Math 793C

Topology for Analysis

Jerzy Wojciechowski	Spring 2020
Class 26	March 27

Uniform space.

A uniform space is a set X with a uniformity on X.

- Each pseudometric space is a uniform space, see uniformity from pseudometric.
- Each uniform space is a topological space, see topology from uniformity.

Uniformity from pseudometric.

Let d be a pseudometric on a set X. The uniformity \mathscr{D} on X that is *induced* by d is obtained as follows. Given $D \subseteq X \times X$, we include D as a member of \mathscr{D} if and only if there exists $\varepsilon > 0$ such that $\langle x, y \rangle \in D$ whenever $d(x, y) < \varepsilon$.

- For the proof that the resulting family \mathcal{D} is a uniformity on X see the proof of the theorem on uniformity from pseudometric.
- See some examples of uniformity from pseudometric.

Topology from uniformity.

Let \mathscr{D} be a uniformity on a set X. The topology τ on X that is *induced* by \mathscr{D} is obtained as follows. Given $U \subseteq X$, we include U as a member of τ if and only if for every $x \in U$ there exists $D \in \mathscr{D}$ such that $D[x] \subseteq U$, where $D[x] = \{y \in X : \langle x, y \rangle \in D\}$.

- We also say that τ is the topology of \mathscr{D} .
- For the proof that the resulting family τ is a topology on X see the proof of the theorem on topology from uniformity.
- Different uniformities may induce the same topology. See examples (pseudometric topology uniformity).

Topology from uniformity interior.

Let \mathscr{D} be a uniformity on a set X. If $A \subseteq X$, and

 $U = \{ x \in A : (\exists D \in \mathscr{D}) \ D \ [x] \subseteq A \},\$

then U is open in the topology on X that is induced by \mathscr{D} . Moreover, U is the interior of A.

Proof.

• First note that when we show that U is open, it follows easily that U is the interior of A.

Suppose that B is open with $U \subseteq B \subseteq A$. We show that $B \subseteq U$ so U = B.

- Let $x \in B$. Since B is open, there is $D \in \mathscr{D}$ with $D[x] \subseteq B$.
- Then $D[x] \subseteq A$ and it follows that $x \in U$. Thus U = B.
- Now we show that U is open. Let $x \in U$. We need to find $E \in \mathscr{D}$ with $E[x] \subseteq U$.
 - Since $x \in U$, there is $D \in \mathscr{D}$ with $D[x] \subseteq A$.
 - Let $E \in \mathscr{D}$ be such that $E \circ E \subseteq D$. We show that $E[x] \subseteq U$.
 - * Let $y \in E[x]$. To show that $y \in U$, it suffices to verify that $E[y] \subseteq A$.
 - * Let $z \in E[y]$. Then $\langle x, y \rangle \in E$ and $\langle y, z \rangle \in E$, implying that $\langle x, z \rangle \in E \circ E \subseteq D$.
 - * It follows that $z \in D[x] \subseteq A$ so $E[y] \subseteq A$.

Topology from uniformity nbhds.

Let \mathscr{D} be a uniformity on a set X and τ be the topology on X induced by \mathscr{D} . Then, for each $x \in X$, the family $\mathscr{U}_x = \{D[x] : D \in \mathscr{D}\}$ is the nbhd system at x (the family of all nbhds of x).

Proof.

- Let $x \in X$ and A be a nbhd of x. We show that $A \in \mathscr{U}_x$.
 - Since A is a nbhd of x, there is open U with $x \in U \subseteq A$.
 - Thus there is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
 - Define $E = D \cup \{ \langle x, y \rangle \in X \times X : y \in A \}.$

- Then A = E[x] and $E \in \mathscr{D}$ so $A \in \mathscr{U}_x$.
 - * The definition of E implies that $A \subseteq E[x]$.
 - * Since $D[x] \subseteq A$, it follows that $E[x] \subseteq A$ so E[x] = A.
 - * Since $D \subseteq E$ and since \mathscr{D} is a filter, it follows that $E \in \mathscr{D}$.
 - * Since A is of the form E[x] for $E \in \mathscr{D}$, it follows that $A \in \mathscr{U}_x$.
- Let $A \in \mathscr{U}_x$. We show that A is a nbhd of x.
 - Since $A \in \mathscr{U}_x$, there is $E \in \mathscr{D}$ with A = E[x].
 - Let $U = \{ y \in A : (\exists D \in \mathscr{D}) D [y] \subseteq A \}.$
 - Theorem (topology from uniformity interior) implies that U is open.
 - Since U is open and $x \in U \subseteq A$, it follows that A is a nbhd of x.

Theorem (topology from uniformity Hausdorff).

Let \mathscr{D} be a uniformity on a set X and τ be the topology on X induced by \mathscr{D} (topology from uniformity). Then τ is Hausdorff if and only if \mathscr{D} is separating (uniformity).

Proof.

- Assume that τ is Hausdorff. Let $x, y \in X$ be distinct. To show that \mathscr{D} is separating, we need to find $D \in \mathscr{D}$ with $\langle x, y \rangle \notin D$.
 - Since τ is Hausdorff, there are disjoint open sets $U, V \subseteq X$ with $x \in U$ and $y \in V$.
 - Since U is open and $x \in U$, there is $D \in \mathscr{D}$ with $D[x] \subseteq U$.
 - Since $y \notin U$, it follows that $y \notin D[x]$ so $\langle x, y \rangle \notin D$.
- Assume that \mathscr{D} is separating. Let $x, y \in X$ be distinct. We show that there exists $D \in \mathscr{D}$ with $D[x] \cap D[y] = \varnothing$.
 - Since \mathscr{D} is separating, there is $E \in \mathscr{D}$ such that $\langle x, y \rangle \notin E$.
 - There is $F \in \mathscr{D}$ be such that $F \circ F \subseteq E$. Let $D = F \cap F^{-1}$.
 - The definition of uniformity implies that $D \in \mathscr{D}$.
 - We show that $D[x] \cap D[y] = \emptyset$.
 - * Suppose, for a contradiction, that $z \in D[x] \cap D[y]$.
 - * Then $\langle x, z \rangle \in D \subseteq F$ and $\langle y, z \rangle \in D \subseteq F^{-1}$ so $\langle z, y \rangle \in F$.
 - * Consequently, $\langle x, y \rangle \in F \circ F \subseteq E$, which is a contradiction.
- Theorem (topology from uniformity nbhds) implies that D[x] and D[y] are nbhds of x and y, respectively, so it follows that τ is Hausdorff.