To show that U ∈ τ , we take x ∈ U and find ε > 0 such that
Bd (x, ε) ⊆ U .

– Since U ∈ τ ′, there is D ∈ D such that D [x] ⊆ U .

– There is ε > 0 such that 〈x, y〉 ∈ D whenever d (x, y) < ε.

– Then Bd (x, ε) ⊆ D [x] so Bd (x, ε) ⊆ U.
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Example (pseudometric topology uniformity).

Let X be the open interval (−π/2, π/2). Let d be the standard metric on X
(with d (x, y) = |x− y|) and ρ be the metric defined by

ρ (x, y) = |tan (x)− tan (y)|.

Let Dd and Dρ be the uniformities induced by d and ρ, respectively.

• Then Dd ⊆ Dρ but these uniformities are distinct.

• Note that both d and ρ induce the same topology on X.

• The topology on X that is induced by d is the same as the topology
induced by Dd. Similarly for ρ and Dρ.

• Thus Dd and Dρ are different uniformities on X that induce the same
topology.

Uniformity base.

A uniformity base on a set X is a filter base of a some uniformity on X.

• Explicitely, a uniformity base on X is a family B of subsets of X × X
that is a filter base on X ×X and such that the filter on X ×X that is
induced by B is a uniformity on X.

• The theorem on uniformity base gives a necessary and sufficient condition
for a family of subsets of X ×X to be a uniformity base on X.

Theorem (uniformity base).

Let X be a set and B be a nonempty family of subsets of X ×X. Then B is a
uniformity base on X if and only if the following conditions hold:

1. Each D ∈ B is a reflexive relation on X.

2. If D ∈ B, then there exists B ∈ B with B ⊆ D−1.

3. If D ∈ B, then there exists B ∈ B with B ◦B ⊆ D.

4. If B,D ∈ B, then there exists E ∈ B with E ⊆ B ∩D.
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Proof. Assume that B satisfies the listed conditions.

• Since B 6= ∅ and since condition (4) holds, it follows that B is a filter
base on X ×X.

• Let D = {D ⊆ X : (∃B ∈ B)B ⊆ D}. Then D is the filter on X×X that
is induced by B.

• We show that D is a uniformity on X.

– We verify that each D ∈ D is a reflexive relation on X.

∗ Let D ∈ D and x ∈ X. We need to show that 〈x, x〉 ∈ D.
∗ There is B ∈ B with B ⊆ D.
∗ Each member of B is a reflexive relation on X so 〈x, x〉 ∈ B.
∗ Since B ⊆ D, it follows that 〈x, x〉 ∈ D.

– We verify that D−1 ∈ D for every D ∈ D .

∗ Let D ∈ D . There is B ∈ B with B ⊆ D.
∗ Condition (2) implies that there is A ∈ B with A ⊆ B−1.
∗ Since B−1 ⊆ D−1, it follows that A ⊆ D−1 so D−1 ∈ D .

– We verify that for every D ∈ D there exists E ∈ D with E ◦E ⊆ D.

∗ Let D ∈ D . There is B ∈ B with B ⊆ D.
∗ Condition (3) implies that there is E ∈ B with E ◦ E ⊆ B.
∗ Then E ∈ D and E ◦ E ⊆ D.

Assume that B is a uniformity base on X.

• Let D = {D ⊆ X : (∃B ∈ B)B ⊆ D}. Then D is a uniformity on X.

• We verify that B satisfies the listed conditions.

– Let D ∈ B. Since D ⊆ D, it follows that D ∈ D .

– Since D is a uniformity, D is a reflexive relation on X so (1) holds.

– Since D is a uniformity, D−1 ∈ D so there is B ∈ B with B ⊆ D−1.
Thus (2) holds.

– Since D is a uniformity, there is A ∈ D with A ◦ A ⊆ D. There is
E ∈ B with E ⊆ A. Then E ◦ E ⊆ A ◦ A so E ◦ E ⊆ D. Thus (3)
holds.

– Let B,D ∈ B. Then B,D ∈ D so B ∩D ∈ D , implying that there
is E ∈ B with E ⊆ B ∩D. Thus (4) holds.
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Symmetric surrounding.

Let D be a uniformity on X and D ∈ D be a surrounding in D . We say that
D is symmetric iff D−1 = D.

The family of all symmetric surroundings in D is a uniformity base that
induces the uniformity D .

Exercise (symmetric surroundings base).

Let D be uniformity on a set X. Prove that the family of all symmetric sur-
roundings in D is a uniformity base that induces the uniformity D .

Solution. Let B = {D ∈ D : D is symmetric}. By Theorem (uniformity
base), it suffices to verify the following conditions:

1. Each D ∈ B is a reflexive relation on X.

If D ∈ B, then D ∈ D . Each member of D is a reflexive relation on X.

2. If D ∈ B, then there exists B ∈ B with B ⊆ D−1.

If D ∈ B, then D is symmetric so D−1 = D. Thus B := D satisfies the
requirements.

3. If D ∈ B, then there exists B ∈ B with B ◦B ⊆ D.

• Let D ∈ B. Then D ∈ D so there exists E ∈ D with E ◦ E ⊆ D.

• Let B = E ∩ E−1. Then B is symmetric and B ∈ D so B ∈ B.

• Moreover, B ◦B ⊆ E ◦ E ⊆ D.

4. If B,D ∈ B, then there exists E ∈ B with E ⊆ B ∩D.

• Let B,D ∈ B. Then B,D ∈ D so E := B ∩D ∈ D .

• Since E is symmetric, it follows that E ∈ B.

Uniformity subbase.

A uniformity subbase on a set X is a subset of X × X that is a subbase of a
uniformity on X.

• Recall that each family S of subsets of X×X induces a filter F on X×X.
The filter F is induced by the filter base

B = {X ×X} ∪ {
⋂

S ′ : S ′ ⊆ S is finite and nonempty}.

• Explicitly, the filter F that is induced by S is given by:
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F = {D ∈ X ×X :
⋂

S ′ ⊆ D : for some finite and nonempty S ′ ⊆ S }∪
{X ×X}.

• A family S of subsets of X ×X is a uniformity subbase if and only if the
filter on X ×X that is induced by S is a uniformity.

• See Theorem (uniformity subbase) for a list of conditions on S that are
sufficient for S to be a uniformity subbase on X.

Theorem (uniformity subbase).

Let X be a set and S be any family of subsets of X × X. If S satisfies the
following conditions, then S is a uniformity subbase on X.

1. Each S ∈ S is a reflexive relation on X.

2. If S ∈ S , then there exists T ∈ S with T ⊆ S−1.

3. If S ∈ S , then there exists T ∈ S with T ◦ T ⊆ S.

Proof. Assume that S satisfies the listed conditions. Let

B := {X ×X} ∪ {
⋂

S ′ : S ′ ⊆ S is finite and nonempty}.

We show that B a uniformity base on X by verifying that B satisfies all the
conditions given in Theorem (uniformity base).

• Each D ∈ B is a reflexive relation on X.

– Let D ∈ B. If D = X ×X, then D is a reflexive relation on X.

– Otherwise, D =
⋂

S ′ for some finite and nonempty S ′ ⊆ S .

– If x ∈ X, then 〈x, x〉 ∈ S for every S ∈ S ′ so 〈x, x〉 ∈ D.

– Thus D is a reflexive relation on X.

• If D ∈ B, then there exists B ∈ B with B ⊆ D−1.

– Let D ∈ B. If D = X ×X, then B := D satisfies the requirements.

– Assume that D =
⋂

S ′ for some finite and nonempty S ′ ⊆ S .

– Condition (2) implies that for each S ∈ S ′ there is TS ∈ S with
TS ⊆ S−1.

– Let B =
⋂
{TS : S ∈ S ′}. Then B ∈ B and B ⊆

⋂{
S−1 : S ∈ S ′

}
.

– Since D−1 =
⋂{

S−1 : S ∈ S ′
}
, it follows that B ⊆ D−1.

We have D−1 =
⋂{

S−1 : S ∈ S ′
}
since

∗ 〈x, y〉 ∈ D−1 iff

5



∗ 〈y, x〉 ∈ D iff
∗ 〈y, x〉 ∈ S for every S ∈ S ′ iff
∗ 〈x, y〉 ∈ S−1 for every S ∈ S ′.

• If D ∈ B, then there exists B ∈ B with B ◦B ⊆ D.

– Let D ∈ B. If D = X ×X, then B := D satisfies the requirements.

– Assume that D =
⋂

S ′ for some finite and nonempty S ′ ⊆ S .

– Condition (3) implies that for each S ∈ S ′ there is TS ∈ S with
TS ◦ TS ⊆ S.

– Let B :=
⋂
{TS : S ∈ S ′}. Then B ∈ B and B ◦B ⊆ D.

We show that B ◦B ⊆ D.

∗ Let 〈x, z〉 ∈ B ◦ B. Then there is y ∈ X with 〈x, y〉 ∈ B and
〈y, z〉 ∈ B.

∗ If S ∈ S ′, then 〈x, y〉 ∈ TS and 〈y, z〉 ∈ TS so 〈x, z〉 ∈ S.
∗ Since 〈x, z〉 ∈ S for every S ∈ S ′, it follows that 〈x, z〉 ∈ D.

• If B,D ∈ B, then there exists E ∈ B with E ⊆ B ∩D.

– Let B,D ∈ B. If B = X × X, then B ∩ D = B ∈ B so E := B
satisfies the requirements. Similarly, when D = X ×X.

– Assume that B =
⋂

S ′ andD =
⋂

S ′′ for some finite and nonempty
S ′,S ′′ ⊆ S . Let E := B ∩D.

– Since E =
⋂

S ′′′ where S ′′′ = S ′ ∪S ′′ is a finite and nonempty
subset of S , it follows that E ∈ B.

Exercise (union of uniformities).

Let X be the interval (−π/2, π/2) and f, g : X → R be defined by

f (x) =

{
x x ≤ 0;

tan (x) x ≥ 0.

and

g (x) =

{
tan (x) x ≤ 0;

x x ≥ 0.

Let d1, d2 be the pseudometrics on X defined by d1(x, y) = |f(x)− f(y)| and
d2(x, y) = |g(x)− g(y)|. Let D1 and D2 be the uniformities on X induced by
d1 and d2, respectively. Prove that D1 ∪D2 is not a uniformity base on X.
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Solution. Let B := D1 ∪D2. Let

D1 = {〈x, y〉 ∈ X ×X : |f(x)− f(y)| < 1}
and

D2 = {〈x, y〉 ∈ X ×X : |g(x)− g(y)| < 1}.
Then D1 ∈ D1 and D2 ∈ D2 so both D1 and D2 belong to B. Let D = D1∩D2.

• We show that there are no E ∈ B with E ⊆ D.

– Suppose, for a contradiction, that there exists E ∈ B with E ⊆ D.
Then either E ∈ D1 or E ∈ D2.

– Assume first that E ∈ D1. Then there exists ε > 0 such that 〈x, y〉 ∈
E whenever |f(x)− f(y)| < ε.

– There are x, y ∈ X such that x, y < 0, |x− y| < ε and |tan (x)− tan (y)| ≥
1.

– Then |f(x)− f(y)| = |x− y| < ε so 〈x, y〉 ∈ E.
– However, |g(x)− g(y)| = |tan (x)− tan (y)| ≥ 1 so 〈x, y〉 /∈ D2 and

consequently 〈x, y〉 /∈ D. This is a contradiction.
– Similarly, we get a contradiction when E ∈ D2.

• That implies that B is not a uniformity base on X.

Theorem (union uniformity subbase).

Let X be a set and A be a family such that each member of A is a uniformity
base on X. Then

⋃
A is a uniformity subbase on X. In particular, the union of

a family of uniformities on X is a uniformity subbase on X.

Proof. Let S =
⋃
A. We show that S a uniformity subbase on X by verify-

ing that S satisfies all the conditions given in Theorem (uniformity subbase).

• Each S ∈ S is a reflexive relation on X.

If S ∈ S , then S ∈ B for some B ∈ A. Thus S is a reflexive relation on
X.

• If S ∈ S , then there exists T ∈ S with T ⊆ S−1.

– If S ∈ S , then S ∈ B for some B ∈ A.
– Thus there exists T ∈ B with T ⊆ S−1.
– Since B ⊆ S , it follows that T ∈ S .

• If S ∈ S , then there exists T ∈ S with T ◦ T ⊆ S.

– If S ∈ S , then S ∈ B for some B ∈ A.
– Thus there exists T ∈ B with T ◦ T ⊆ S.
– Since B ⊆ S , it follows that T ∈ S .
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Exercise (uniformity base nbhds).

Let B be a uniformity base on X, let D be the uniformity on X that is induced
by B and τ be the topology on X that is induced by D . Prove that for each
x ∈ X, the family Bx = {B [x] : B ∈ B} is a base of the nbhd filter at x (the
filter consisting of all nbhds at x) with respect to τ .

Solution. Let x ∈ X and Ux be the nbhd filter at x.

• Since B ⊆ D , it follows that Bx ⊆ Ux.

• It remains to show that for every U ∈ Ux there exists B ∈ B with
B [x] ⊆ U .

– Let U ∈ Ux. There exists open V ⊆ X with x ∈ V ⊆ U .

– Thus there is D ∈ D with D [x] ⊆ V and there is B ∈ B with B ⊆ D.

– Then B [x] ⊆ U as required.

Exercise (uniformity subbase nbhds).

Let S be a uniformity subbase on X, let D be the uniformity on X that is
induced by S and τ be the topology on X that is induced by D . Prove that
for each x ∈ X, the family Sx = {S [x] : S ∈ S } is a subbase of the nbhd filter
at x (the filter consisting of all nbhds at x) with respect to τ .

Solution. Let x ∈ X and Ux be the nbhd filter at x. Let

Bx = {X} ∪ {
⋂

A : A ⊆ Sx is finite and nonempty}.

To show that Sx is a subbase for Ux, it suffices to show that Bx is a base for
Ux. Note that

D = {X ×X}∪{D ⊆ X ×X :
⋂

S ′ ⊆ D for some finite nonempty S ′ ⊆ S } .

• First we show that Bx ⊆ Ux.

Let B ∈ Bx.

– If B = X, then B = D [x] with D := X ×X. Thus B ∈ Ux.

– Assume B =
⋂

A for some finite and nonempty A ⊆ Sx.

– Then A = {S [x] : S ∈ S ′} for some finite and nonempty S ′ ⊆ S .

– Let D =
⋂

S ′. Then D ∈ D and D [x] =
⋂

A .

We have y ∈ D [x] iff 〈x, y〉 ∈ D iff 〈x, y〉 ∈ S for all S ∈ S ′ iff
y ∈ S [x] for all S ∈ S ′ iff y ∈

⋂
A .

– Since B = D [x] for some D ∈ D , it follows that B ∈ Ux.
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• Now we show that for every U ∈ Ux there exists B ∈ Bx with B ⊆ U .

Let U ∈ Ux. There exists D ∈ D with D [x] ⊆ U .

– If D = X ×X, then U = X ∈ Bx and B := U satisfies the require-
ments.

– Assume that there exists finite and nonempty S ′ ⊆ S with
⋂

S ′ ⊆
D.

∗ Let A := {S [x] : S ∈ S ′} and B :=
⋂

A . Then B ∈ Bx.
∗ We show that B ⊆ U .

Let y ∈ B.
· Then y ∈ S [x] for each S ∈ S ′ so 〈x, y〉 ∈ S for each S ∈ S ′.
· Thus 〈x, y〉 ∈

⋂
S ′ ⊆ D, which implies that y ∈ D [x] ⊆ U .
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