\qquad EXAM DATE Friday, Oct. 31, 2014 10:00am

I swear and/or affirm that all of the work presented on this exam is my own and that I have neither given nor received any help during the exam.

SIGNATURE

DATE

INSTRUCTIONS: Besides this cover page, there are 12 pages of questions and problems on this exam. MAKE SURE YOU HAVE ALL THE PAGES. If a page is missing, you will receive a grade of zero for that page. Read through the entire exam. If you cannot read anything, raise your hand and I will come to you. Place your I.D. on your desk during the exam. Your I.D., this exam, and a straight edge are all that you may have on your desk during the exam. NO CALCULATORS! NO SCRATCH
PAPER! Use the back of the exam sheets if necessary. You may remove the staple if you wish. Print your name on all sheets. Pages 1-12 are Fill-in-the Blank/Multiple Choice or True/False. Expect no part credit on these pages. For each Fill-in-the Blank/Multiple Choice question write your answer in the blank provided. Next find your answer from the list given and write the corresponding letter or letters for your answer in the blank provided. Then circle this letter or letters. There are no free response pages. However, to insure credit, you should explain your solutions fully and carefully. Your entire solution may be graded, not just your final answer. SHOW YOUR WORK! Every thought you have should be expressed in your best mathematics on this paper. Partial credit will be given as deemed appropriate. Proofread your solutions and check your computations as time allows. GOOD LUCK!!

REQUEST FOR REGRADE

Please regard the following problems for the reasons I have indicated: (e.g., I do not understand what I did wrong on page .)
(Regrades should be requested within a week of the date the exam is returned. Attach additional sheets as necessary to explain your reasons.) I swear and/or affirm that upon the return of this exam I have written nothing on this exam except on this REGRADE FORM. (Writing or changing anything is considered to be cheating.)

Date
Signature

Scores		
1	6	
2	7	
3	10	
4	6	
5	9	
6	12	
7	16	
8	3	
9	9	
10	6	
11	9	
12	7	
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
Total	100	

\qquad) ID No. \qquad Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions.
We do not solve the differential equation $L[y]=g(x)$ where $L[y]=y^{\prime \prime}+y$ is a linear operator that maps $\mathscr{A}(\mathbf{R}, \mathbf{R})$ to $\mathscr{A}(\mathbf{R}, \mathbf{R})$ by isolating the unknown function. We use the linear theory. The dimension of the null space of $L[y]$ is 2 . Since the operator $L[y]=y^{\prime \prime}+y$ has constant coefficients, we assume a solution of the homogeneous equation $L[y]=0$ of the form $y=e^{\mathrm{rx}}$. This leads to the two linearly independent solutions $y_{1}=\cos (x)$ and $y_{2}=\sin (x)$ so that a basis of the nullspace of L is $B=\{\cos (x)$, $\sin (x)\}$. Hence we can deduce that $y_{c}=c_{1} \cos (x)+c_{2} \sin (x)$ is the general solution of the homogeneous equation $y^{\prime \prime}+y=0$.

To use the linear theory to obtain the general solution of the nonhomogeneous equation $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{x})$, we need a particular solution, y_{p}, to $\mathrm{y}^{\prime \prime}+\mathrm{y}=\mathrm{g}(\mathrm{x})$. We have studied two techniques for this purpose (attendance is required):
i) Undetermined Coefficients (also called judicious guessing)
ii) Variation of Parameters (also called variation of constants)

For each of the functions $g(x)$ given below, circle the correct answer that describes which of these techniques can be used to find y_{p} for the nonhomogeneous equation $y^{\prime \prime}+y=g(x)$:

1. (2 pts.) $\mathrm{g}(\mathrm{x})=2 \sec (\mathrm{x})$ \qquad . \qquad ABCDE
2. (2 pts.) $g(x)=3 x^{-1} e^{x}$ \qquad . \qquad A B C D E
3. (2 pts.) $g(x)=4 x^{2}$ \qquad . \qquad A B C D E

Possible answers this page
A) Neither technique works to find y_{p}.
B) Only Undetermined Coefficients works to find y_{p}.
C) Only Variation of Parameters works to find y_{p}.
D) Either technique works to find y_{p}.
E) Not enough information is given.

AB) Too much information is given.
AC) All of the above statements are true.
AD) None of the above statements are true.
Total points this page $=6$. TOTAL POINTS EARNED THIS PAGE \qquad
\qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Let $y^{\prime \prime}-4 y^{\prime}+4 y=x^{-1} e^{2 x} \quad I=(0, \infty) \quad$ (i.e. $\left.x>0\right)$ be $\left(^{*}\right), L[y]=y^{\prime \prime}-4 y^{\prime}+4 y$, and N_{L} be the null space of L. Begin the solution of $\left({ }^{*}\right)$ and then answer the questions below.
4. (3 pts.) The general solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$ is $y_{c}(x)=$ \qquad . \qquad A B C D E
5. (4 pts.) Recall that to find a particular solution, call it $y_{p}(\bar{x})$, to $y^{\prime \prime}-4 y^{\prime}+4 y=x^{-1} e^{x}$ we let $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ where $B=\left\{y_{1}(x), y_{2}(x)\right\}$ is the basis of N_{L} which was used in $y_{c}(x)$. Substituting $y_{p}(x)$ into $\left(^{*}\right)$ and making the appropriate assumption(s) we obtain the two equations:
\qquad . \qquad A B C D E

Possible answers this page
A) $c_{1} \cos (x)+c_{2} \sin (x) \quad$ B) $\left.\left.c_{1} \cos (2 x)+c_{2} \sin (2 x), C\right) c_{1} \cos (3 x)+c_{2} \sin (3 x) D\right) c_{1} \cos (4 x)+c_{2} \sin (4 x)$
E) $\left.c_{1} e^{x}+c_{2} x e^{x} A B\right) c_{1} e^{2 x}+c_{2} x e^{2 x}$ AC) $c_{1} e^{3 x}+c_{2} x e^{3 x} \quad$ AD) $c_{1} e^{4 x}+c_{2} x e^{4 x}$ AE) $r= \pm 2 i \quad$ BC) $r= \pm 2 i$

BD) $1,1 \quad$ BE $)-1,-1 \quad$ CD) $u^{\prime}{ }_{1}(x) \mathrm{e}^{\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{\mathrm{x}}=0, \quad \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(\mathrm{e}^{\mathrm{x}}+\mathrm{xe}^{\mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{\mathrm{x}}$
CE) $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{2 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{2 \mathrm{x}}=0, \quad 2 \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{2 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(2 \mathrm{xe}^{2 \mathrm{x}}+\mathrm{e}^{2 \mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{2 \mathrm{x}}$
DE) $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{3 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{3 \mathrm{x}}=0 \quad 3 \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{3 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(3 \mathrm{xe} \mathrm{e}^{3 \mathrm{x}}+\mathrm{e}^{3 \mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{3 \mathrm{x}}$
ABC) $u^{\prime}{ }_{1}(x) e^{4}+u^{\prime}{ }_{2}(x) x^{4 x}=0, \quad 4 u^{\prime}{ }_{1}(x) e^{4 x}+u^{\prime}{ }_{2}(x)\left(4 x e^{x}+e^{4 x}\right)=-x^{-1} e^{x}$
ABD $) \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{-\mathrm{x}}=0, \quad-\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(-\mathrm{xe}^{-\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{-\mathrm{x}}$
ABE) $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{-\mathrm{x}}=0, \quad-2 \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(-2 \mathrm{xe}^{-2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{-2 \mathrm{x}}$
ACD) $\mathrm{u}^{\prime}{ }_{1}(x) \mathrm{e}^{-2 x}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{-2 \mathrm{x}}=0, \quad-3 \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-3 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(-3 \mathrm{xe}^{-3 \mathrm{x}}+\mathrm{e}^{-3 \mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{-3 \mathrm{x}}$
ACE) $u^{\prime}{ }_{1}(x) \mathrm{e}^{-3 x}+\mathrm{u}^{\prime}{ }_{2}(x) \mathrm{xe}^{-3 x}=0, \quad-4 \mathrm{u}^{\prime}{ }_{1}(x) \mathrm{e}^{-4 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(-4 \mathrm{xe} \mathrm{e}^{-4 \mathrm{x}}+\mathrm{e}^{-4 \mathrm{x}}\right)=\mathrm{x}^{-1} \mathrm{e}^{-4 \mathrm{x}}$
ADE) $\mathrm{u}^{\prime}{ }_{1}(x) \mathrm{e}^{-4 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{e}^{-4 \mathrm{x}}=0, \quad \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}-\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}=\mathrm{x}^{-1} \mathrm{e}^{\mathrm{x}}$
BCD) $u^{\prime}{ }_{1}(x) e^{x}+u^{\prime}{ }_{2}(x) e^{-x}=0, \quad u^{\prime}{ }_{1}(x) e^{x}-u^{\prime}{ }_{2}(x) e^{-x}=-x^{-1} e^{x}$
BCE) $\mathrm{u}_{1}^{\prime}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{\mathrm{x}}=0, \quad \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}-\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}=\mathrm{x}^{-1} \mathrm{e}^{-\mathrm{x}}$
BDE) $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{\mathrm{x}}=0, \quad \mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{\mathrm{x}}-\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}=-\mathrm{x}^{-1} \mathrm{e}^{-\mathrm{x}}$
ABCDE) None of the above.
Total points this page $=7$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME \qquad (\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. This is a continuation of the problem type on the previous page but with different data. Let (*) be the the ODE $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{x}), \mathrm{I}=(0, \infty)$ where $\mathrm{L}[\mathrm{y}]$ is a given second order linear differential operator and $\mathrm{g} \in \mathscr{A}((0, \infty), \mathrm{R})$ and let N_{L} be the null space of L . Suppose that in solving $\left(^{*}\right)$ you have found the general solution of $\mathrm{L}[\mathrm{y}]=0$ to be $y_{c}(x)=c_{1} e^{-2 x}+c_{2} x^{-2 x}$. Following the standard procedure to find a particular solution of $\left({ }^{*}\right)$ using variation of parameters, you let $y_{p}(x)=u_{1}(x) e^{-2 x}+u_{2}(x) x^{-2 x}$. Suppose that this results in the following equations in $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x})$ and $\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})$ (see the previous page for why this might be true):

$$
\begin{gathered}
\mathrm{u}_{1}(\mathrm{x}) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x}) \mathrm{xe}^{-2 \mathrm{x}}=0 \\
-\mathrm{u}^{\prime}{ }_{1}(\mathrm{x}) \mathrm{e}^{-2 \mathrm{x}}+\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})\left(-2 \mathrm{xe}^{-2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)=3 \mathrm{x}^{-1} \mathrm{e}^{-2 \mathrm{x}}
\end{gathered}
$$

Given this information, you are to find $u_{1}(x)$ and $u_{2}(x)$ and then finish the solution of $(*)$ on the next page. If your $u_{1}(x)$ or $u_{2}(x)$ is wrong, then your solution on the next page will be wrong.
6. (2 pts.) Hence $\mathrm{u}^{\prime}{ }_{1}(\mathrm{x})=$ \qquad . \qquad A B C D E
7. (2 pts.) And $\mathrm{u}^{\prime}{ }_{2}(\mathrm{x})=$ \qquad . \qquad A B C D E
8. (3 pts.) We may choose $u_{1}(x)=$ \qquad . \qquad A B C D E
9. (3 pts.) And $u_{2}(x)=$ \qquad . \qquad A B C D E

Possible answers this page.
A) 1 B) 2 C) 3 D) 4 E$)-1 \mathrm{AB})-2 \mathrm{AC})-3 \mathrm{AD})-4 \mathrm{AE}) \mathrm{x}$ BC) 2 x BD$) 3 \mathrm{x}$ BE) 4 x CD$)-\mathrm{x}$ CE) $-2 x$ DE) $-3 x$ ABC) $-4 x$ ABD) x^{-1} ABE) $2 x^{-1}$ BCD) $3 x^{-1}$ BCE) $4 x^{-1}$ BDE) $\ln x$ CDE) $2 \ln x$ ABCD) $3 \ln x$ ABCE) $4 \ln x \quad A B C D E)$ None of the above Total points this page $=10$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions
Let $\left({ }^{*}\right), \mathrm{L}[\mathrm{y}]$, and N_{L} be as on the previous page. Using the data from the previous page, find a particular solution and the general solution to $\left(^{*}\right)$.
10 (2 pts.) A particular solution to $\left(^{*}\right)$ is

$$
y_{p}(\mathrm{x})=
$$

\qquad . \qquad A B C D E (Recall that particular solutions are not unique. Use the procedure given in class. (Attendance is mandatory.)
11 (2 pts.) The general solution to $\left({ }^{*}\right)$ may be written as

$$
y(x)=
$$

\qquad . \qquad A B C D E
12. (2 pts.) A basis for N_{L} is $\mathrm{B}=$ \qquad . \qquad A B C D E (Recall that a basis is not unique. Use the procedure given in class. (Attendance is mandatory.)

Possible answers this page.
$\left.\left.\left.\begin{array}{lllllll}\text { A) } x^{-1} & \text { B) }-x^{-1} & \text { C) } x^{-2} & \text { D) }-x^{-2} & \text { E) } \ln x & A B\end{array}\right)-\ln x \quad A C\right) x \ln x \quad A D\right)-x \ln x$ AE) $(-x+x \ln x) e^{-2 x} \quad$ BC) $2(-x+x \ln x) e^{-2 x} \quad$ BD) $3(-x+x \ln x) e^{-2 x} \quad$ BE) $4(-x+x \ln x) e^{-2 x}$ CD) $(1+\ln x) \mathrm{xe}^{-2 x} \quad$ CE) $2(1-\ln x) \mathrm{xe}^{-2 x} \quad$ DE) $3(-1+\ln x) \mathrm{xe}^{-2 x} \quad$ ABC) $4(-1-\ln x) \mathrm{xe}^{-2 x}$

ABD) $c_{1} e^{-x}+c_{2} x e^{-2 x}+(-x+\ln x) e^{-2 x} \quad$ ABE) $c_{1} e^{-2 x}+c_{2} x e^{-2 x}+2(-x+x \ln x) e^{-2 x}$
ACD) $\left.c_{1} e^{-2 x}+c_{2} x e^{-2 x}+3(-x+x \ln x) e^{-2 x} \quad A B C\right) c_{1} e^{-2 x}+c_{2} x e^{-2 x}+4(-x+x \ln x) e^{-2 x}$
ABD) $c_{1} e^{-2 x}+c_{2} x e^{-2 x}+(1+\ln x) x e^{-2 x} \quad$ ABE $) c_{1} e^{-x}+c_{2} x^{-2 x}+(1-\ln x) x e^{-2 x}$
ACD) $c_{1} e^{-2 x}+c_{2} x e^{-2 x}+(-1+\ln x) x e^{-x} \quad$ ACE $) c_{1} e^{-x}+c_{2} x e^{-x}+(-1-\ln x) x e^{-x}$
ADE) $\{1, \mathrm{x}\}$ BCE $\left\{1, \mathrm{x}^{-1}\right\} \quad$ BDE) $\left\{\mathrm{x}, \mathrm{x}^{-1}\right\} \quad$ CDE $)\left\{\mathrm{e}^{-x}, \mathrm{xe}^{-x}\right\} \quad$ ABCD $)\left\{\mathrm{e}^{-2 \mathrm{x}}, \mathrm{xe}^{-2 x}\right\}$
ABCE) $\left\{e^{-3 x}, x^{-3 x}\right\}$ ABDE) $\left\{e^{-4 x}, x^{-4 x}\right\}$ ABCDE) None of the above
Total points this page $=6$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME \qquad (\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. The dimension of the null space of the linear operator $\mathrm{L}[\mathrm{y}]=\mathrm{y}^{\prime \prime}-\mathrm{y}^{\prime}$ that maps $\mathscr{A}(\mathbf{R}, \mathbf{R})$ to $\mathscr{A}(\mathbf{R}, \mathbf{R})$ is 2. Assuming a solution of the homogeneous equation $\mathrm{L}[\mathrm{y}]=0$ of the form $\mathrm{y}=\mathrm{e}^{\mathrm{rxx}}$ leads to the two linearly independent solutions $y_{1}=1$ and $y_{2}=e^{x}$ so that a basis of the null space of L is $B=\left\{1, e^{x}\right\}$. Hence we can deduce that

$$
y_{c}=c_{1}+c_{2} e^{x} \quad \text { is the general solution of the homogeneous equation } \quad y^{\prime \prime}-y^{\prime}=0 .
$$

Use the method of undetermined coefficients as discussed in class (attendance is mandatory) to determine the proper (most efficient) form of the judicious guess for a particular solution y_{p} of the following ode's. Choose the correct (most efficient) final form of the judicious guess for a particular solution y_{p} of the following ODE's.

13 (3 pts.) $y^{\prime \prime}-y^{\prime}=2 \sin x \quad$ First guess: $y_{p}=$
Second guess (if needed): $y_{p}=$ \qquad
Third guess (if needed): $y_{p}=$ \qquad
Final guess \qquad . \qquad A B C D E
14. (3 pts.) $y^{\prime \prime}-y^{\prime}=3 e^{x}$ First guess: $y_{p}=$

Second guess (if needed): $y_{p}=$ Third guess (if needed): $y_{p}=$ \qquad
Final guess \qquad . \qquad ABCDE
15. (3 pts.) $y^{\prime \prime}-y^{\prime}=4 x^{-x}$ First guess: $y_{p}=$ Second guess (if needed): $y_{p}=$ Third guess (if needed): $y_{p}=$ \qquad
Final guess \qquad . \qquad A B C D E

Possible Answers for Final Guesses.
A) A
B) $A x+B$
C) $A x^{2}+B x+C$
D) $A x^{2}$
E) $\left.A x^{2}+B x \quad A B\right) A e^{x}$
AC) Axe $\begin{array}{llll} & \text { AD) } A x^{2} e^{x} & \text { AE) } A x e^{x}+B e^{x} & \text { BC) } A x^{2} e^{x}+B x e^{x}\end{array}$ BD) $A e^{-x} \quad$ BE) $A x e^{-x}$
CD) $A x^{2} e^{-x} \quad$ CE) $A x e^{-x}+B e^{-x} \quad$ DE) $\left.\left.A x^{2} e^{-x}+B x e^{-x} \quad A B C\right) A \sin \quad A B D\right) A \cos x$
$A B E) A x \sin x \quad A C D) A x \cos x \quad A C E) A \sin x+B \cos x \quad A D E) A x \sin x+B x \cos x$
$B C D) A x \sin x+B x \cos x+C \sin x+D \cos x$
BCE) Undetermined Coefficients works on this problem, but none of the above is the correct form. BDE) Undermined coefficients does not work for this problem.
Total points this page $=9$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME

\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.
Let $y^{\text {IV }}-4 y^{\prime \prime}=0$ be $\left(^{*}\right)$. Solve $\left(^{*}\right)$ below or on the back of the previous sheet. Also let $\mathrm{L}:(\mathbf{R}, \mathbf{R}) \rightarrow \mathrm{A}(\mathbf{R}, \mathbf{R})$ be defined by $\mathrm{L}[\mathrm{y}]=\mathrm{y}^{\mathrm{IV}}-4 \mathrm{y}^{\prime \prime}$. Be careful as once you make a mistake, the rest is wrong.
21. (1 pt). The dimension of the null space of L is \qquad . \qquad A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB$) 6 \mathrm{AC}) 7$ ABCDE) None of the above.
22. (2 pts). The auxiliary equation for $\left({ }^{*}\right)$ is \qquad . \qquad ABCDE
A) $r^{4}-r^{2}=0$
B) $\mathrm{r}^{4}-4 \mathrm{r}^{2}=0$
C) $r^{4}-9 r^{2}=0 \quad$ D) $r^{4}-16 r^{2}=0$
E) $r^{4}-4 r^{3}+4 r^{2}=0$

ABCDE) None of the above.
23. (3 pts). Listing repeated roots, the roots of the auxiliary equation
 A B CDE \quad A) $r=0,0,1,1 \quad$ B) $r=0,0,2,2$ C) $r=\begin{array}{lll}0,0,3,3 & \text { D) } r=0,0, i,-i & \text { E) } r=0, \\ 0,2 i,-2 i\end{array}$ $A B) r=0,0,3 i,-3 i \quad A C) r=0,0,4 i,-4 i$ ABCDE) None of the above.
24. (3 pts). A basis for the null space of L is $\mathrm{B}=$ \qquad . ABCDE A) $\left\{1, \mathrm{x}, \mathrm{e}^{\mathrm{x}}, \mathrm{xe}^{\mathrm{x}}\right\}$ B) $\left\{1, \mathrm{x}, \mathrm{e}^{2 \mathrm{x}}, \mathrm{xe}^{2 \mathrm{x}}\right\}$ C) $\left\{1, \overline{\left.\mathrm{x}, \mathrm{e}^{3 \mathrm{x}}, \mathrm{xe}^{3 \mathrm{x}}\right\} \text { D) }\left\{1, \mathrm{x}, \mathrm{e}^{4 \mathrm{x}}, \mathrm{e}^{4 \mathrm{x}}\right\} \text { E) }\left\{1, \mathrm{x}, \mathrm{e}^{\mathrm{x}}, \mathrm{e}^{-\mathrm{x}}\right\}}\right.$ AB) $\left\{1, \mathrm{x}, \mathrm{e}^{2 \mathrm{x}}, \mathrm{e}^{-2 x}\right\}$ AC) $\left\{1, \mathrm{x}, \mathrm{e}^{3 \mathrm{x}}, \mathrm{e}^{-3 \mathrm{x}}\right\}$ AD) $\left\{1, \mathrm{x}, \mathrm{e}^{4 \mathrm{x}}, \mathrm{e}^{-4 \mathrm{x}}\right\}$ ABCDE) None of the above.
25. (3 pt). The general solution of $(*)$ is

$$
y(x)=
$$

\qquad A B C D E
A) $c_{1}+c_{2} x+c_{3} e^{x}+c_{4} x e^{x} \quad$ B) $c_{1}+c_{2} x+c_{3} e^{2 x}+c_{4} x e^{2 x} \quad$ C) $c_{1}+c_{2} x+c_{3} e^{3 x}+c_{4} x e^{3 x}$
D) $c_{1}+c_{2} x+c_{3} e^{4 x}+c_{4} x e^{4 x} \quad$ E) $c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x} \quad$ AB) $c_{1}+c_{2} x+c_{3} e^{2 x}+c_{4} e^{-2 x}$

AC) $\left.c_{1}+c_{2} x+c_{3} e^{3 x}+c_{4} e^{-3 x} A D\right) c_{1}+c_{2} x+c_{3} e^{4 x}+c_{4} e^{-4 x} \quad$ ABCDE) None of the above.
\qquad

PRINT NAME \qquad (\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions Let $\mathrm{y}^{\prime \prime \prime}+2 \mathrm{y}^{\prime \prime}=6 \mathrm{e}^{\mathrm{x}}+16$ be $\left(^{*}\right)$. Solve $\left(^{*}\right)$ on the back of the previous sheet.
21. (3 pts.) The general solution of $y^{\prime \prime \prime}+2 y^{\prime \prime}=0$ is
$y_{c}(x)=$ \qquad . \qquad ABCDE
22. (5 pts.) A particular solution of $y^{\prime \prime \prime}+2 y^{\prime \prime}=6 \mathrm{e}^{\mathrm{x}}$ is

$$
\mathrm{y}_{\mathrm{p} 1}(\mathrm{x})=
$$

\qquad . \qquad ABCDE
23. (5 pts.) A particular solution of $y^{\prime \prime \prime}+2 y^{\prime \prime}=16$ is

$$
\mathrm{y}_{\mathrm{p} 2}(\mathrm{x})=
$$

\qquad
\qquad A B C D E
24. (1 pts.) A particular solution of $\left({ }^{*}\right)$ is

$$
\mathrm{y}_{\mathrm{p}}(\mathrm{x})=
$$

\qquad . \qquad ABCDE
25. (2 pts.) The general solution of $(*)$ is

$$
y(x)=
$$

\qquad . \qquad ABCDE

Possible answers this page
$\begin{array}{llll}\text { A) } c_{1}+c_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-\mathrm{x}} & \text { B) } \mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-2 \mathrm{x}} & \text { C) } \mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-3 \mathrm{x}} & \text { D) C) } \mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-4 \mathrm{x}}\end{array}$
E) $\left.\mathrm{c}_{1}+\mathrm{c}_{2} \sin (\mathrm{x})+\mathrm{c}_{3} \cos (\mathrm{x}) \quad \mathrm{AB}\right) \mathrm{c}_{1} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{2} \sin (\mathrm{x})+\mathrm{c}_{3} \cos (\mathrm{x})$ AC)) e^{x} AD) $2 \mathrm{e}^{\mathrm{x}}$ AE)) $3 \mathrm{e}^{\mathrm{x}}$
$\begin{array}{llll}\text { BC) } 4 e^{x} & \text { BD) } x^{2} & \text { BE) } 2 x^{2} & \text { CD }\end{array} 3 x^{2}$ CE) $4 x^{2} \quad$ DE) $6 x^{2} \quad$ ABC) $8 x^{2}$
ABD) $\mathrm{e}^{\mathrm{x}}+2 \mathrm{x}^{2}$ ABE) $2 \mathrm{e}^{\mathrm{x}}+4 \mathrm{x}^{2} \quad$ ACD) $3 \mathrm{e}^{\mathrm{x}}+6 \mathrm{x}^{2} \quad$ ACE $4 \mathrm{e}^{\mathrm{x}}+8 \mathrm{x}^{2}$ ADE) $2 \mathrm{e}^{\mathrm{x}}+2 \sin (\mathrm{x})$
BCD) $2 \mathrm{x}-2 \sin (\mathrm{x}) \quad$ BCE) $\mathrm{e}^{\mathrm{x}}+2 \mathrm{x}^{2}+\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-x}$ BDE) $2 \mathrm{e}^{\mathrm{x}}+4 \mathrm{x}^{2}+\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-2 \mathrm{x}}$
CDE) $3 \mathrm{e}^{\mathrm{x}}+6 \mathrm{x}^{2}+\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-3 \mathrm{x}}$ ABCD) $4 \mathrm{e}^{\mathrm{x}}+8 \mathrm{x}^{2}+\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{-4 \mathrm{x}}$
ABCE) $\left.2 \mathrm{x}+\mathrm{e}^{\mathrm{x}}+\mathrm{c}_{1} \sin (\mathrm{x})+\mathrm{c}_{2} \cos (\mathrm{x})+\mathrm{c}_{3} \mathrm{e}^{-\mathrm{x}} \operatorname{ABDE}\right) 2 \mathrm{e}^{\mathrm{x}}+2 \sin (\mathrm{x})+\cos (\mathrm{x})+\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{3} \mathrm{x}$
ACDE) $2 \mathrm{e}^{-\mathrm{x}}+2 \sin (\mathrm{x})+\cos (\mathrm{x})+\mathrm{c}_{1} \mathrm{xe}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{x}}+\mathrm{c}_{3} \mathrm{xe}^{-\mathrm{x}}$ BCDE) $2 \mathrm{e}^{\mathrm{x}}+2 \sin (\mathrm{x})+\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{x} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{3}$
ABCDE) None of the above.
Total points this page $=16$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME

> Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. On the back of the previous sheet find a recursion formula for finding the coefficients to a power series solution about $\mathrm{x}=0$ to the ODE $\mathrm{y}^{\prime \prime}+\mathrm{x} \mathrm{y}^{\prime}-2 \mathrm{y}=0$ which we call $\left({ }^{*}\right)$
26. (1 pts .) To find the recursion formula for the power series solution of $\left({ }^{*}\right)$ about $x=0$
we let $\mathrm{y}=$ \qquad . \qquad ABCDE
27. (2 pts) Substituting this series into $\left(^{*}\right.$) (and no further computations) we obtain the equation
\qquad . \qquad A B C D E

Possible answers this page
A) $\sum_{n=1}^{\infty} a_{n} x^{n} \quad \sum_{n-0}^{N} a_{n} x^{n} \quad \sum_{n-0}^{\infty} a_{n} x^{n} \quad \sum_{n=0}^{\infty} a_{n}(n+1) x^{n+1} \quad \sum_{n-0}^{\infty} a_{n+2} x^{n}$
AB) $\sum_{n-2}^{\infty} a_{n+2} x^{n} \quad \sum_{n-0}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{n=0}^{\infty} a_{n} n x^{n-1}+\sum_{n-0}^{\infty} a_{n} x^{n}=0$
AD) $\sum_{n=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{n}(\mathrm{n}-1) \mathrm{x}^{n-2}+\mathrm{x} \sum_{s=0}^{\infty} \mathrm{a}_{\mathrm{n}} n \mathrm{XX}^{n-1}+2 \sum_{s=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{n}=0$
AE) $\sum_{n-0}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{n-0}^{\infty} a_{n} n x^{n-1}+3 \sum_{n-0}^{\infty} a_{n} x^{n}=0$
BC) $\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{\infty=0}^{\infty} a_{n} n x^{n-1}+4 \sum_{n=0}^{\infty} a_{n} x^{n}=0$
BD) $\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}+\sum_{n-0}^{\infty} a_{n} n x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$
BE) $\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}+x \sum_{s=0}^{\infty} a_{n} n x^{n-1}-2 \sum_{n=0}^{\infty} a_{n} x^{n}=0$
CD) $\sum_{n=0}^{\infty} a_{n} n(n+1) x^{n-2}+\sum_{n=0}^{\infty} a_{n} n x^{n-1}-3 \sum_{n=0}^{\infty} a_{n} x^{n}=0$

CE) $\sum_{n=0}^{\infty} a_{n} n(n+1) x^{n-2}+x \sum_{n-0}^{\infty} a_{n} n x^{n-1}-4 \sum_{n=0}^{\infty} a_{n} x^{n}=0 \quad \sum_{n-0}^{\infty} a_{n} n(n-1) x^{n-2}-2 \sum_{n=0}^{\infty} a_{n} n x^{n}=0$
ABCDE) None of the above.
Total points this page $=3$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME \qquad (\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions.
Let (*) be as on the previous page.
28. (3 pts) As explained in class (attendance is mandatory) by changing the index and simplifying, the term $\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}$
$\sum_{n=0}^{\infty} a_{n} n(n-1) x^{n-2}$
$=$ \qquad . \qquad
29. (3 pts) Continuing the procedure given in class, using this new term and other simplifications, the equation you obtained on the previous page can now be written
as \qquad . \qquad A B C D E
30. (3 pts.) The recursion formula for finding the coefficients in the power series solution of (*)
is \qquad . \qquad A B CDE

Possible answers this page.
A) $\sum_{n-0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}$
$\sum_{n=0}^{\infty} a_{n+2}(n+2) x^{n}$
B) $\sum_{n-1}^{\infty} a_{n+2}(n+1) x^{n}$
D) $\sum_{n=0}^{\infty} a_{n}(n+2)(n+1) x^{n} \quad \sum_{n=0}^{\infty} a_{n+1}(n+2)(n+1) x^{n}$
C)

AB) $\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+(n-1) a_{n}\right] x^{n}=0 \quad \sum_{n-0}^{\infty}\left[(n+1)(n+2) a_{n+2}+(n-2) a_{n}\right] x^{n}=0$
AD) $\sum_{n-1}^{\infty}\left[a_{n+2}(n+2)(n+1)+(n-3) a_{n}\right] x^{n}=0 \quad \sum_{n-0}^{\infty}\left[a_{n+2}(n+2)(n+1)+(n-4) a_{n}\right] x^{n}=0$
BC) $\sum_{n-0}^{\infty}\left[a_{n+1}(n+2)(n+1)-(n-2) a_{n}\right] x^{n}=0$
$a_{n+2}=\frac{-1}{(n+1)} a_{n} \quad a_{n+2}=-\frac{n-1}{(n+2)(n+1)} a_{n}$
CD) $\mathrm{a}_{\mathrm{n}+2}=-\frac{\mathrm{n}-2}{(\mathrm{n}+2)(\mathrm{n}+1)} \mathrm{a}_{\mathrm{n}}$
$\left.a_{n+2}=-\frac{n-3}{(n+2)(n+1)} a_{n}^{\prime}.\right)$
$a_{n+1}=-\frac{n-4}{(n+2)(n+1)} a_{n}$
ABCDE) None of the above
Total points this page $=9$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME \qquad (\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Let $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ be $\left(^{*}\right)$. Suppose $\left(^{*}\right)$ has variable coefficients and that the solution of $\left({ }^{*}\right)$ by power series leads to the recursion relation $a_{n+2}=\frac{1}{n+1} a_{n}$ For $\mathrm{n}=0,1,2,3,4, \ldots \ldots$ As illustrated in (attendance is mandatory), you are to find the (first four nonzero terms in the) power series solution to the initial value problem.

ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$
IVP
$I C^{\prime} \mathrm{s} y(0)=2, \mathrm{y}^{\prime}(0)=0$.
31. (1 pts.) $\mathrm{a}_{0}=$ \qquad . \qquad ABCDE
32.(1 pts.) $a_{1}=$ \qquad . \qquad ABCDE 33. (4 pts.) The power series solution to this IVP is

$$
y(x)=
$$

\qquad . \qquad A B C D E

Possible answers this page.
A) 0
B) 1
C) 2
D) 3
E) 4
AB) ${ }^{1+x^{2}+\frac{1}{3} x^{4}+\frac{1}{15} x^{6}+\cdots}$
AC) $2+2 \mathrm{x}^{2}+\frac{2}{3} \mathrm{x}^{6}+\frac{2}{15} \mathrm{x}^{6}+\cdots \quad 3+3 \mathrm{x}^{2}+\mathrm{x}^{6}+\frac{1}{5} \mathrm{x}^{6}+\cdots$)
$4+4 x^{2}+\frac{4}{3} x^{4}+\frac{4}{15} x^{6}+\cdots$
BC) ${ }^{1+\frac{1}{2}} x^{2}+\frac{1}{3} x^{4}+\frac{1}{15} x^{6}+\cdots \quad 1-\frac{1}{2} x^{2}+\frac{1}{3} x^{4}-\frac{1}{15} x^{6}+\cdots$
$1+\mathrm{x}^{2}+\frac{1}{2} \mathrm{x}^{4}+\frac{1}{6} \mathrm{x}^{6}+\cdots$
AE)
BE)

AD) $2 x+x^{3}+\frac{1}{4} x^{5}+\frac{1}{24} x^{7}+\cdots$
ABCDE) None of the above.
Total points this page $=6$. TOTAL POINTS EARNED THIS PAGE \qquad

PRINT NAME

\qquad (\qquad ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. MATHEMATICAL MODELING. As done in class (attendance is mandatory), on the back of the previous sheet, you are to develop a general mathematical model for the mass/spring problem. Take positive distance to be down. Suppose a point particle with mass m due to its weight $\mathrm{W}=\mathrm{mg}$ where g is the acceleration due to gravity stretches a spring of length L a distance $\Delta \ell$. If the mass is stretched downward a distance u_{0} from its equilibrium position and given an initial velocity v_{0} in the downward direction, develop an appropriate mathematical model to determine the subsequent motion (i.e. to find the distance $u(t)$ from the equilibrium position as a function of time). Assume that the air resistance is linear with proportionality constant $\mathrm{c}>0$ in feet slugs per second and that the spring constant is k in pounds per foot (or slugs per second squared). Assume an external force $g(t)$ in slug feet per second squared. Use appropriate units for all quantities as explained in class. Attendance is mandatory.
34. (2 pt) The fundamental physical law used to develop the ODE in the model.
is \qquad . \qquad A B C D E
A) Ohm's law, B) Conservation of mass C) Conservation of energy
D) Newton's second law (Conservation of momentum) E) Kirchoff's voltage law

AB) Kirchoff's current law (Conservation of charge) ABCDE) None of the above.
35. (2 pt.) Using statics, we may obtain the relationship between $\Delta l, k, m$, and g
as
$\begin{array}{lllll}\text { A) } k=\Delta l m g & \text { B) } k \Delta l=m g & \text { C) } k m=\Delta l g & \text { D) } k g=m \Delta l & \text { E) } k m \\ \Delta l & =g\end{array}$ ABCDE) None of the above.
36. (4 pts.) The general mathematical model that describes the dynamics of the mass spring system whose solution yields the distance $u(t)$ from the equilibrium position as a function of
time is \qquad $\cdot \frac{m u+k u-\underline{\xi}(t)}{\text { A B C D E }}$
A) $\mathrm{mu}+\mathrm{cu}+\mathrm{ku}=\mathrm{g}(\mathrm{t})$
$m i j+c \dot{u}+k u=0$
B) $m u+k u-g(t)$
E) $m \ddot{u}+c \dot{u}+k u=g(t), \quad u(0)=u_{0} \quad \dot{u}(0)=v_{0}$ $\left.m i \ddot{ }+c u+k v=0, \quad u(0)=u_{0} \quad \dot{u}(0)=v_{0} B\right)$
AC) $m \ddot{u}+k u=g(t), u(0)=u_{0} \quad \ddot{u}(0)=v_{0} \quad m i \ddot{u}+k v=0, \quad u(0)=u_{0} \quad \dot{u}(0)=v_{0}$ J)

ABCDE)None of the above.
37. (1 pt.) The units for the ODE in this model
are \qquad
\qquad
A) Fee
B) Seconds
C) feet per second,
D) feet per second squared, E) Pounds,

AB) Slugs, AC) Slug feet AD) None of the above.
\qquad

PRINT NAME

\qquad) ID No. \qquad
Last Name, First Name MI, What you wish to be called
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.
MATHEMATICAL MODELING. Consider the following problem (DO NOT SOLVE!):
A mass weighing 4 lbs . stretches a spring (which is 10 ft . long) 3 inches. If the mass is lowered 4 inches below its equilibrium position and given an initial velocity of $4 \mathrm{ft} . / \mathrm{sec}$. upward, determine the subsequent motion (i.e. find the distance from the equilibrium position as a function of time). Assume that the air resistance is negligible and that there is no external force.

On the back of the previous sheet, apply the data given above to the model you developed on the previous page to obtain the specific model for this problem. Use appropriate units for all quantities as explained in class. Attendance is mandatory. DO NOT SOLVE! Then answer the questions below. 38. (3 pts.) The spring constant k in pounds per foot (or slugs per second squared) is
$\mathrm{k}=$ \qquad . A B C D E
39. (2 pts.) The ODE in the specific mathematical model for the mass spring system from the data above whose solution yields the distance $u(t)$ down from the equilibrium position as a
function of time is \qquad . \qquad ABCDE 40. (1 pt.) The initial position for the specific mathematical model for the mass spring system from the data above whose solution yields the distance $u(t)$ down from the equilibrium
position as a function of time is $u(0)=$ \qquad . \qquad ABCDE
41. (1 pt.) The initial velocity for the specific mathematical model for the mass spring system from the data above whose solution yields the distance $u(t)$ down from the equilibrium position as a function of time is $\dot{u}(0)=$ \qquad . \qquad ABCDE

Possible answrs this page.
A) 1 B) 2 C) 4 D) 5 E) 6 AB) $4 / 3$ AC) 16 AD) 32 AE) 48 BC) -3 BD) -4 BE) $-5 \mathrm{CD})-6$

BDE) $\frac{3}{16} u+\frac{3}{2} u=0 \quad \frac{1}{4} \bar{u}+\frac{8}{5} v=0, \quad \frac{1}{8} \ddot{u}+3 u=0 \quad$ AB $\left(\frac{1}{8} \ddot{i}+48 u=0 \quad \frac{1}{8} \ddot{u}+16 u=0\right.$

ABCDE) None of the above.

Total points this page $=7$. TOTAL POINTS EARNED THIS PAGE \qquad

