Math 793C

Jerzy Wojciechowski
Class 27

Topology for Analysis

Spring 2020
March 30

Exercise (pseudometric uniformity topology).

Let X be a set, d be a pseudometric on X and \mathscr{D} be the uniformity on X that is induced by d. Prove that both d and \mathscr{D} induce the same topology on X.

Solution. If $x \in X$ and $\varepsilon>0$, then let

$$
B_{d}(x, \varepsilon)=\{y \in X: d(x, y)<\varepsilon\}
$$

be the open ball (with respect to d) centered at x with radius ε.

- Let τ be the topology on X that is induced by d and τ^{\prime} be the topology induced by \mathscr{D}.
- Let $U \in \tau$. To show that $U \in \tau^{\prime}$, we take any $x \in U$ and find $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
- Let $x \in U$. There is $\varepsilon>0$ such that $B_{d}(x, \varepsilon) \subseteq U$.
- Let $D=\{\langle y, z\rangle \in X \times X: d(x, y)<\varepsilon\}$. Then $D \in \mathscr{D}$.
- Moreover, $D[x]=B_{d}(x, \varepsilon)$ implying that $D[x] \subseteq U$.
- Let $U \in \tau^{\prime}$. To show that $U \in \tau$, we take $x \in U$ and find $\varepsilon>0$ such that $B_{d}(x, \varepsilon) \subseteq U$.
- Since $U \in \tau^{\prime}$, there is $D \in \mathscr{D}$ such that $D[x] \subseteq U$.
- There is $\varepsilon>0$ such that $\langle x, y\rangle \in D$ whenever $d(x, y)<\varepsilon$.
- Then $B_{d}(x, \varepsilon) \subseteq D[x]$ so $B_{d}(x, \varepsilon) \subseteq U$.

Example (pseudometric topology uniformity).

Let X be the open interval $(-\pi / 2, \pi / 2)$. Let d be the standard metric on X (with $d(x, y)=|x-y|$) and ρ be the metric defined by

$$
\rho(x, y)=|\tan (x)-\tan (y)| .
$$

Let \mathscr{D}_{d} and \mathscr{D}_{ρ} be the uniformities induced by d and ρ, respectively.

- Then $\mathscr{D}_{d} \subseteq \mathscr{D}_{\rho}$ but these uniformities are distinct.
- Note that both d and ρ induce the same topology on X.
- The topology on X that is induced by d is the same as the topology induced by \mathscr{D}_{d}. Similarly for ρ and \mathscr{D}_{ρ}.
- Thus \mathscr{D}_{d} and \mathscr{D}_{ρ} are different uniformities on X that induce the same topology.

Uniformity base.

A uniformity base on a set X is a filter base of a some uniformity on X.

- Explicitely, a uniformity base on X is a family \mathscr{B} of subsets of $X \times X$ that is a filter base on $X \times X$ and such that the filter on $X \times X$ that is induced by \mathscr{B} is a uniformity on X.
- The theorem on uniformity base gives a necessary and sufficient condition for a family of subsets of $X \times X$ to be a uniformity base on X.

Theorem (uniformity base).

Let X be a set and \mathscr{B} be a nonempty family of subsets of $X \times X$. Then \mathscr{B} is a uniformity base on X if and only if the following conditions hold:

1. Each $D \in \mathscr{B}$ is a reflexive relation on X.
2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.
3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.
4. If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.

Proof. Assume that \mathscr{B} satisfies the listed conditions.

- Since $\mathscr{B} \neq \varnothing$ and since condition (4) holds, it follows that \mathscr{B} is a filter base on $X \times X$.
- Let $\mathscr{D}=\{D \subseteq X:(\exists B \in \mathscr{B}) B \subseteq D\}$. Then \mathscr{D} is the filter on $X \times X$ that is induced by \mathscr{B}.
- We show that \mathscr{D} is a uniformity on X.
- We verify that each $D \in \mathscr{D}$ is a reflexive relation on X.
* Let $D \in \mathscr{D}$ and $x \in X$. We need to show that $\langle x, x\rangle \in D$.
* There is $B \in \mathscr{B}$ with $B \subseteq D$.
* Each member of \mathscr{B} is a reflexive relation on X so $\langle x, x\rangle \in B$.
* Since $B \subseteq D$, it follows that $\langle x, x\rangle \in D$.
- We verify that $D^{-1} \in \mathscr{D}$ for every $D \in \mathscr{D}$.
* Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
* Condition (2) implies that there is $A \in \mathscr{B}$ with $A \subseteq B^{-1}$.
* Since $B^{-1} \subseteq D^{-1}$, it follows that $A \subseteq D^{-1}$ so $D^{-1} \in \mathscr{D}$.
- We verify that for every $D \in \mathscr{D}$ there exists $E \in \mathscr{D}$ with $E \circ E \subseteq D$.
* Let $D \in \mathscr{D}$. There is $B \in \mathscr{B}$ with $B \subseteq D$.
* Condition (3) implies that there is $E \in \mathscr{B}$ with $E \circ E \subseteq B$.
* Then $E \in \mathscr{D}$ and $E \circ E \subseteq D$.

Assume that \mathscr{B} is a uniformity base on X.

- Let $\mathscr{D}=\{D \subseteq X:(\exists B \in \mathscr{B}) B \subseteq D\}$. Then \mathscr{D} is a uniformity on X.
- We verify that \mathscr{B} satisfies the listed conditions.
- Let $D \in \mathscr{B}$. Since $D \subseteq D$, it follows that $D \in \mathscr{D}$.
- Since \mathscr{D} is a uniformity, D is a reflexive relation on X so (1) holds.
- Since \mathscr{D} is a uniformity, $D^{-1} \in \mathscr{D}$ so there is $B \in \mathscr{B}$ with $B \subseteq D^{-1}$. Thus (2) holds.
- Since \mathscr{D} is a uniformity, there is $A \in \mathscr{D}$ with $A \circ A \subseteq D$. There is $E \in \mathscr{B}$ with $E \subseteq A$. Then $E \circ E \subseteq A \circ A$ so $E \circ E \subseteq D$. Thus (3) holds.
- Let $B, D \in \mathscr{B}$. Then $B, D \in \mathscr{D}$ so $B \cap D \in \mathscr{D}$, implying that there is $E \in \mathscr{B}$ with $E \subseteq B \cap D$. Thus (4) holds.

Symmetric surrounding.

Let \mathscr{D} be a uniformity on X and $D \in \mathscr{D}$ be a surrounding in \mathscr{D}. We say that D is symmetric iff $D^{-1}=D$.

The family of all symmetric surroundings in \mathscr{D} is a uniformity base that induces the uniformity \mathscr{D}.

Exercise (symmetric surroundings base).

Let \mathscr{D} be uniformity on a set X. Prove that the family of all symmetric surroundings in \mathscr{D} is a uniformity base that induces the uniformity \mathscr{D}.

Solution. Let $\mathscr{B}=\{D \in \mathscr{D}: D$ is symmetric $\}$. By Theorem (uniformity base), it suffices to verify the following conditions:

1. Each $D \in \mathscr{B}$ is a reflexive relation on X.

If $D \in \mathscr{B}$, then $D \in \mathscr{D}$. Each member of \mathscr{D} is a reflexive relation on X.
2. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.

If $D \in \mathscr{B}$, then D is symmetric so $D^{-1}=D$. Thus $B:=D$ satisfies the requirements.
3. If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.

- Let $D \in \mathscr{B}$. Then $D \in \mathscr{D}$ so there exists $E \in \mathscr{D}$ with $E \circ E \subseteq D$.
- Let $B=E \cap E^{-1}$. Then B is symmetric and $B \in \mathscr{D}$ so $B \in \mathscr{B}$.
- Moreover, $B \circ B \subseteq E \circ E \subseteq D$.

4. If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.

- Let $B, D \in \mathscr{B}$. Then $B, D \in \mathscr{D}$ so $E:=B \cap D \in \mathscr{D}$.
- Since E is symmetric, it follows that $E \in \mathscr{B}$.

Uniformity subbase.

A uniformity subbase on a set X is a subset of $X \times X$ that is a subbase of a uniformity on X.

- Recall that each family \mathscr{S} of subsets of $X \times X$ induces a filter \mathscr{F} on $X \times X$. The filter \mathscr{F} is induced by the filter base

$$
\mathscr{B}=\{X \times X\} \cup\left\{\bigcap \mathscr{S}^{\prime}: \mathscr{S}^{\prime} \subseteq \mathscr{S} \text { is finite and nonempty }\right\} .
$$

- Explicitly, the filter \mathscr{F} that is induced by \mathscr{S} is given by:
$\mathscr{F}=\left\{D \in X \times X: \bigcap \mathscr{S}^{\prime} \subseteq D:\right.$ for some finite and nonempty $\left.\mathscr{S}^{\prime} \subseteq \mathscr{S}\right\} \cup$ $\{X \times X\}$.
- A family \mathscr{S} of subsets of $X \times X$ is a uniformity subbase if and only if the filter on $X \times X$ that is induced by \mathscr{S} is a uniformity.
- See Theorem (uniformity subbase) for a list of conditions on \mathscr{S} that are sufficient for \mathscr{S} to be a uniformity subbase on X.

Theorem (uniformity subbase).

Let X be a set and \mathscr{S} be any family of subsets of $X \times X$. If \mathscr{S} satisfies the following conditions, then \mathscr{S} is a uniformity subbase on X.

1. Each $S \in \mathscr{S}$ is a reflexive relation on X.
2. If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \subseteq S^{-1}$.
3. If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \circ T \subseteq S$.

Proof. Assume that \mathscr{S} satisfies the listed conditions. Let
$\mathscr{B}:=\{X \times X\} \cup\left\{\bigcap \mathscr{S}^{\prime}: \mathscr{S}^{\prime} \subseteq \mathscr{S}\right.$ is finite and nonempty $\}$.
We show that \mathscr{B} a uniformity base on X by verifying that \mathscr{B} satisfies all the conditions given in Theorem (uniformity base).

- Each $D \in \mathscr{B}$ is a reflexive relation on X.
- Let $D \in \mathscr{B}$. If $D=X \times X$, then D is a reflexive relation on X.
- Otherwise, $D=\bigcap \mathscr{S}^{\prime}$ for some finite and nonempty $\mathscr{S}^{\prime} \subseteq \mathscr{S}$.
- If $x \in X$, then $\langle x, x\rangle \in S$ for every $S \in \mathscr{S}^{\prime}$ so $\langle x, x\rangle \in D$.
- Thus D is a reflexive relation on X.
- If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \subseteq D^{-1}$.
- Let $D \in \mathscr{B}$. If $D=X \times X$, then $B:=D$ satisfies the requirements.
- Assume that $D=\bigcap \mathscr{S}^{\prime}$ for some finite and nonempty $\mathscr{S}^{\prime} \subseteq \mathscr{S}$.
- Condition (2) implies that for each $S \in \mathscr{S}^{\prime}$ there is $T_{S} \in \mathscr{S}$ with $T_{S} \subseteq S^{-1}$.
- Let $B=\bigcap\left\{T_{S}: S \in \mathscr{S}^{\prime}\right\}$. Then $B \in \mathscr{B}$ and $B \subseteq \bigcap\left\{S^{-1}: S \in \mathscr{S}^{\prime}\right\}$.
- Since $D^{-1}=\bigcap\left\{S^{-1}: S \in \mathscr{S}^{\prime}\right\}$, it follows that $B \subseteq D^{-1}$.

We have $D^{-1}=\bigcap\left\{S^{-1}: S \in \mathscr{S}^{\prime}\right\}$ since

* $\langle x, y\rangle \in D^{-1} \mathrm{iff}$
* $\langle y, x\rangle \in D$ iff
* $\langle y, x\rangle \in S$ for every $S \in \mathscr{S}^{\prime}$ iff
* $\langle x, y\rangle \in S^{-1}$ for every $S \in \mathscr{S}^{\prime}$.
- If $D \in \mathscr{B}$, then there exists $B \in \mathscr{B}$ with $B \circ B \subseteq D$.
- Let $D \in \mathscr{B}$. If $D=X \times X$, then $B:=D$ satisfies the requirements.
- Assume that $D=\bigcap \mathscr{S}^{\prime}$ for some finite and nonempty $\mathscr{S}^{\prime} \subseteq \mathscr{S}$.
- Condition (3) implies that for each $S \in \mathscr{S}^{\prime}$ there is $T_{S} \in \mathscr{S}$ with $T_{S} \circ T_{S} \subseteq S$.
- Let $B:=\bigcap\left\{T_{S}: S \in \mathscr{S}^{\prime}\right\}$. Then $B \in \mathscr{B}$ and $B \circ B \subseteq D$.

We show that $B \circ B \subseteq D$.

* Let $\langle x, z\rangle \in B \circ B$. Then there is $y \in X$ with $\langle x, y\rangle \in B$ and $\langle y, z\rangle \in B$.
* If $S \in \mathscr{S}^{\prime}$, then $\langle x, y\rangle \in T_{S}$ and $\langle y, z\rangle \in T_{S}$ so $\langle x, z\rangle \in S$.
* Since $\langle x, z\rangle \in S$ for every $S \in \mathscr{S}^{\prime}$, it follows that $\langle x, z\rangle \in D$.
- If $B, D \in \mathscr{B}$, then there exists $E \in \mathscr{B}$ with $E \subseteq B \cap D$.
- Let $B, D \in \mathscr{B}$. If $B=X \times X$, then $B \cap D=B \in \mathscr{B}$ so $E:=B$ satisfies the requirements. Similarly, when $D=X \times X$.
- Assume that $B=\bigcap \mathscr{S}^{\prime}$ and $D=\bigcap \mathscr{S}^{\prime \prime}$ for some finite and nonempty $\mathscr{S}^{\prime}, \mathscr{S}^{\prime \prime} \subseteq \mathscr{S}$. Let $E:=B \cap D$.
- Since $E=\bigcap \mathscr{S}^{\prime \prime \prime}$ where $\mathscr{S}^{\prime \prime \prime}=\mathscr{S}^{\prime} \cup \mathscr{S}^{\prime \prime}$ is a finite and nonempty subset of \mathscr{S}, it follows that $E \in \mathscr{B}$.

Exercise (union of uniformities).

Let X be the interval $(-\pi / 2, \pi / 2)$ and $f, g: X \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x & x \leq 0 \\ \tan (x) & x \geq 0\end{cases}
$$

and

$$
g(x)= \begin{cases}\tan (x) & x \leq 0 \\ x & x \geq 0\end{cases}
$$

Let d_{1}, d_{2} be the pseudometrics on X defined by $d_{1}(x, y)=|f(x)-f(y)|$ and $d_{2}(x, y)=|g(x)-g(y)|$. Let \mathscr{D}_{1} and \mathscr{D}_{2} be the uniformities on X induced by d_{1} and d_{2}, respectively. Prove that $\mathscr{D}_{1} \cup \mathscr{D}_{2}$ is not a uniformity base on X.

Solution. Let $\mathscr{B}:=\mathscr{D}_{1} \cup \mathscr{D}_{2}$. Let

$$
D_{1}=\{\langle x, y\rangle \in X \times X:|f(x)-f(y)|<1\}
$$

and
$D_{2}=\{\langle x, y\rangle \in X \times X:|g(x)-g(y)|<1\}$.
Then $D_{1} \in \mathscr{D}_{1}$ and $D_{2} \in \mathscr{D}_{2}$ so both D_{1} and D_{2} belong to \mathscr{B}. Let $D=D_{1} \cap D_{2}$.

- We show that there are no $E \in \mathscr{B}$ with $E \subseteq D$.
- Suppose, for a contradiction, that there exists $E \in \mathscr{B}$ with $E \subseteq D$. Then either $E \in \mathscr{D}_{1}$ or $E \in \mathscr{D}_{2}$.
- Assume first that $E \in \mathscr{D}_{1}$. Then there exists $\varepsilon>0$ such that $\langle x, y\rangle \in$ E whenever $|f(x)-f(y)|<\varepsilon$.
- There are $x, y \in X$ such that $x, y<0,|x-y|<\varepsilon$ and $|\tan (x)-\tan (y)| \geq$ 1.
- Then $|f(x)-f(y)|=|x-y|<\varepsilon$ so $\langle x, y\rangle \in E$.
- However, $|g(x)-g(y)|=|\tan (x)-\tan (y)| \geq 1$ so $\langle x, y\rangle \notin D_{2}$ and consequently $\langle x, y\rangle \notin D$. This is a contradiction.
- Similarly, we get a contradiction when $E \in \mathscr{D}_{2}$.
- That implies that \mathscr{B} is not a uniformity base on X.

Theorem (union uniformity subbase).

Let X be a set and \mathfrak{A} be a family such that each member of \mathfrak{A} is a uniformity base on X. Then $\bigcup \mathfrak{A}$ is a uniformity subbase on X. In particular, the union of a family of uniformities on X is a uniformity subbase on X.

Proof. Let $\mathscr{S}=\bigcup \mathfrak{A}$. We show that \mathscr{S} a uniformity subbase on X by verifying that \mathscr{S} satisfies all the conditions given in Theorem (uniformity subbase).

- Each $S \in \mathscr{S}$ is a reflexive relation on X.

If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$. Thus S is a reflexive relation on X.

- If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \subseteq S^{-1}$.
- If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$.
- Thus there exists $T \in \mathscr{B}$ with $T \subseteq S^{-1}$.
- Since $\mathscr{B} \subseteq \mathscr{S}$, it follows that $T \in \mathscr{S}$.
- If $S \in \mathscr{S}$, then there exists $T \in \mathscr{S}$ with $T \circ T \subseteq S$.
- If $S \in \mathscr{S}$, then $S \in \mathscr{B}$ for some $\mathscr{B} \in \mathfrak{A}$.
- Thus there exists $T \in \mathscr{B}$ with $T \circ T \subseteq S$.
- Since $\mathscr{B} \subseteq \mathscr{S}$, it follows that $T \in \mathscr{S}$.

Exercise (uniformity base nbhds).

Let \mathscr{B} be a uniformity base on X, let \mathscr{D} be the uniformity on X that is induced by \mathscr{B} and τ be the topology on X that is induced by \mathscr{D}. Prove that for each $x \in X$, the family $\mathscr{B}_{x}=\{B[x]: B \in \mathscr{B}\}$ is a base of the nbhd filter at x (the filter consisting of all nbhds at x) with respect to τ.

Solution. Let $x \in X$ and \mathscr{U}_{x} be the nbhd filter at x.

- Since $\mathscr{B} \subseteq \mathscr{D}$, it follows that $\mathscr{B}_{x} \subseteq \mathscr{U}_{x}$.
- It remains to show that for every $U \in \mathscr{U}_{x}$ there exists $B \in \mathscr{B}$ with $B[x] \subseteq U$.
- Let $U \in \mathscr{U}_{x}$. There exists open $V \subseteq X$ with $x \in V \subseteq U$.
- Thus there is $D \in \mathscr{D}$ with $D[x] \subseteq V$ and there is $B \in \mathscr{B}$ with $B \subseteq D$.
- Then $B[x] \subseteq U$ as required.

Exercise (uniformity subbase nbhds).

Let \mathscr{S} be a uniformity subbase on X, let \mathscr{D} be the uniformity on X that is induced by \mathscr{S} and τ be the topology on X that is induced by \mathscr{D}. Prove that for each $x \in X$, the family $\mathscr{S}_{x}=\{S[x]: S \in \mathscr{S}\}$ is a subbase of the nbhd filter at x (the filter consisting of all nbhds at x) with respect to τ.

Solution. Let $x \in X$ and \mathscr{U}_{x} be the nbhd filter at x. Let

$$
\mathscr{B}_{x}=\{X\} \cup\left\{\bigcap \mathscr{A}: \mathscr{A} \subseteq \mathscr{S}_{x} \text { is finite and nonempty }\right\} .
$$

To show that \mathscr{S}_{x} is a subbase for \mathscr{U}_{x}, it suffices to show that \mathscr{B}_{x} is a base for \mathscr{U}_{x}. Note that

$$
\mathscr{D}=\{X \times X\} \cup\left\{D \subseteq X \times X: \bigcap \mathscr{S}^{\prime} \subseteq D \text { for some finite nonempty } \mathscr{S}^{\prime} \subseteq \mathscr{S}\right\}
$$

- First we show that $\mathscr{B}_{x} \subseteq \mathscr{U}_{x}$.

Let $B \in \mathscr{B}_{x}$.

- If $B=X$, then $B=D[x]$ with $D:=X \times X$. Thus $B \in \mathscr{U}_{x}$.
- Assume $B=\bigcap \mathscr{A}$ for some finite and nonempty $\mathscr{A} \subseteq \mathscr{S}_{x}$.
- Then $\mathscr{A}=\left\{S[x]: S \in \mathscr{S}^{\prime}\right\}$ for some finite and nonempty $\mathscr{S}^{\prime} \subseteq \mathscr{S}$.
- Let $D=\bigcap \mathscr{S}^{\prime}$. Then $D \in \mathscr{D}$ and $D[x]=\bigcap \mathscr{A}$.

We have $y \in D[x]$ iff $\langle x, y\rangle \in D$ iff $\langle x, y\rangle \in S$ for all $S \in \mathscr{S}^{\prime}$ iff $y \in S[x]$ for all $S \in \mathscr{S}^{\prime}$ iff $y \in \bigcap \mathscr{A}$.

- Since $B=D[x]$ for some $D \in \mathscr{D}$, it follows that $B \in \mathscr{U}_{x}$.
- Now we show that for every $U \in \mathscr{U}_{x}$ there exists $B \in \mathscr{B}_{x}$ with $B \subseteq U$.

Let $U \in \mathscr{U}_{x}$. There exists $D \in \mathscr{D}$ with $D[x] \subseteq U$.

- If $D=X \times X$, then $U=X \in \mathscr{B}_{x}$ and $B:=U$ satisfies the requirements.
- Assume that there exists finite and nonempty $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ with $\bigcap \mathscr{S}^{\prime} \subseteq$ D.
* Let $\mathscr{A}:=\left\{S[x]: S \in \mathscr{S}^{\prime}\right\}$ and $B:=\bigcap \mathscr{A}$. Then $B \in \mathscr{B}_{x}$.
* We show that $B \subseteq U$.

Let $y \in B$.

- Then $y \in S[x]$ for each $S \in \mathscr{S}^{\prime}$ so $\langle x, y\rangle \in S$ for each $S \in \mathscr{S}^{\prime}$.
- Thus $\langle x, y\rangle \in \bigcap \mathscr{S}^{\prime} \subseteq D$, which implies that $y \in D[x] \subseteq U$.

