Math 793C

Topology for Analysis

Jerzy Wojciechowski Spring 2020 Class 27 March 30

Exercise (pseudometric uniformity topology).

Let X be a set, d be a pseudometric on X and \mathscr{D} be the uniformity on X that is induced by d. Prove that both d and \mathscr{D} induce the same topology on X.

Solution. If $x \in X$ and $\varepsilon > 0$, then let

 $B_d(x,\varepsilon) = \{ y \in X : d(x,y) < \varepsilon \}$

be the open ball (with respect to d) centered at x with radius ε .

- Let τ be the topology on X that is induced by d and τ' be the topology induced by \mathscr{D} .
- Let $U \in \tau$. To show that $U \in \tau'$, we take any $x \in U$ and find $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
 - Let $x \in U$. There is $\varepsilon > 0$ such that $B_d(x, \varepsilon) \subseteq U$.
 - Let $D = \{ \langle y, z \rangle \in X \times X : d(x, y) < \varepsilon \}$. Then $D \in \mathscr{D}$.
 - Moreover, $D[x] = B_d(x, \varepsilon)$ implying that $D[x] \subseteq U$.
- Let $U \in \tau'$. To show that $U \in \tau$, we take $x \in U$ and find $\varepsilon > 0$ such that $B_d(x, \varepsilon) \subseteq U$.
 - Since $U \in \tau'$, there is $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
 - There is $\varepsilon > 0$ such that $\langle x, y \rangle \in D$ whenever $d(x, y) < \varepsilon$.
 - Then $B_d(x,\varepsilon) \subseteq D[x]$ so $B_d(x,\varepsilon) \subseteq U$.

Example (pseudometric topology uniformity).

Let X be the open interval $(-\pi/2, \pi/2)$. Let d be the standard metric on X (with d(x, y) = |x - y|) and ρ be the metric defined by

 $\rho(x, y) = |\tan(x) - \tan(y)|.$

Let \mathscr{D}_d and \mathscr{D}_ρ be the uniformities induced by d and ρ , respectively.

- Then $\mathscr{D}_d \subseteq \mathscr{D}_\rho$ but these uniformities are distinct.
- Note that both d and ρ induce the same topology on X.
- The topology on X that is induced by d is the same as the topology induced by \mathscr{D}_d . Similarly for ρ and \mathscr{D}_{ρ} .
- Thus \mathscr{D}_d and \mathscr{D}_ρ are different uniformities on X that induce the same topology.

Uniformity base.

A uniformity base on a set X is a filter base of a some uniformity on X.

- Explicitly, a *uniformity base* on X is a family \mathscr{B} of subsets of $X \times X$ that is a filter base on $X \times X$ and such that the filter on $X \times X$ that is induced by \mathscr{B} is a uniformity on X.
- The theorem on uniformity base gives a necessary and sufficient condition for a family of subsets of $X \times X$ to be a uniformity base on X.

Theorem (uniformity base).

Let X be a set and \mathscr{B} be a nonempty family of subsets of $X \times X$. Then \mathscr{B} is a uniformity base on X if and only if the following conditions hold:

- 1. Each $D \in \mathscr{B}$ is a reflexive relation on X.
- 2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.
- 3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.
- 4. If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.

Proof. Assume that \mathscr{B} satisfies the listed conditions.

- Since $\mathscr{B} \neq \varnothing$ and since condition (4) holds, it follows that \mathscr{B} is a filter base on $X \times X$.
- Let $\mathscr{D} = \{D \subseteq X : (\exists B \in \mathscr{B}) B \subseteq D\}$. Then \mathscr{D} is the filter on $X \times X$ that is induced by \mathscr{B} .
- We show that \mathscr{D} is a uniformity on X.
 - We verify that each $D \in \mathscr{D}$ is a reflexive relation on X.
 - * Let $D \in \mathscr{D}$ and $x \in X$. We need to show that $\langle x, x \rangle \in D$.
 - * There is $B \in \mathscr{B}$ with $B \subseteq D$.
 - * Each member of \mathscr{B} is a reflexive relation on X so $\langle x, x \rangle \in B$.
 - * Since $B \subseteq D$, it follows that $\langle x, x \rangle \in D$.
 - We verify that $D^{-1} \in \mathscr{D}$ for every $D \in \mathscr{D}$.
 - * Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
 - * Condition (2) implies that there is $A \in \mathscr{B}$ with $A \subseteq B^{-1}$.
 - * Since $B^{-1} \subseteq D^{-1}$, it follows that $A \subseteq D^{-1}$ so $D^{-1} \in \mathscr{D}$.
 - We verify that for every $D \in \mathscr{D}$ there exists $E \in \mathscr{D}$ with $E \circ E \subseteq D$.
 - * Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
 - * Condition (3) implies that there is $E \in \mathscr{B}$ with $E \circ E \subseteq B$.
 - * Then $E \in \mathscr{D}$ and $E \circ E \subseteq D$.

Assume that \mathscr{B} is a uniformity base on X.

- Let $\mathscr{D} = \{ D \subseteq X : (\exists B \in \mathscr{B}) B \subseteq D \}$. Then \mathscr{D} is a uniformity on X.
- We verify that \mathscr{B} satisfies the listed conditions.
 - Let $D \in \mathscr{B}$. Since $D \subseteq D$, it follows that $D \in \mathscr{D}$.
 - Since \mathscr{D} is a uniformity, D is a reflexive relation on X so (1) holds.
 - Since \mathscr{D} is a uniformity, $D^{-1} \in \mathscr{D}$ so there is $B \in \mathscr{B}$ with $B \subseteq D^{-1}$. Thus (2) holds.
 - Since \mathscr{D} is a uniformity, there is $A \in \mathscr{D}$ with $A \circ A \subseteq D$. There is $E \in \mathscr{B}$ with $E \subseteq A$. Then $E \circ E \subseteq A \circ A$ so $E \circ E \subseteq D$. Thus (3) holds.
 - Let $B, D \in \mathscr{B}$. Then $B, D \in \mathscr{D}$ so $B \cap D \in \mathscr{D}$, implying that there is $E \in \mathscr{B}$ with $E \subseteq B \cap D$. Thus (4) holds.

Symmetric surrounding.

Let \mathscr{D} be a uniformity on X and $D \in \mathscr{D}$ be a *surrounding* in \mathscr{D} . We say that D is symmetric iff $D^{-1} = D$.

The family of all symmetric surroundings in \mathscr{D} is a uniformity base that induces the uniformity \mathscr{D} .

Exercise (symmetric surroundings base).

Let \mathscr{D} be uniformity on a set X. Prove that the family of all symmetric surroundings in \mathscr{D} is a uniformity base that induces the uniformity \mathscr{D} .

Solution. Let $\mathscr{B} = \{D \in \mathscr{D} : D \text{ is symmetric}\}$. By Theorem (uniformity base), it suffices to verify the following conditions:

1. Each $D \in \mathscr{B}$ is a reflexive relation on X.

If $D \in \mathscr{B}$, then $D \in \mathscr{D}$. Each member of \mathscr{D} is a reflexive relation on X.

2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.

If $D \in \mathscr{B}$, then D is symmetric so $D^{-1} = D$. Thus B := D satisfies the requirements.

3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.

- Let $D \in \mathscr{B}$. Then $D \in \mathscr{D}$ so there exists $E \in \mathscr{D}$ with $E \circ E \subseteq D$.
- Let $B = E \cap E^{-1}$. Then B is symmetric and $B \in \mathscr{D}$ so $B \in \mathscr{B}$.
- Moreover, $B \circ B \subseteq E \circ E \subseteq D$.

4. If $B, D \in \mathcal{B}$, then there exists $E \in \mathcal{B}$ with $E \subseteq B \cap D$.

- Let $B, D \in \mathscr{B}$. Then $B, D \in \mathscr{D}$ so $E := B \cap D \in \mathscr{D}$.
- Since E is symmetric, it follows that $E \in \mathscr{B}$.

Uniformity subbase.

A *uniformity subbase* on a set X is a subset of $X \times X$ that is a subbase of a uniformity on X.

• Recall that each family \mathscr{S} of subsets of $X \times X$ induces a filter \mathscr{F} on $X \times X$. The filter \mathscr{F} is induced by the filter base

 $\mathscr{B} = \{X \times X\} \cup \{\bigcap \mathscr{S}' : \mathscr{S}' \subseteq \mathscr{S} \text{ is finite and nonempty}\}.$

• Explicitly, the filter \mathscr{F} that is induced by \mathscr{S} is given by:

 $\mathscr{F} = \{ D \in X \times X : \bigcap \mathscr{S}' \subseteq D : \text{for some finite and nonempty } \mathscr{S}' \subseteq \mathscr{S} \} \cup \{ X \times X \}.$

- A family \mathscr{S} of subsets of $X \times X$ is a *uniformity subbase* if and only if the filter on $X \times X$ that is induced by \mathscr{S} is a uniformity.
- See Theorem (uniformity subbase) for a list of conditions on \mathscr{S} that are sufficient for \mathscr{S} to be a uniformity subbase on X.

Theorem (uniformity subbase).

Let X be a set and \mathscr{S} be any family of subsets of $X \times X$. If \mathscr{S} satisfies the following conditions, then \mathscr{S} is a uniformity subbase on X.

- 1. Each $S \in \mathscr{S}$ is a reflexive relation on X.
- 2. If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \subseteq S^{-1}$.
- 3. If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \circ T \subseteq S$.

Proof. Assume that $\mathscr S$ satisfies the listed conditions. Let

 $\mathscr{B} := \{X \times X\} \cup \{\bigcap \mathscr{S}' : \mathscr{S}' \subseteq \mathscr{S} \text{ is finite and nonempty}\}.$

We show that \mathscr{B} a uniformity base on X by verifying that \mathscr{B} satisfies all the conditions given in Theorem (uniformity base).

- Each $D \in \mathscr{B}$ is a reflexive relation on X.
 - Let $D \in \mathscr{B}$. If $D = X \times X$, then D is a reflexive relation on X.
 - Otherwise, $D = \bigcap \mathscr{S}'$ for some finite and nonempty $\mathscr{S}' \subseteq \mathscr{S}$.
 - If $x \in X$, then $\langle x, x \rangle \in S$ for every $S \in \mathscr{S}'$ so $\langle x, x \rangle \in D$.
 - Thus D is a reflexive relation on X.
- If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.
 - Let $D \in \mathscr{B}$. If $D = X \times X$, then B := D satisfies the requirements.
 - Assume that $D = \bigcap \mathscr{S}'$ for some finite and nonempty $\mathscr{S}' \subseteq \mathscr{S}$.
 - Condition (2) implies that for each $S \in \mathscr{S}'$ there is $T_S \in \mathscr{S}$ with $T_S \subseteq S^{-1}$.
 - Let $B = \bigcap \{T_S : S \in \mathscr{S}'\}$. Then $B \in \mathscr{B}$ and $B \subseteq \bigcap \{S^{-1} : S \in \mathscr{S}'\}$.
 - Since $D^{-1} = \bigcap \{S^{-1} : S \in \mathscr{S}'\}$, it follows that $B \subseteq D^{-1}$.

We have $D^{-1} = \bigcap \{S^{-1} : S \in \mathscr{S}'\}$ since

*
$$\langle x, y \rangle \in D^{-1}$$
 iff

- * $\langle y, x \rangle \in D$ iff
- * $\langle y, x \rangle \in S$ for every $S \in \mathscr{S}'$ iff
- $* \ \langle x,y\rangle \in S^{-1} \text{ for every } S \in \mathscr{S}'.$
- If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.
 - Let $D \in \mathscr{B}$. If $D = X \times X$, then B := D satisfies the requirements.
 - Assume that $D = \bigcap \mathscr{S}'$ for some finite and nonempty $\mathscr{S}' \subseteq \mathscr{S}$.
 - Condition (3) implies that for each $S \in \mathscr{S}'$ there is $T_S \in \mathscr{S}$ with $T_S \circ T_S \subseteq S$.
 - Let $B := \bigcap \{T_S : S \in \mathscr{S}'\}$. Then $B \in \mathscr{B}$ and $B \circ B \subseteq D$.

We show that $B \circ B \subseteq D$.

- * Let $\langle x, z \rangle \in B \circ B$. Then there is $y \in X$ with $\langle x, y \rangle \in B$ and $\langle y, z \rangle \in B$.
- * If $S \in \mathscr{S}'$, then $\langle x, y \rangle \in T_S$ and $\langle y, z \rangle \in T_S$ so $\langle x, z \rangle \in S$.
- * Since $\langle x, z \rangle \in S$ for every $S \in \mathscr{S}'$, it follows that $\langle x, z \rangle \in D$.
- If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.
 - Let $B, D \in \mathscr{B}$. If $B = X \times X$, then $B \cap D = B \in \mathscr{B}$ so E := B satisfies the requirements. Similarly, when $D = X \times X$.
 - Assume that $B = \bigcap \mathscr{S}'$ and $D = \bigcap \mathscr{S}''$ for some finite and nonempty $\mathscr{S}', \mathscr{S}'' \subseteq \mathscr{S}$. Let $E := B \cap D$.
 - Since $E = \bigcap \mathscr{S}'''$ where $\mathscr{S}''' = \mathscr{S}' \cup \mathscr{S}''$ is a finite and nonempty subset of \mathscr{S} , it follows that $E \in \mathscr{B}$.

Exercise (union of uniformities).

Let X be the interval $(-\pi/2, \pi/2)$ and $f, g: X \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & x \le 0;\\ \tan(x) & x \ge 0. \end{cases}$$

and

$$g(x) = \begin{cases} \tan(x) & x \le 0; \\ x & x \ge 0. \end{cases}$$

Let d_1 , d_2 be the pseudometrics on X defined by $d_1(x, y) = |f(x) - f(y)|$ and $d_2(x, y) = |g(x) - g(y)|$. Let \mathscr{D}_1 and \mathscr{D}_2 be the uniformities on X induced by d_1 and d_2 , respectively. Prove that $\mathscr{D}_1 \cup \mathscr{D}_2$ is not a uniformity base on X.

Solution. Let $\mathscr{B} := \mathscr{D}_1 \cup \mathscr{D}_2$. Let

 $D_1 = \{ \langle x, y \rangle \in X \times X : |f(x) - f(y)| < 1 \}$

and

 $D_2 = \{ \langle x, y \rangle \in X \times X : |g(x) - g(y)| < 1 \}.$

Then $D_1 \in \mathscr{D}_1$ and $D_2 \in \mathscr{D}_2$ so both D_1 and D_2 belong to \mathscr{B} . Let $D = D_1 \cap D_2$.

- We show that there are no $E \in \mathscr{B}$ with $E \subseteq D$.
 - Suppose, for a contradiction, that there exists $E \in \mathscr{B}$ with $E \subseteq D$. Then either $E \in \mathscr{D}_1$ or $E \in \mathscr{D}_2$.
 - Assume first that $E \in \mathscr{D}_1$. Then there exists $\varepsilon > 0$ such that $\langle x, y \rangle \in E$ whenever $|f(x) f(y)| < \varepsilon$.
 - There are $x, y \in X$ such that $x, y < 0, |x y| < \varepsilon$ and $|\tan(x) \tan(y)| \ge 1$.
 - Then $|f(x) f(y)| = |x y| < \varepsilon$ so $\langle x, y \rangle \in E$.
 - However, $|g(x) g(y)| = |\tan(x) \tan(y)| \ge 1$ so $\langle x, y \rangle \notin D_2$ and consequently $\langle x, y \rangle \notin D$. This is a contradiction.
 - Similarly, we get a contradiction when $E \in \mathscr{D}_2$.
- That implies that \mathscr{B} is not a uniformity base on X.

Theorem (union uniformity subbase).

Let X be a set and \mathfrak{A} be a family such that each member of \mathfrak{A} is a uniformity base on X. Then $\bigcup \mathfrak{A}$ is a uniformity subbase on X. In particular, the union of a family of uniformities on X is a uniformity subbase on X.

Proof. Let $\mathscr{S} = \bigcup \mathfrak{A}$. We show that \mathscr{S} a uniformity subbase on X by verifying that \mathscr{S} satisfies all the conditions given in Theorem (uniformity subbase).

• Each $S \in \mathscr{S}$ is a reflexive relation on X.

If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$. Thus S is a reflexive relation on X.

• If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \subseteq S^{-1}$.

- If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$.

- Thus there exists $T \in \mathscr{B}$ with $T \subseteq S^{-1}$.
- Since $\mathscr{B} \subseteq \mathscr{S}$, it follows that $T \in \mathscr{S}$.
- If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \circ T \subseteq S$.
 - If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$.
 - Thus there exists $T \in \mathscr{B}$ with $T \circ T \subseteq S$.
 - Since $\mathscr{B} \subseteq \mathscr{S}$, it follows that $T \in \mathscr{S}$.

Exercise (uniformity base nbhds).

Let \mathscr{B} be a uniformity base on X, let \mathscr{D} be the uniformity on X that is induced by \mathscr{B} and τ be the topology on X that is induced by \mathscr{D} . Prove that for each $x \in X$, the family $\mathscr{B}_x = \{B[x] : B \in \mathscr{B}\}$ is a base of the nbhd filter at x (the filter consisting of all nbhds at x) with respect to τ .

Solution. Let $x \in X$ and \mathscr{U}_x be the nbhd filter at x.

- Since $\mathscr{B} \subseteq \mathscr{D}$, it follows that $\mathscr{B}_x \subseteq \mathscr{U}_x$.
- It remains to show that for every $U \in \mathscr{U}_x$ there exists $B \in \mathscr{B}$ with $B[x] \subseteq U$.
 - Let $U \in \mathscr{U}_x$. There exists open $V \subseteq X$ with $x \in V \subseteq U$.
 - Thus there is $D \in \mathscr{D}$ with $D[x] \subseteq V$ and there is $B \in \mathscr{B}$ with $B \subseteq D$.
 - Then $B[x] \subseteq U$ as required.

Exercise (uniformity subbase nbhds).

Let \mathscr{S} be a uniformity subbase on X, let \mathscr{D} be the uniformity on X that is induced by \mathscr{S} and τ be the topology on X that is induced by \mathscr{D} . Prove that for each $x \in X$, the family $\mathscr{S}_x = \{S[x] : S \in \mathscr{S}\}$ is a subbase of the nbhd filter at x (the filter consisting of all nbhds at x) with respect to τ .

Solution. Let $x \in X$ and \mathscr{U}_x be the nbhd filter at x. Let

 $\mathscr{B}_x = \{X\} \cup \{\bigcap \mathscr{A} : \mathscr{A} \subseteq \mathscr{S}_x \text{ is finite and nonempty}\}.$

To show that \mathscr{S}_x is a subbase for \mathscr{U}_x , it suffices to show that \mathscr{B}_x is a base for \mathscr{U}_x . Note that

$$\mathscr{D} = \{X \times X\} \cup \{D \subseteq X \times X : \bigcap \mathscr{S}' \subseteq D \text{ for some finite nonempty } \mathscr{S}' \subseteq \mathscr{S}\}$$

• First we show that $\mathscr{B}_x \subseteq \mathscr{U}_x$.

Let $B \in \mathscr{B}_x$.

- If B = X, then B = D[x] with $D := X \times X$. Thus $B \in \mathscr{U}_x$.
- Assume $B = \bigcap \mathscr{A}$ for some finite and nonempty $\mathscr{A} \subseteq \mathscr{S}_x$.
- Then $\mathscr{A} = \{S[x] : S \in \mathscr{S}'\}$ for some finite and nonempty $\mathscr{S}' \subseteq \mathscr{S}$.
- Let $D = \bigcap \mathscr{S}'$. Then $D \in \mathscr{D}$ and $D[x] = \bigcap \mathscr{A}$.

We have $y \in D[x]$ iff $\langle x, y \rangle \in D$ iff $\langle x, y \rangle \in S$ for all $S \in \mathscr{S}'$ iff $y \in S[x]$ for all $S \in \mathscr{S}'$ iff $y \in \bigcap \mathscr{A}$.

- Since B = D[x] for some $D \in \mathscr{D}$, it follows that $B \in \mathscr{U}_x$.

• Now we show that for every $U \in \mathscr{U}_x$ there exists $B \in \mathscr{B}_x$ with $B \subseteq U$.

Let $U \in \mathscr{U}_x$. There exists $D \in \mathscr{D}$ with $D[x] \subseteq U$.

- If $D = X \times X$, then $U = X \in \mathscr{B}_x$ and B := U satisfies the requirements.
- Assume that there exists finite and nonempty $\mathscr{S}'\subseteq \mathscr{S}$ with $\bigcap \mathscr{S}'\subseteq D.$
 - * Let $\mathscr{A} := \{S[x] : S \in \mathscr{S}'\}$ and $B := \bigcap \mathscr{A}$. Then $B \in \mathscr{B}_x$.
 - * We show that $B \subseteq U$.

Let $y \in B$.

- Then $y \in S[x]$ for each $S \in \mathscr{S}'$ so $\langle x, y \rangle \in S$ for each $S \in \mathscr{S}'$.
- Thus $\langle x, y \rangle \in \bigcap \mathscr{S}' \subseteq D$, which implies that $y \in D[x] \subseteq U$.