EXAM-2 FALL 2008

MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE

MATH 261 Professor Moseley

PRINT NAME Last Name,	First Name	MI	(What you	wish to be	called)
ID#		EXAM DATE	Friday, Octo	ber 3, 20	08
I swear and/or affirm that all of and that I have neither given no	<u> </u>		page	Scores points	score
C	7 1		1	10	
SIGNATURE		DATE	2	10	
INSTRUCTIONS: Besides this	s cover page, there are 1	2 pages of questions	3	6	
and problems on this exam. M	AKE SURE YOU HA	VE ALL THE	4	10	
PAGES . If a page is missing, y page. Read through the entire			5	7	
your hand and I will come to yo exam. Your I.D., this exam, an			6	10	
on your desk during the exam.		-	7	9	
PAPER! Use the back of the ethe staple if you wish. Print yo		•	8	8	
in-the Blank/Multiple Choice of	r True/False. Expect no	part credit on these	9	6	
pages. For each Fill-in-the Blank/Multiple Choice question write your answer in the blank provided. Next find your answer from the list given and write the corresponding letter or letters for your answer in the blank			10	7	
			11	7	
provided. Then circle this lette pages. However, to insure cred		-	12	7	
and carefully. Your entire solu answer. SHOW YOUR WOF			13	7	
expressed in your best mathematic	atics on this paper. Part	ial credit may be	14		
given if deemed appropriate. P computations as time allows.		and check your	15		
computations as time anows.					
REQUE	EST FOR REGRADE		16		
Please regard the following pr			17		
(e.g., I do not understand what	at I did wrong on page _)	18		
			19		
			20		
(Regrades should be requested	d within a week of the d	ate the exam is	21		
returned. Attach additional sh I swear and/or affirm that upo	•	•	22		
nothing on this exam except changing anything is considered	on this REGRADE FO		Total	104	
Date Signature	_				

MATH 261

EXAM-2

Fall 2008

Prof. Moseley

Page 1

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions.

Using Euler's Method with h = 0.1, you are to find the first two iterates (i.e. y_1 and y_2) to obtain a numerical approximation of the solution of the Initial Value Problem (IVP) given below for x = 0.2; that is, if $y = \varphi(x)$ is the solution to the IVP, you are to find an approximation for $\varphi(0.2)$. Use a table and the standard notation used in class (attendance is mandatory).

IVP ODE y' = x+y IC

y(0) = 1

1. (2 pts.) The general formula for Euler's method may be written

as ______. ___ A B C D E

2. (1 pt.) $x_0 =$ _____. _ A B C D E 5. (1 pt.) $y_0 =$ ____. _ A B C D E

3. (1 pt.) $x_1 =$ _____. ___ A B C D E 6. (2 pts.) $y_1 =$ _____. __ A B C D E

4. (1 pt.) $x_2 =$ _____. A B C D E 7. (2 pts.) $y_2 =$ _____. A B C D E

Possible answers this page.

A) $y_{k+1} = y_{k+1} + h f(x_k, y_k)$ B) $y_{k+1} = y_k + h f(x_k, y_k)$ C) $y_{k+1} = y_k + h f(x_{k+1}, y_{k+1})$

D) $y_{k+1} = y_k - h f(x_{k+1}, y_{k+1})$ E) $y_{k+1} = y_k - h f(x_k, y_k)$ AB) $y_{k+1} = y_{k-1} + h f(x_k, y_k)$

AC) $y_{k+1} = y_k + h f'(x_k, y_k)$ AD) 0.0 AE) 0.1 BC) 0.2 BD) 0.3

BE) 0.4 CD) 1.0

CE) 1.1 DE) 1.2 ABC) 1.21 ABD) 1.22 ABE) 1.23 ACD) 1.43 ACE) 2.0 ADE) 2.1

BCD) 2.2 BCE) 2.3 BDE) 2.31 CDE) 2.32 ABCD) 2.33 ABCE) 2.41 ABDE) 2.42

BCDE) 2.64 ABCDE) None of the above.

Possible points this page = 10. POINTS EARNED THIS PAGE = _____

MATH 261

EXAM II

Fall 2008

Prof. Moseley

Page 2

PRINT NAME _______ (_______) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions.

Let
$$A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 1 \\ -i \end{bmatrix}$. Below or on the back of the previous page solve

 $\text{Prob}(\mathbf{C}^2, \mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}})$; that is, solve the vector equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where we look for solutions in \mathbf{C}^2 . The form of the answer may not be unique. To obtain the answer listed, follow the directions given in class (attendance is mandatory).

8. (4 pts.) If $\begin{bmatrix} A \mid \vec{b} \end{bmatrix}$ is reduced to $\begin{bmatrix} U \mid \vec{c} \end{bmatrix}$ using Gauss elimination we obtain

$$\begin{bmatrix} U \middle| \vec{c} \end{bmatrix} = \underline{\hspace{1cm}} A B C D E A) \begin{bmatrix} 1 & i \middle| 1 \\ 0 & 0 \middle| 0 \end{bmatrix} B) \begin{bmatrix} 1 & i \middle| -1 \\ 0 & 0 \middle| 0 \end{bmatrix}$$

C)
$$\begin{bmatrix} 1 & -i & | 1 \\ 0 & 0 & | 1 \end{bmatrix}$$
 D) $\begin{bmatrix} 1 & -i & | -1 \\ 0 & 0 & | i \end{bmatrix}$ E) $\begin{bmatrix} 1 & i & | 1 \\ 0 & 0 & | 1 \end{bmatrix}$ AB) $\begin{bmatrix} 0 & 0 & | 0 \\ 0 & 0 & | 0 \end{bmatrix}$ AC) None of the above.

9. (4 pts.) The solution of $A\vec{x} = \vec{b}$ may be written as

$$\vec{\mathbf{x}} = \underline{\qquad} \cdot \underline{\qquad} A \ B \ C \ D \ E \qquad A) \ \text{No Solution} \qquad B) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C) \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \quad D) \ y \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \quad E) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} \mathbf{i} \\ 1 \end{bmatrix} \quad AB) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \quad AC) \begin{bmatrix} -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} \mathbf{i} \\ 1 \end{bmatrix} \quad AD) \begin{bmatrix} -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \quad BC)$$

None of the above correctly describes the solution or collection of solutions.

10. (1 pt.) The solution set S for Prob(\mathbb{C}^2 , $A\vec{x} = \vec{b}$) may be written as

$$S = \underline{\qquad \qquad } A B C D E A) \varnothing B) \left\{ \begin{bmatrix} -i \\ 1 \end{bmatrix} \right\} C) \left\{ \vec{x} = y \begin{bmatrix} -i \\ 1 \end{bmatrix} \in \mathbf{C}^2 : y \in \mathbf{C} \right\}$$

$$\mathbf{D} \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \mathbf{E} \left\{ \vec{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbf{y} \begin{bmatrix} \mathbf{i} \\ 1 \end{bmatrix} \in \mathbf{C}^2 : \mathbf{y} \in \mathbf{C} \right\} \mathbf{A} \mathbf{B} \left\{ \vec{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbf{y} \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \in \mathbf{C}^2 : \mathbf{y} \in \mathbf{C} \right\}$$

AC)
$$\left\{ \vec{\mathbf{x}} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \mathbf{y} \begin{bmatrix} \mathbf{i} \\ 1 \end{bmatrix} \in \mathbf{C}^2 : \mathbf{y} \in \mathbf{C} \right\}$$
 AD) $\left\{ \vec{\mathbf{x}} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \mathbf{y} \begin{bmatrix} -\mathbf{i} \\ 1 \end{bmatrix} \in \mathbf{C}^2 : \mathbf{y} \in \mathbf{C} \right\}$

BC) None of the above correctly describes the solution set for this problem.

11. (1 pt.) The number of solutions to $Prob(\mathbb{C}^2, A\vec{x} = \vec{b})$ is . A B C D E A) 0 B) 1

C)2 D)3 E) 4 AB) 5 AC) Infinite number of solutions AD) None of the above

MATH 261 EXAM II Fall 2008 Prof. Moseley Page 3
PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

True or false. Solution of Linear Algebraic Equations having possibly complex coefficients. Assume A is an m×n matrix of possibly complex numbers, that \vec{x} is an n×1 column vector of possibly complex unknowns, and that \vec{b} is an m×1 possibly complex-valued column vector. Now consider the problem $Prob(C^2, A\vec{x} = \vec{b})$; that is, the problem of solving the vector equation

$$A \vec{x} = \vec{b} .$$

$$mxn nx1 = mx1 .$$
(*)

where we look for solutions in \mathbb{C}^2 . Under these hypotheses, determine which of the following is true and which is false. If true, circle True. If false, circle False.

12.(1 pt.) A)True or B)False If $\vec{b} = \vec{0}$, then (*) always has at least one solution.

13.(1 pt.) A)True or B)False The vector equation (*) may have exactly two distinct solutions.

14.(1 pt.) A)True or B)False The vector equation (*) may have an infinite number of solutions.

15. (1 pt.) A)True or B)False If A is square and nonsingular, then (*) always has a unique solution.

16. (1 pt.) A)True or B)False If $A = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$ then (*) has a unique solution for any $\vec{b} \in \mathbb{C}^m$.

17. (1 pt.) A)True or B)False The equation (*) can be considered as a mapping problem from one vector space to another.

MATH 261	EXAM II	Fall 2008	Prof. Moseley	Page 4
----------	---------	-----------	---------------	--------

PRINT NAME ______ (______) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In addition, circle your answer.

18. (2 pts.) <u>Definition</u>. Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\} \subseteq V$ where V is a vector space and the vector equation $c_1\vec{v}_1+c_2\vec{v}_2+...+c_k\vec{v}_k=\vec{0}$ be (*). Then S is linearly independent if

. ABCDE

- A) the vector equation (*) has an infinite number of solutions.
- B) the vector equation (*) has a solution other than the trivial solution.
 - C) the vector equation (*) has only the trivial solution $c_1 = c_2 = \cdots = c_k = 0$.
 - D) the vector equation (*) has at least two solutions. E) the vector equation (*) has no solution.
 - AB) the associated matrix is nonsingular. AC. The associated matrix is singular
 - AD) None of the above statements are correct.

Determine Directly Using the Definition (DUD) if the following sets of vectors are linearly independent. As explained in class, determine the appropriate answer that gives an appropriate method to prove that your results are correct (attendance is mandatory). Be careful. If you get them backwards, you miss them both.

19. (4 pts.) Let $S = \{\vec{v}_1, \vec{v}_2\} \subseteq \mathbb{R}^3$ where $\vec{v}_1 = [2, 2, 6]^T$ and $\vec{v}_2 = [3, 3, 9]^T$. Then S is

_. ____A B C D E

- A) linearly independent as $c_1 \vec{v}_1 + c_2 \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$.
- B) linearly independent as $3\vec{v}_1 + (-2)\vec{v}_2 = [0,0,0]$.
- C) linearly dependent as $c_1 \vec{v}_1 + c_2 \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$.
- D) linearly dependent as $3\vec{v}_1 + (-2)\vec{v}_2 = [0,0,0]$.
- E) neither linearly independent or linearly dependent as the definition does not apply.

20. (4 pts.) Let $S = \{\vec{v}_1, \vec{v}_2\} \subseteq \mathbb{R}^3$ where $\vec{v}_1 = [2, 4, 8]^T$ and $\vec{v}_2 = [3, 6, 11]^T$. Then S is

A) linearly independent as $c_1 \vec{v}_1 + c_2 \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$.

- B) linearly independent as $3\vec{v}_1 + (-2)\vec{v}_2 = [0,0,0]$.
- C) linearly dependent as $c_1 \vec{v}_1 + c_2 \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$.
- D) linearly dependent as $3\vec{v}_1 + (-2)\vec{v}_2 = [0,0,0]$.
- E) neither linearly independent or linearly dependent as the definition does not apply.

MATH 261 EXAM II Fall 2008 Prof. Moseley Page 5

PRINT NAME ______(_____) ID No. ______

Last Name, First Name MI, What you wish to be called

True or false. Solution of Abstract Linear Equations (having either \mathbf{R} or \mathbf{C} as the field of scalars). Assume T: $V \rightarrow W$ is a linear operator from a (real or complex) vector space V to a (real or complex) vector space W. Now consider the mapping problem

$$T(\vec{x}) = \vec{b} \tag{*}$$

which we denote by $\text{Prob}(V, T(\vec{x}) = \vec{b})$ to indicate that the vector space V is the set where we look for solutions. Under these hypotheses, determine which of the following is true and which is false. If true, circle True. If false, circle False.

- 21. (1 pt.) A)True or B)False If $\vec{b} = \vec{0}$, then (*) always has at least one solution.
- 22. (1 pt.) A)True or B)False The vector equation (*) may have exactly two distinct solutions.
- 23. (1 pt.) A)True or B)False The vector equation (*) may have an infinite number of solutions.
- 24. (1 pt.) A)True or B)False If the null space of T has a basis $B = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_n\}$ and $\vec{b} = \vec{0}$, then the general solution of (*) is given by $\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2 + \cdots + c_n \vec{x}_n$ where c_1, c_2, \ldots, c_n are arbitrary scalars.
- 25. (1 pt.) A)True or B)False If the null space of T is $N_T = \{\vec{0}\}$ and \vec{b} is in the range space of T, then (*) has a unique solution.
- 26. (1 pt.) A)True or B)False Either (*) has no solutions, exactly one solution, or an infinite number of solutions.
- 27. (1 pt.) A)True or B)False The equation (*) can be considered as a mapping problem from one vector space to another.

MATH 18

EXAM II

Fall 2008

Prof. Moseley

Page 6

PRINT NAME

) ID No. _____ Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Let the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\vec{x}) = A \vec{x}$ where $A = \begin{bmatrix} 1 & 4 \\ 3 & 12 \end{bmatrix}$ and $\vec{x} = [x,y]^T$.

Consider the problem $\operatorname{Prob}(\mathbf{R}^2, T(\vec{x}) = \vec{0})$; that is, the problem of solving the vector equation $T(\vec{x}) = \vec{0}$. The form of the solution need not be unique. To obtain the answer listed follow the directions given in class (attendance is mandatory).

28. (4pts.) If A is reduced to U using Gauss elimination, then

. ABCDE AB) None of the above

30. (1 pt.) The solution set for this problem may be written as

 $S = \underbrace{\qquad \qquad } A B C D E \qquad A) \varnothing \quad B) \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\} \quad C) \quad \left\{ \vec{x} = y \begin{bmatrix} 4 \\ 1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\}$ $D) \left\{ \begin{bmatrix} -4 \\ 1 \end{bmatrix} \right\} \quad E) \quad \left\{ \vec{x} = y \begin{bmatrix} 4 \\ 1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\} \quad AB) \quad \left\{ \vec{x} = y \begin{bmatrix} -4 \\ 1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\}$ $AC) \quad \left\{ \vec{x} = y \begin{bmatrix} -4 \\ -1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\} \quad AD) \quad \left\{ \vec{x} = y \begin{bmatrix} 4 \\ 0 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\}$ $BC) \quad \text{None of the above correctly describes the solution set for this problem}$

31. (1 pt.) The number of solutions to this problem is _____ ABCDE A) 0 B) 1 C)2 D)3 E) 4 AB) 5 AC) Infinite number of solutions AD) None of the above

MATH 261	EXAM II	Fall 2008	Prof. Mosele	y Page 7
PRINT NAME		() ID No	
Follow the instruct DEFINITION . As	tions on the Exam Co	ne MI, What you wish over Sheet for Fill-in-t where V and W are vec e have	he Blank/Multiple C	<u>-</u>
32. (2 pts.)			•	A B C D E
Proof. By the abo	ve definition, to show	$\mathcal{A}(\mathbf{R},\mathbf{R})$ defined by I w that the operator L is d $\phi_1(x)$ and $\phi_2(x)$ as	s a linear operator, v	ve must show that if
33.(2 pts.)				ABCDE Since
this is an identity,	we can use the stater ATEMENT	ment/reason format for	proving identities. <u>REA</u>	
$L[c_1\phi_1(x)+c_2\phi_2(x)]$	$= [c_1 \varphi_1(x) + c_2 \varphi_2(x)]^T$	$'' + 3[c_1\phi_1(x) + c_2\phi_2(x)]$	34. (2 pts.)	A B C D E
= 35	. (2 pts)	··	A B C D E	Calculus theorems
= 36.	(1 pt)	·-	A B C D E	Definition of L.
Since we have sho	wn the appropriate io	dentity, we have show	n that L is a linear o	perator. QED
Possible answers to			_	
1 -	_	$T(\alpha \vec{v}_1) = \alpha T(\vec{v}_1)$	-	-
1 .		$= \alpha T(\vec{v}_1) + \beta T(\vec{v}_2)$		
AC) $L[\varphi_1(x)+\varphi_2(x)]$ AE) $L[c_1\varphi_1(x)+c_2\varphi]$	$\begin{aligned} \mathbf{J} &= \mathbf{L}[\phi_1(\mathbf{x})] + \mathbf{L}[\phi_2(\mathbf{x})] \\ \mathbf{L}[\phi_1(\mathbf{x})] &= \mathbf{L}[\phi_1(\mathbf{x})] + \mathbf{L}[\phi_2(\mathbf{x})] \end{aligned}$	$AI_{0_0}(x)I$ AI	Ͻ) L[c ₁ φ ₁ (x)] = c ₁ L[α ζ) L[c.φ.(x)] = L[φ.(ρ ₁ (x)] (x)]
BD) $L[c_1\phi_1(x)+c_2\phi]$	$[\varphi_2(x)] = c_1 L[\varphi_1(x)] + c_2 L[\varphi_1(x)] + c_3 L[\varphi_1(x)] + c_4 L[\varphi_1(x)] + c_5 L[\varphi_1(x)] + c$	$ \begin{array}{ccc} (x) & & \text{AI} \\ (\phi_2(x)) & & \text{BC} \\ (\phi_2(x)) & & \text{BI} \end{array} $	E) $L[c_1\varphi_1(x)] = c_1L[c_1\varphi_1(x)]$	$\rho_1(\mathbf{x})$
CD) $L[\varphi_1(x)]+L[\varphi_1(x)]$	$\rho_2(\mathbf{x})$] CE)	$L[\varphi_1(x)] + L[\varphi_2(x)]$	DE) $c_1 L[\phi_1(x)] +$	$-c_2L[\phi_2(x)]$ $-c_2L[\phi_2(x)]$ ABE)
		$[c_2\varphi_2(x)]$ ABD) $c_1[\varphi_1''(x)]$		$_{2}$ (A) $+$ $3\psi_{2}$ (A)] ADL)
ACE) $c_{2}[\varphi_{2}''(x) + 1]$	$3\varphi_2(x)$ ADE)	Definition of L BC	CD) Theorems from (Calculus,
		E) Definition of A(RINTS EARNED THIS		one of the above.
- 5 to Ponits time Po				

PRINT NAME ______ (_____) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Let $x^2y'' + 2xy' + 4 = 0$ I = $(0, \infty)$ (i.e. x>0) be (*), let L: $\mathcal{A}((0, \infty), \mathbf{R}) \to \mathcal{A}((0, \infty), \mathbf{R})$ be the operator defined by L[y] = y'' + (2/x)y', and let N_L be the null space of L. Solve (*) below or on the back of the previous page.

37. (1 pt) Let (**) be the resulting first order linear ODE in v and x after making the substitution

v = y' in (*). The standard form for (**) is ______ A B C D E A) $x^2 v' + 2x v + 4 = 0$ B) $x^2 v' + 2x v - 4 = 0$ C) $x^2 v' + 2x v + 4x = 0$

- D) $x^2 v' + 2x v 4x = 0$ AB) $v' + (2/x) v + 4/x^2 = 0$ AC) $v' + (2/x) v 4/x^2 = 0$ AD) $v' + (2/x) v = 4/x^2$ AE) $v' + (2/x) v = -4/x^2$ BC) v' + (2/x) v = 4/x

- BD) v' + (2/x) v = -4/x AC) None of the above

38. (2 pts.) An integrating factor for (**) is $\mu =$ _____. A B C D E A) e^{-1} B) e^{-x} C) e^{-2x} D) e^{x} E) e^{2x} AB) x^{-2} AC) x^{-1} AD) x AE) 2x BC) x^{2} BD)None of the above

39. (2 pts.) In solving (**), the following step occurs:

- A) $d(ve^x)/dx = 4$ B)d(vx)/dx = 4 C) d(vx)/dx = -4 D) $d(vx^2)/dx = 4$ E) $d(vx^2)/dx = -4$
- AB) d(vx)/dx = 4x AC) d(vx)/dx = -4x AD) $d(vx^2)/dx = 4x$ AE) $d(vx^2)/dx = -4x$
- BC) $d(vx)/dx = 4x^2$ BD) $d(vx)/dx = -4x^2$ BE) $d(vx^2)/dx = 4x^2$ CD) $d(vx^2)/dx = -4x^2$ CE) None of the above steps ever appears in any solution of (**).

40. (3 pt) The general solution of (**) may be written as

v(x) =_____

- $v(x) = \underbrace{ \begin{array}{cccc} & & & \\ & & \\ & & \\ \end{array}} A B C D E & A) (4/x) + c/x^2 \\ B) (-4/x) + c/x^2 & C)(4/x^2) + c/x & D) (4/x^2) + c/x & E) (4/x^2) + c/x^2 & AB) (4/x^2) + c/x^2 \\ \end{array}$
- AC) $2 + c/x^2$ AD) $2 + c/x^2$ AE) 2 + c/x BC) 2 + c/x BD) $2 + c/x^2$

BE) $2 + c/x^2$ CD)None of the above.

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

We continue with the solution of $x^2y'' + 2xy' + 4 = 0$ I = $(0, \infty)$ (i.e. x>0) which we call (*), where we let L: $\mathcal{A}((0,\infty), \mathbb{R}) \rightarrow \mathcal{A}((0,\infty), \mathbb{R})$ be the operator defined by L[y] = y'' + (2/x)y', and N_1 be the null space of L.

$$v = y' =$$

$$y =$$

41. (3 pt) The general solution of (*) may be written as

 $\begin{array}{c} y(x) = \underline{\hspace{1cm}} \\ B) - 4 \ell n(x) + c_1/x^2 + c_2 \\ AB) - 4 \ell n(x) + c_1/x^2 + c_2 \\ AB) - 4 \ell n(x) + c_1/x^2 + c_2 \\ AB) - 4 \ell n(x) + c_1/x^2 + c_2 \\ AB) - 2 \ell n(x) + c_1/x^2 + c_1/x^2 + c_2 \\ AB) - 2 \ell n(x) + c_1/x^2 + c_1/x^2 + c_1/x^2 + c_2 \\ AB) - 2 \ell n$

42. (1 pt) The dimension of the null space for L is _______. A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC)7 AD) None of the above.

43. (2 pts) A basis for the null space of L is B = ______ A B C D E A) $\{1/x, 1\}$ B) $\{1/x^2, 1\}$ C) $\{1/x, 1/x^2\}$ D) $\{1, e^{-x}\}$ E) $\{1/x, e^{-x}\}$ AB) $\{1/x^2, e^{x}\}$ AC) $\{1, x\}$ AD) $\{1, x^2\}$ AE) $\{x, x^2\}$ BC) None of the above.

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In addition, circle your answer. Let y = y(x) so that y' = dy/dx.

Let $y'' + 6y' + 9y = 0 \quad \forall x \in \mathbf{R}$ be (*), let L: $\mathcal{A}(\mathbf{R}, \mathbf{R}) \rightarrow \mathcal{A}(\mathbf{R}, \mathbf{R})$ be the operator defined by L[y] = y'' + 6y' + 9y, and let N_L be the null space of L. Solve (*) below or on the back of the previous page. Be careful! Once you make a mistake, the rest is wrong.

44. (1 pt) The dimension of N_L is ______. _A B C D E A)1 B)2 C)3 D)4 E)5 AB)6 AC)7 AD) None of the above.

45. (1 pts) The auxiliary equation for (*) is ______. _A B C D E A) $r^2 - 6r + 9r = 0$ B) $r^4 - 6r^2 + 9 = 0$ C) $r^2 + 6r + 9 = 0$ D) $r^2 - 6r + 9 = 0$ E) $r^2 + 6r + 9r = 0$ AB) $r^2 - 4r + 4r = 0$ AC) $r^4 - 4r^2 + 4 = 0$ AD) $r^2 + 4r + 4 = 0$ AE) $r^2 - 4r + 4 = 0$ BC) $r^2 + 4r + 4r = 0$ BD) None of the above.

46. (2 pts) Listing repeated roots, the roots of the auxiliary equation

AC) None of the above.

AC) $\{1, x\}$ AD) $\{1, e^{-3x}\}$ AE) $\{1, xe^{-3x}\}$ BC) $\{1, e^{3x}\}$ BD) $\{1, e^{2x}\}$ BE) $\{1, x, e^{2x}\}$ CD) $\{e^{2x}, xe^{2x}\}$ CE) $\{e^{-2x}, xe^{-2x}\}$ DE) $\{e^{2x}, e^{-2x}\}$ ABC) $\{1, e^{-2x}, e^{2x}\}$ ABD) $\{1, e^{-2x}\}$ ABE) $\{1, xe^{-2x}\}$ BCD) $\{1, e^{2x}\}$ BCE) None of the above.

C) $y = c_1 e^{3x} + c_2 x e^{3x}$ AB) $y = c_1 + c_2 e^{-3x} + c_3 e^{3x}$ AE) $y = c_1 + c_2 x e^{-3x}$ 48. (1 pt) The general solution of (*) is y(x) =_____ A) $y = c_1 + c_2 e^{3x}$ B) $y = c_1 + c_2 x + c_3 e^{3x}$ B) $y = c_1 + c_2 x + c_3 e^{3x}$ B) $y = c_1 + c_2 x + c_3 e^{3x}$ AC) $y = c_1 + c_2 x$ AD) $y = c_1 + c_2 e^{3x}$ BD) $y = c_1 + c_2 e^{3x}$ BD) $y = c_1 + c_2 e^{2x}$ CD) $y = c_1 + c_2 e^{2x}$ CE) $y = c_1 e^{-2x} + c_2 x e^{-2x}$ ABC) $y = c_1 + c_2 e^{-2x} + c_3 e^{2x}$ ABD) $y = c_1 + c_2 e^{-2x}$ BCD) $y = c_1 + c_2 e^{2x}$ BCE) None of the above. BE) $y = c_1 + c_2 x + c_3 e^{2x}$ DE) $y = c_1 e^{2x} + c_2 e^{-2x}$ ABE) $y = c_1 + c_2 \times e^{-2x}$

PRINT NAME ______(____) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In addition, circle your answer. Let y = y(x) so that y' = dy/dx

Let y'' + 6y' + 18y = 0 $\forall x \in \mathbf{R}$ be (*), let $L: \mathcal{A}(\mathbf{R}, \mathbf{R}) \rightarrow \mathcal{A}(\mathbf{R}, \mathbf{R})$ be the operator defined by L[y] = y'' + 6y' + 18y, and let N_L be the null space of L. Solve (*) below or on the back of the previous page. Be careful! Once you make a mistake, the rest is wrong.

- 49. (1 pt) The dimension of N_L is ______. ___ A B C D E A)1 B)2 C)3 D)4 E)5 AB)6 AC)7 AD) None of the above.
- 50. (1 pts) The auxiliary equation for (*) is ______. A B C D E A) $r^4 + 6r^2 + 18 = 0$ B) $r^4 6r^2 + 18 = 0$ C) $r^2 + 6r + 18 = 0$ D) $r^2 6r + 18 = 0$ E) $r^2 + 6r + 18r = 0$ AB) $r^4 + 4r^2 + 8 = 0$ AC) $r^4 4r^2 + 8 = 0$ AD) $r^2 + 4r + 8 = 0$ AD) $r^2 + 4r + 8 = 0$ AD) None of the above
- 51. (2 pts) Listing repeated roots, the roots of the auxiliary equation are

- $\begin{array}{lll} 52.\ (2\ pts)\ A\ basis\ for\ N_L\ is\ B = & & \\ B)\{1,e^{8x}\}\ C)\{e^{6x},xe^{6x}\}\ D)\{e^{6x},e^{-6x}\}\ E)\{e^{-6x},xe^{-6x}\}\ AB)\ \{e^{8x},xe^{8x}\}\ AC)\{e^{8x},e^{-8x}\}\\ AD)\{e^{-8x},xe^{-8x}\}\ AE)\{e^{3x},e^{9x}\}\ BC)\{e^{3x},e^{-9x}\}\ BD)\{e^{-3x},xe^{9x}\}\ BE)\{e^{-3x},xe^{-9x}\}\ CD)\{e^{2x},e^{6x}\}\\ CE)\{e^{2x},e^{-6x}\}\ DE)\{e^{-2x},e^{6x}\}\ ABC)\{e^{-2x},xe^{-6x}\}\ ABD)\{e^{2x}\cos(2x),\ e^{2x}\sin(2x)\}\\ ABE)\{e^{-2x}\cos(2x),\ e^{-2x}\sin(2x)\}\ ACD)\{e^{3x}\cos(3x),\ e^{3x}\sin(3x)\}\\ ACE)\{e^{-3x}\cos(3x),\ e^{-3x}\sin(3x)\}\ ADE)None\ of\ the\ above. \end{array}$
- 53. (1 pt) The general solution of (*) is y(x) =______. ____. _A B C D E A) $c_1 + c_2 e^{6x}$ B) $c_1 + c_2 e^{8x}$ C) $c_1 e^{6x} + c_2 x e^{6x}$ D) $c_1 e^{6x} + c_2 e^{-6x}$ E) $c_1 e^{-6x} + c_2 x e^{-6x}$ AB C D E AB) $c_1 e^{8x} + c_2 x e^{8x}$ AC) $c_1 e^{8x} + c_2 e^{-8x}$ AD) $c_1 e^{-8x} + c_2 x e^{-8x}$ AE) $c_1 e^{3x} + c_2 e^{9x}$ BC) $c_1 e^{3x} + c_2 e^{-9x}$ BD) $c_1 e^{-3x} + c_2 x e^{9x}$ BE) $c_1 e^{-3x} + c_2 x e^{-9x}$ CD) $c_1 e^{2x} + c_2 e^{6x}$ CE) $c_1 e^{2x} + c_2 e^{-6x}$ DE) $c_1 e^{-2x} + c_2 e^{6x}$ ABC) $c_1 e^{-2x} + c_2 x e^{-6x}$ ABD) $c_1 e^{2x} \cos(2x) + c_2 e^{2x} \sin(2x)$ ABE) $c_1 e^{-2x} \cos(2x) + c_2 e^{-2x} \sin(2x)$

ACD) $c_1e^{3x}\cos(3x) + c_2e^{3x}\sin(3x)$ ACE) $c_1e^{-3x}\cos(3x) + c_2$ $e^{-3x}\sin(3x)$ ADE)None of the above.

	EXAM II	S EARNED THIS PAC Fall 2008	Prof. Moseley	Page 12
PRINT NAME		() ID No.	
Follow the instructions. In additional Let $y'' + 4y' + 2y' + 2y' + 4y' + 2y' + 2y' + 4y' + 2y' + 2y'$	on, circle your answers $2\mathbf{y} = 0 \forall \ \mathbf{x} \in \mathbf{R}$ by, and let \mathbf{N}_{L} be the	ver. Let $y = y(x)$ so that $y = y(x)$ so that $y = (x)$, let $y = y(x)$ so that	n-the Blank/Multiple Cho t y' = dy/dx. (R,R) be the operator de (*) below or on the back	fined by
AB)6 AC)7 55. (1 pts) The aux A) $r^4 + 4r^2 + 2 =$ E) $r^2 + 4r + 2r$ AE) $r^2 - 6r + 4r$	AD) None of the axiliary equation for $0 - B$ $r^4 - 4r^2 - B$ AB) $r^4 + 6r^2$ $r^4 + 6r^2$	above. (*) is		A B C D E 2 = 0
E) 3,-3 AB) -3 BC)-2 + $\sqrt{2}$,-2 - CE)3 + $\sqrt{5}$, 3 - $\sqrt{5}$,-3 AC)2 + $\sqrt{2}$, 2 - $\sqrt{2}$ BD) 2 + $\sqrt{2}$	$(2 + \sqrt{2} \text{ AD})(2 + \sqrt{2})(2 - \sqrt{2})(3 + \sqrt{2})(4 - $	2 B) $r = 2, -2$ C) -2 $\sqrt{2}$ AE) $-2 + \sqrt{2}, -2 +$ $\overline{2}$ i, $-2 - \sqrt{2}$ i CD) $3 + \sqrt{5}$ $\sqrt{5}$ ABD) $3 + \sqrt{5}$ i, $3 - \sqrt{2}$	$\sqrt{2}$ $\sqrt{5}$, $3+\sqrt{5}$
AC) $\{e^{(2+\sqrt{2})x}, xe^{(2)x}\}$ BD) $\{e^{2x}\cos(\sqrt{2}x)\}$ CE) $\{e^{(3+\sqrt{5})x}, e^{(3-\sqrt{5})x}\}$	AD $\{e^{(2+\sqrt{2})x}\}$ AD $\{e^{(2+\sqrt{2})x}\}$ AD $\{e^{(2+\sqrt{2})x}\}$ AD $\{e^{(-3+\sqrt{5})x}, xe^{(-3+\sqrt{5})x}\}$	AE) { $e^{(2-\sqrt{2})x}$ } AE) { $e^{(-2+\sqrt{2})x}$, xe^{-2x} } AE) { $e^{-2x}\cos(\sqrt{2}x), e^{-2x}$ }	ABCDE ABCDE AB(e^{-3x}, xe^{-3x}) $e^{(-2+\sqrt{2})x}$ BC) $\{e^{(-2+\sqrt{2})x}, e^{(-2-x)}\}$ $\sin(\sqrt{2}x)$ CD) $\{e^{(3+\sqrt{5})x}, e^{(-2-x)}\}$ ABD) $\{e^{3x}\cos(\sqrt{5}x), e^{(-2-x)}\}$	$xe^{(3+\sqrt{5})x}$
E) $c_1 e^{3x} + c_2 e^{-3x}$ AE) $c_1 e^{(-2+\sqrt{2})x} + c_2$ BE) $c_1 e^{-2x} \cos(\sqrt{2}x)$ DE) $c_1 e^{(-3+\sqrt{5})x} + c_2$	AB) $c_1 e^{-3x} + c_2$ $xe^{(-2+\sqrt{2})x} BC)c_1 e^{(-2+\sqrt{2})x} BC$ $+ c_2 e^{-2x} \sin(\sqrt{2}x) CD$ $xe^{(-3+\sqrt{5})x} ABC)c_1 e^{(-3+\sqrt{5})x}$		$c_1 e^{(3+\sqrt{5})x} + c_2 e^{(3-\sqrt{5})x}$ $c_3 \cos(\sqrt{5}x) + c_2 e^{3x} \sin(\sqrt{5}x)$	

1 0		S EARNED THIS PAG		
MATH 261	EXAM II	Fall 2008	Prof. Moseley	Page 13
PRINT NAME		() ID No.	
Follow the instruct Also, circle your answ Let 2y" + 5y' + 3y, previous page. Be ca 59. (1 pt) The diment C)3 D)4 E)5 60. (1 pts). The auxi A) 2r ⁴ +5r ² + 3 =	ions on the Example 1. Let $y = y(x)$ $3y = 0 \forall x \in \mathbb{R}$ and let N_L be the reful! Once you reasion of N_L is AB)6 AC)7	ne MI, What you wish a Cover Sheet for Fill-in so that $y' = dy/dx$ R be (*), let L: $\mathcal{A}(\mathbf{R}, \mathbf{R})$ —e null space of L. Solve make a mistake, the rest AD) None of the about (*) is	-the Blank/Multiple $\mathcal{A}(\mathbf{R},\mathbf{R})$ be the ope (*) below or on the is wrong. _A B C D E ve. $\mathbf{R} + \mathbf{R} = \mathbf{R}$	rator defined by back of the A)1 B)2 ABCDE $5r + 3 = 0$
61. (2 pts). Listing re r = C) -1, 3/2 D) - AE) 1+ (3/2)i, 1-	epeated roots, the -1, -3/2 E) 2 (3/2)i BC) -1+	A B C D E A B C D E	quation are A) 1, 3/2 B) 1 AC) -2, 3/2 AD) D) 2+ (3/2)i, 2- (3/2)	3, -3/2 1, -3/2 1, -3/2
AC) { e^{-2x} , $e^{(3/2)x}$ } BC) { $e^{-x} \cos((3/2)x$	AD){ e^{-2x} , $e^{-(3/2)x}$), $e^{-x} \sin((3/2)x)$ }	e ^{-x} , e ^{-(3/2)x} } E) { e ^{2x} , e ^(x) } AE){e ^x cos((3/2)x), BD){e ^x cos((3/2)x), CD)None of the above	$e^{x} \sin((3/2)x)$ $e^{x} \sin((3/2)x)$	A) { e^{x} , $e^{(3/2)x}$ }
AB) $c_1 e^{2x} + c_2 e^{-(3/2)x}$ AE) $c_1 e^x \cos((3/2)x)$	AC) $c_1e^{-2x} + c_2 e^{0}$ + $c_2 e^x \sin((3/2)x)$ $(3/2)x) + c_2 e^{2x} \sin((3/2)x)$	$s y(x) = \frac{c^{x} C c_{1}e^{-x} + c_{2} e^{(3/2)x} D}{c^{(3/2)x} AD c_{1}e^{-2x} + c_{2} e^{-(3/2)x}}$ $BC c_{1}e^{-x}cos((3/2)x)$ $n((3/2)x) BC c_{1}e^{-2x}cos((3/2)x)$	$c_2 = c_2 e^{-x} \sin((3/2)x)$	

Points this page = 7. TOTAL POINTS EARNED THIS PAGE _____