EXAM-2 -D1 FALL 2014

MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE

MATH 261 Professor Moseley

PRINT NAME		(<u>)</u>
Last Name,	First Name	MI (What you wi	ish to be ca	alled)	_
ID#	I	EXAM DATE Friday,	Oct. 8, 20	14	
I swear and/or affirm that all of the	ne work presented on t	his exam is my		Scores	
own and that I have neither given	nor received any help	during the exam.	page	points	score
			1	10	
SIGNATURE		ATE	2	7	
INSTRUCTIONS: Besides this c and problems on this exam. MA	·		3	10	
PAGES . If a page is missing, yo	u will receive a grade	of zero for that	4	10	
page. Read through the entire ex your hand and I will come to you	•	•	5	11	
exam. Your I.D., this exam, and	a straight edge are all	that you may have	6	6	
on your desk during the exam. No PAPER! Use the back of the example 1.			7	10	
the staple if you wish. Print your in-the Blank/Multiple Choice or			8	9	
these pages. For each Fill-in-the	Blank/Multiple Choic	e question write	9	9	
your answer in the blank provided given and write the corresponding	•		10	9	
blank provided. Then circle this	letter or letters. There	are no free	11	9	
response pages. However, to instructions fully and carefully. You	, •	1 0	12		
your final answer. SHOW YOU	13				
should be expressed in your best mathematics on this paper. Partial credit may be given if deemed appropriate. Proofread your solutions and check					
your computations as time allows			14		
REQUES	Γ FOR REGRADE		15		
Please regard the following prob (e.g., I do not understand what I			16		
(c.g., 1 do not understand what 1	did wrong on page)	17		
			18		
			19		
(Regrades should be requested verturned. Attach additional sheet			20		
I swear and/or affirm that upon	the return of this exam	I have written	21		
nothing on this exam except or changing anything is considered		CM. (Writing or	22		
Date Signature	2,		Total	100	

MATH 261 EXAM-2 -D1

Prof. Moseley Page 1

PRINT NAME _____(____) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions.

Let $y = \varphi(x)$ be the solution of the IVP given below. Using Euler's Method with h = 0.1 you are to find a numerical approximation for $\varphi(0.2)$ (i.e. find y_1 and y_2). Use a table and the standard notation used in class (attendance is mandatory).

IVP ODE y' = x + y IC y(0) = 0

1. (2 pts.) The general formula for Euler's method may be written

as _____. ABCD E

2. (1 pt.) $x_0 =$ _____ A B C D E 5. (1 pt.) $y_0 =$ ____ A B C D E

3. (1 pt.) $x_1 =$ _____ A B C D E 6. (2 pts.) $y_1 =$ ____ A B C D E

4. (1 pt.) $x_2 =$ _____ A B C D E 7. (2 pts.) $y_2 =$ ____ A B \mathbf{C} D E

Possible answers this page.

A) 0.0 B) 0.01 C) 0.031 D) 0.1 E) 0.2 AB) 1.0 AC) 1.1 AD) 1.2 AE) 1.21

BC) 1.22 BD) 1.23 BE) 1.52 CD) 2.0 CE) 2.1 DE) 2.2 ABC) 2.3 ABD) 2.31

ABE) 2.32 ACD) 2.41 ACE) 2.43 ADE) 3.3 BCD) 3.4 BCE) 3.64

BDE) $y_{k+1} = y_k + f(x_k, y_k)$ CDE) $y_{k+1} = y_{k+1} + h f(x_k, y_k)$ ABCD) $y_{k+1} = y_k + h f(x_{k+1}, y_{k+1})$

ABCE) $y_{k+1} = y_k - h f(x_{k+1}, y_{k+1})$ ABDE) $y_{k+1} = y_k - h f(x_k, y_k) ACDE$ $y_{k+1} = y_k + h f(x_k, y_k)$

BCDE) $y_{k+1} = y_k + h f'(x_k, y_k)$ ABCDE)None of the above.

Possible points this page = 10. POINTS EARNED THIS PAGE =

MATH 261 EXAM 2 -D1 Prof. Moseley Page 2

PRINT NAME () ID No.

PRINT NAME _____(____) ID No. _____
Last Name, First Name MI, What you wish to be called

True or false. Solution of Linear Algebraic Equations having possibly complex coefficients. Assume A is an m×n matrix of possibly complex numbers, that \vec{x} is an n×1 column vector of possibly complex unknowns, and that \vec{b} is an m×1 possibly complex-valued column vector. Now consider the problem Prob(\mathbf{C}^n , $\mathbf{A}\vec{x} = \vec{b}$); that is, the problem of solving the vector equation

where we look for solutions in \mathbb{C}^n . Under these hypotheses, determine which of the following is true and which is false. If true, circle True. If false, circle False.

8.(1 pt.) A)True or B)False If $\vec{b} = \vec{0}$, then (*) always has at least one solution.

9.(1 pt.) A)True or B)False The vector equation (*) may have exactly two distinct solutions.

10.(1 pt.) A)True or B)False The vector equation (*) may have an infinite number of solutions.

11. (1 pt.) A)True or B)False If A is square and nonsingular, then (*) always has a unique solution.

+12. (1 pt.) A)True or B)False If $A = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$ then (*) has a unique solut \overline{b} 1 for any $\in \mathbb{C}^m$.

13. (1 pt.) A)True or B)False Either (*) has no solutions, exactly one solution, or an infinite number of solutions.

14. (1 pt.) A)True or B)False The equation (*) can be considered as a linear mapping problem from one vector space to another.

PRINT NAME _____

_____(____) ID No. _____ Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In addition, circle your answer.

15. (2 pts.) <u>Definition</u>. Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ equation $c_1 \vec{v}_1 + c_2 \vec{v}_2 + ... + c_k \vec{v}_k = \vec{0}$

 $\subseteq V$ where V is a vector space and the vector be (*). Then S is linearly independent if

- A) the vector equation (*) has only the trivial solution $c_1 = c_2 = \cdots = c_k = 0$.

 B) the vector equation (*) has an infinite solution $c_1 = c_2 = \cdots = c_k = 0$.
- B) the vector equation (*) has an infinite number of solutions.
- C) the vector equation (*) has a solution other than the trivial solution.
- D) the vector equation (*)has at least two solutions.
- E) the vector equation (*) has no solution.
- AB) the associated matrix is nonsingular. AC. The associated matrix is singular ABCDE) None of the above statements are correct.

Determine Directly Using the Definition (DUD) if the following sets of vectors are linearly independent. As explained in class, determine the appropriate answer that gives an appropriate method to prove that your results are correct (attendance is mandatory). Be careful. If you get them backwards, you miss them both.

16. (4 pts.) Let
$$S = \{\vec{v}_1, \vec{v}_2\} \subseteq \mathbf{R}^3 \ v \vec{v}_1 \text{ re} = [2, 2\vec{v}_2]^T \text{ and } = [3, 3, 8]^T.$$
 Then S is

$$\subseteq \mathbf{R}^3 \ \mathbf{v} \mathbf{\vec{v}_1} \ \text{re}$$

=
$$[2, 2\vec{\mathbf{v}}_2^T]$$
 and

$$= [3, 3,8]^{T}$$
. Then S is

A) linearly independent as $c_1 \vec{v}_1 + \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$.

B) linearly independent as $3\vec{\mathbf{v}}_1 + (-\vec{\mathbf{v}}_2) = [0,0,0]$. C) linearly dependent as $\mathbf{c}_1\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2 = [0,0,0]$ implies $\mathbf{c}_1 = 0$ and $\mathbf{c}_2 = 0$.

D) linearly dependent as $3\vec{v}_1 + (-\vec{v}_2) = [0,0,0]$.

E) neither linearly independent or linearly dependent as the definition does not apply.

17. (4 pts.) Let
$$S = \{\vec{v}_1, \vec{v}_2\} \subseteq \mathbf{R}^3 \ \text{w} \ \vec{v}_1 \text{ re} = [2, 4\vec{v}_2]^T \text{ and } = [3, 6, 12]^T.$$
 Then S is

$$\subseteq \mathbf{R}^3 \ \mathbf{v} \, \mathbf{v}_1 \, \mathbf{r} \mathbf{e}$$

=
$$[2, 4\vec{\mathbf{v}}_2^T]$$
 and

$$= [3, 6, 12]^{T}$$
. Then S

A) linearly independent as $\mathbf{c}_1 \ \mathbf{\vec{v}}_1 \ + \mathbf{\vec{v}}_2 \ = [0,0,0]$ implies $\mathbf{c}_1 = 0$ and $\mathbf{c}_2 = 0$.

B) linearly independent as $3\vec{v}_1 + (-\vec{v}_2) = [0,0,0]$.

C) linearly dependent as $c_1\vec{v}_1 + \vec{v}_2 = [0,0,0]$ implies $c_1 = 0$ and $c_2 = 0$. D) linearly dependent as $3\vec{v}_1 + (-\vec{v}_2) = [0,0,0]$.

E) neither linearly independent or linearly dependent as the definition does not apply.

MATH 18	EXAM 2 -D1		Prof. Moseley	Page 4	
PRINT NAME	st Name, First Name M	() ID No		
	ions on the Exam Cover	-			
Let the operate	or $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by	$T(\vec{x}) = A_{3x22x1} \vec{x}$	$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 12 \\ 0 & 0 \end{bmatrix}$	re \vec{x}	and
solving the vector obtain the answer l	vious sheet, solve the pro equation the direction isted follow the direction reduced to U using Gaus	ns given in class	The form of attendance is ma	f the answer mandatory).	ny not be unique. To
precise process),	then U =		•	A B C D E	
$A)\begin{bmatrix}1 & 4\\3 & 12\\0 & 0\end{bmatrix}$	$\begin{bmatrix} 1 & -4 \\ -3 & 12 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix}1&-4\\0&0\\0&0\end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} D)$		E)
19. (4pts.) The so	lution of $T(\vec{x}) = \vec{0}$	may be wr	itten		
ABCDE) None	$ \begin{array}{cccc} & B \\ & B \\ & 0 \end{array} $ of the above. of solutions for this prob-			y 4 -1	CDE $y\begin{bmatrix} 4\\0\end{bmatrix}AC$
C		4 D	CDE A) I	[0]	[4]]

$$S = \underbrace{\qquad \qquad \qquad } A \ B \ C \ D \ E \qquad A) \otimes \ B) \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\} \qquad \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\} \qquad \left\{ \vec{x} = y \begin{bmatrix} 4 \\ 1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\} \qquad \left\{ \vec{x} = y \begin{bmatrix} 4 \\ -1 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\} \qquad AC)$$

$$AD) \left\{ \vec{x} = y \begin{bmatrix} 4 \\ 0 \end{bmatrix} \in \mathbf{R}^2 : y \in \mathbf{R} \right\} \qquad BC) \text{ None of the above correctly describes the sol}$$

$$21. \ (1 \text{ pt.}) \text{ The number of solutions to this problem is} \qquad A \ B \ C \ D \ E$$

$$A) \ 0 \ B) \ 1 \ C) \ 2 \ D) \ 3 \ E) \ 4 \ AB) \ 5 \ AC) \text{ Infinite number of solutions}$$

$$ABCDE) \text{ None of the above}$$

Total points this page = 10. TOTAL POINTS EARNED THIS PAGE _____

MATH 261 EXAM	M 2 -D1	Prof. Moseley	Page 5	
PRINT NAME	() ID No).	
PRINT NAME Last Name, Follow the instructions on the DEFINITION . An operator linear if for all $\alpha, \beta \in \mathbf{K}$ and $\vec{\mathbf{v}}$	e Exam Cover Sheet for I T:V→W where V and W	Fill-in-the Blank/Mu	ıltiple Choice qu	estions.
22. (3 pts.)		·	A B	CDE
THEOREM. The operator I Proof. By the above definiti if c_1 and c_2 are constants in the	on, to show that the opera	tor L is a linear ope	rator, we must s	how that
23.(2 pts.)			. A B	CDE
23.(2 pts.) Since this is an identity, w STATEMEN		eason format for pro	ving identities. <u>REASON</u>	
$L[c_1\phi_1(x)+c_2\phi_2(x)] = [c_1\phi_1(x)$	$+c_2\phi_2(x)$]" + a[$c_1\phi_1(x)+c_2$	$[\phi_2(\mathbf{x})]$ 24. (2 pts.)_		
			A	BCDE
= 25. (2 pts)			Calculus the	orems
		ABCDE		
= 26. (2 pt) _			Definition	on of L.
Since we have shown the ap	propriate identity, we have	_ A B C D E e shown that L is a l	inear operator. QED	
Possible answers to fill in the	e blanks.			
A) $T(\vec{\mathbf{v}}_1 \vec{\mathbf{v}}_2 \vec{\mathbf{v}}_1 T(\vec{\mathbf{v}}_1 \vec{\mathbf{v}}_2 \vec{\mathbf{v}}_3 \vec{\mathbf{v}}_4 \vec{\mathbf{v}}_4$	$(v_2) + T() \vec{v}_1 B)T(\vec{v}_1)$	$\vec{\mathbf{v}}_1$) = $\alpha T(\vec{\mathbf{v}}_1)$	$\vec{\mathbf{v}}_2$ C) T $\vec{\mathbf{v}}_1$	$\vec{\mathbf{v}}_2$ 3) = T(
$D)T(\alpha \vec{\mathbf{v}}_1) = \vec{\mathbf{v}}_1()$				$+\beta \vec{v}_2$) = T(α
AC) $L[\phi_1(x)+\phi_2(x)] = L[\phi_1(x)+\phi_2(x)] = L[\phi_1(x)+\phi_2(x)] = L[\phi_1(x)+\phi_2(x)] = L[\phi_1(x)+\phi_2(x)] = c_1$ BD) $L[c_1\phi_1(x)+\phi_2(x)] = c_1$ CD) $L[\phi_1(x)]+L[\phi_2(x)]$ ABC) $L[c_1\phi_1(x)]$ ABD) $c_1[\phi_1(x)]$ ABD) $c_1[\phi_1(x)]$ ABD) $c_1[\phi_1(x)]$ ABD) $c_1[\phi_1(x)]$ ADE) $c_1[\phi_1(x)]$ ADE) $c_1[\phi_1(x)]$ ADE) $c_1[\phi_1(x)]$ ADE) Theorems from Calculated ABCDE) None of the above Total points this page = 11.	CE) $L[c_1\phi_1(x)] + L[c_2\phi_1''(x) + \phi_1''(x)] + c_2[\phi_2''(x) - \phi_1''(x) - 3\phi_2(x)]$ ACI $L[\phi_2''(x) - 3\phi_2(x)]$ BC: lus, BDE) Definitions.	$c_1(x)$ DE) $c_1 L$ [$c_1(x)$] D) $c_1[\phi_1''(x) + 3\phi_1(x)$ D) Definition of L on of T CDE)	$\phi_1(x)] + c_2 L[\phi_2(x)]$ $+ c_2 [\phi_2''(x) + 3]$ Definition of \mathscr{A}	$\varphi_2(\mathbf{x})$

N 1	A 1	TIT	2/1	
M	А	$^{\rm IH}$	261	

EXAM 2-D1

Prof. Moseley Page 6

PRINT NAME

_____ () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Let xy'' + y' - 4 = 0 $I = (0, \infty)$ be (*). Also let $L: \mathcal{N}((0, \infty), \mathbf{R}) \rightarrow \mathcal{N}((0, \infty), \mathbf{R})$ be the operator defined by L[y] = y'' + (1/x)y' and N_1 be the null space of L. On the back of the previous page provide sufficient steps in the solution of (*) to answer the following questions.

27. (1 pt) Let (**) be the resulting first order linear ODE in v and x after making the substitution

$$v=y' \text{ in (*)}. \text{ The standard form for (**) is} \\ A)x^2v'+xv+4x^2=0 \\ B)x^2v'+2xv-4x^2=0 \\ C)x^2v'+xv+4x=0 \\ D)x^2v'+xv-4x=0 \\ AB)x^2v'+xv+4=0 \\ AC)x^2v'+xv-4=0 \\ AD)x^2v'+xv=4/x \\ AE)x^2v'+xv=-4/x \\ BC)x^2v'+xv=4x \\ BD)x^2v'+xv=-4x \\ BE)x^2v'+xv=4x^2 \\ CD)x^2v'+xv=-4x^2 \\ CE)v'+(1/x)v=4x^{-1} \\ DE)v'+(1/x)v=-4x^{-1} \\ ABC)v'+(2/x)v=4x^{-2} \\ ABD)v'+(2/x)v=-4x^{-2} \\ ABE)v'+(3/x)v=4x^{-3} \\ ACD)v'+(3/x)v=-4x^{-3} \\ ACD)v'+(4/x)v=4x^{-4} \\ BCD)v'+(4/x)v=-4x^{-4} \\ ABCDE) \\ None of the above$$

28. (2 pts.) An integrating factor for (**) is
$$\mu =$$
_____. A B C D E A) e^x B) e^{-x} C) e^{2x} D) e^{-2x} E)x AB) $-x$ AC) x^2 AD) $-x^2$ AE) x^3 BC) $-x^3$ BD) x^4 BE) $-x^4$ ABCDE)None of the above

29. (3 pts.) In solving (**), the following step occurs:

ABCDE AB) d(vx)/dx = -4 AC) $d(vx^2)/dx = 4$ AD) $d(vx^2)/dx = -4$ AE) $d(vx^3)/dx = 4$ BC) $d(vx^3)/dx = -4$ BD) $d(vx^4)/dx = 4$ BE) $d(vx^4)/dx = -4$ CD) $d(vx^4)/dx = 4x^3$ ABCDE) None of the above steps ever appears in any solution of (**).

M.	A'	TF	12	61
TAT	4 L	11.	_	$\mathbf{v}_{\mathbf{I}}$

EXAM 2 -D1

Prof. Moseley Page 7

PRINT NAME ______(_____) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

This problem is a continuation of the problem type from the previous page, but with different values. Consider the ODE y'' + p(x) y' = g(x) (with x>0) which we call (*). Let L: $\mathcal{N}((0,\infty), \mathbf{R}) \rightarrow \mathcal{N}((0,\infty), \mathbf{R})$ be the operator defined by L[y] = y'' + p(x)y' and N_t be the null space of L. Suppose by letting y = y', we can obtain the ODE d(vx)/dx = 2x which we call (**). On the back of the previous sheet, you are to solve (**) and then (*) and then answer the following questions.

30. (4 pt) The general solution of (**) may be written as

v = A B C D E A) 4 + c/xC) x+c/x D) x^2+c/x E) x^3+c/x AB) x^4+c/x AC) $2x+c/x^2$ AD) $-2+c/x^2$ AE)2+c/x BC) -2+c/x BD)2+c ln(x) BE) -2+c ln(x) $CD)2x +c/x^2$ CE)-2x+c/xDE)2x+c/x ABC) $2x + c/x^2$ ABD) $2x + c/x^2$ ABCDE)None of the above.

31. (4 pt) The general solution of (*) may be written as

AC) $x + c_1 \ln x + c_2$ AD) $x^2/2 + c_1 \ln x + c_2$ AE) $x^3/3 + c_1 \ln x + c_2$ BC) $x^4/4 + c_1 \ln x + c_2$ BD) $x^5/5 + c_1 \ln x + c_2$ BE) $-x^{-2} + c_1 \ln(x) + c_2$ CD) $x^{-2} + (c_1/x^2) + c_2$ CE) $-x^2 + (c_1/x^2) + c_2$ DE) $x+(c_1/x)+c_2$ ABC) $-x+(c_1/x)+c_2$ ABD) $x+(c_1/x^2)+c_2$ ABE) $-x+(c_1/x^2)+c_2$ ABCDE)None of the above.

32. (1 pt) The dimension of the null space for L is ______. A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC)7 ABCDE)None of the above.

33. (1 pts) A basis for the null space of L is B = ______. A B C A) $\{1/x, 1\}$ B) $\{1/x^2, 1\}$ C) $\{1/x, 1/x^2\}$ D) $\{1, e^{-x}\}$ E) $\{1/x, e^{-x}\}$ AB) $\{1/x^2, e^x\}$ ABCDE AC) $\{1, x\}$ AD) $\{1, x^2\}$ AE) $\{x, x^2\}$ BC) $\{1, \ln(x)\}$ ABCDE)None of the above.

In addition, circle your answers. Let y = y(x) so that y' = dy/dx. Consider the ODE y'' + 4y' + 4 y = 0 $\forall x \in \mathbf{R}$ which we call (*). Let L: $\mathcal{N}(\mathbf{R},\mathbf{R}) \to \mathcal{N}(\mathbf{R},\mathbf{R})$ be the operator defined by L[y] = y'' + 4y' + 4 y and let N_L be the null space of L. On the back of the previous page solve (*) and then answer the questions below. Be careful! Once you make a mistake, the rest is wrong.

34. (1 pt) The dimension of N_L is ______. ___ A B C D E A)1 B)2 C)3 D)4 E)5 AB)6 AC)7 AD)Countably infinite AE) Uncountably infinite ABCDE)None of the above.

35. (1 pts) The auxiliary equation for (*) is _______. ____. _____. ____. A B C D E A)r^2+4r+4=0 B)r^2+4r-4=0 C)r^2-4r+4=0 D)r^2-4r-4=0 E)r^2+6r+9=0 AB)r^2+6r-9=0 AC)r^2-6r+9=0 AD)r^2-6r-9=0 AE)r^2+8r^2+16=0 BC)r^4+8r^2-16=0 BD)r^2-8r^2+16=0 BE)AE)r^2-8r-16=0 CD)r^2+10r+25=0 CE)r^2+10r-25=0 DE)r^2-10r+25=0 ABC)r^2-10r-25=0 ABCDE) None of the above.

36. (2 pts) Listing repeated roots, the roots of the auxiliary equation

are r =______. A B C D E A)0,0 B)0,2 C)0,-2 D)2,2 E) -2,-2 AB)2,-2 AC)0,3 AD)0,-3 AE)3,3 BC) -3,-3 BD)3,-3 BE)2,3 CD)-2,-3 ABCDE)None of the above.

 $\begin{array}{lll} 37. & (3 \text{ pts}) \text{ A basis for } N_L \text{ is } B = & & \\ C)\{1,e^{-2x}\} & D)\{e^{2x},xe^{2x}\} & E)\{e^{-2x},x & e^{-2x}\} & AB)\{e^{2x},e^{-2x}\} & AC)\{1,e^{3x}\} & AD)\{1,e^{-3x}\} & AE)\{e^{3x},xe^{3x}\} \\ BC)\{e^{-3x},xe^{-3x}\} & BD\}\{e^{3x},e^{-3x}\} & BE\}\{e^{2x},e^{3x}\} & CD\}\{e^{-2x},e^{-3x}\} & CE\}\{1,e^{-2x},e^{-3x}\} & DE\}\{1,e^{2x},e^{-2x}\} \\ ABC)\{1,e^{2x},xe^{2x}\} & ABD\}\{1,x,e^{-2x}\} & ABE\}\{1,x,e^{2x}\} & BCD\}\{1,x,e^{3x}\} & ABCDE\} & None of the above. \end{array}$

 $\begin{array}{lll} 38. & (2 \text{ pt}) \text{ The general solution of (*) is y =} \\ & A)c_1 + c_2 x & B)c_1 e^{2x} + c_2 x e^{2x} & C)c_1 x + c_2 x e^{-2x} & D)c_1 x + c_2 e^{-2x} & E) c_1 e^{-2x} + c_2 x e^{-2x} & AB)c_1 e^{2x} + c_2 e^{-2x} \\ & AC)c_1 + c_2 e^{3x} & AD)c_1 + c_2 e^{-2x} & AE)c_1 e^{2x} + c_2 x e^{2x} & BC)c_1 e^{-2x} + c_2 x e^{-2x} & BD)c_1 e^{2x} + c_2 e^{-2x} & BE) c_1 e^{3x} + c_2 e^{2x} \\ & CD)c_1 e^{3x} + c_2 e^{-2x} & CE)c_1 e^{-2x} + c_2 e^{-3x} & DE)c_1 + c_2 e^{2x} + c_3 e^{-2x} & ABC)c_1 + c_2 e^{2x} + c_3 x e^{2x} & ABD)c_1 + c_2 x + c_3 e^{-2x} \\ & ABE)c_1 + c_2 x + c_3 e^{2x} & BCD)c_1 + c_2 x + c_3 e^{3x} & ABCDE) \text{ None of the above.} \end{array}$

PRINT NAME					
Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In addition, circle your answers. Let $y = y(x)$ so that $y' = dy/dx$. Consider the ODE $y'' + 4y' + 5y = 0 \ \forall x \in \mathbf{R}$, which we call (*). Let L: $\omega(\mathbf{R}, \mathbf{R}) - \omega(\mathbf{R}, \mathbf{R})$ be the operator defined by $L[y] = y'' + 4y' + 5y$, and let N_L be the null space of L. On the back of the previous pagr solve (*) 00 and then answer the questions below. Be careful! Once you make a mistake, the rest is wrong. 39. (1 pt) The dimension of N_L is	MATH 261	EXAM 2 -D1	Prof. Moseley	Page 9	
40. (1 pts) The auxiliary equation for (*) is	Follow the instruct In addition, circle y Let $y = y(x)$ so L: $\mathcal{N}(\mathbf{R}, \mathbf{R}) \rightarrow \mathcal{N}(\mathbf{R}, \mathbf{R})$ On the back of the you make a mistake	ions on the Exam Coverour answers. that y' = dy/dx. Consi) be the operator define previous pagr solve (* e, the rest is wrong.	er Sheet for Fill-in-the Blank/Mulder the ODE y"+4y'+5y = $0 \forall x \in \mathbb{R}$ ed by L[y] = y"+4y'+5y, and let N 00and then answer the questions	tiple Choice questions. R , which we call (*). Let	
41. (2 pts) Listing repeated roots, the roots of the auxiliary equation are $r = \underline{\qquad \qquad \qquad } ABCDE$ A)1,3 B)-1,-3 C)2,4 D)-2,-4 E)2+ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 2+ $\sqrt{2}$ $\sqrt{2}$ -2- $\sqrt{2}$ $\sqrt{2}$ C)3+ , AD)-3+ $\sqrt{2}$, $\sqrt{2}$ AE)2+i,2-i BC) -2+i,-2-i $\sqrt{2}$ D)2+ $\sqrt{2}$ i,2- $\sqrt{2}$ i B $\sqrt{2}$ 2+ CD)3+ $\sqrt{2}$ i $(\sqrt{2}-3+\sqrt{2})$ i,-3- i ABCDE) None of the above. 42. (3 pts) A basis for N _L is B = $\underline{\qquad \qquad } ABCDE$ None of the above. 42. (3 pts) A basis for N _L is B = $\underline{\qquad \qquad } ABCDE$ None of the above. ABCDE A) {e^x, e^{3x}} B) {e^x, e^{-3x}} C) {e^{2x}, e^{4x}} D) {e^{-2x}, e^{-4x}} E) {e^{(2+\sqrt{2})x}, e^{(2-\sqrt{2})x}} {e^{(2-\sqrt{2})x}, e^{(-2-\sqrt{2})x}} AE) {e^{-2x}\cos(x), e^{2x}\sin(x)} BC) {e^{2x}\cos(x), e^{-2x}\sin(x)} BD) {e^{2x}\cos(\sqrt{2} x), e^{2x}\sqrt{2} x)} BE) {\sqrt{2}\cos(\sqrt{2} \log(x), e^{2x}\sin(x))} ABCDE) None of the above. 43. (2 pt) The general solution of (*) is $y(x) = \underline{\qquad \qquad } ABCDE$ AbCDE AB	40. (1 pts) The au A) $r^2+4r+5=6$ AB) $r^2-4r+7=6$	xiliary equation for (*) 0 B) $r^2-4r+5=0$ C = 0 AC) $r^2+6r+10=0$) is $\frac{1}{1+4r+6=0}$ D) $r^2 - 4r + 6 = 0$	$E)r^2 + 4r + 7 = 0$ A B C D E	
$AC)\{e^{(3+\sqrt{2})x}, e^{(3-\sqrt{2})x} \qquad e^{(-3+\sqrt{2})x}, e^{(-3-\sqrt{2})x} \qquad \qquad \} AE)\{e^{2x}\cos(x), e^{2x}\sin(x) \\ BC)\{e^{-2x}\cos(x), e^{-2x}\sin(x)\} BD)\{e^{2x}\cos(\sqrt{2} - x), e^{2x}\sqrt{2} - x)\} BE)\{\sqrt{2}\cos(-\sqrt{2}), e^{-2x}\sin(-2x)\} BE\}\{\sqrt{2}\cos(-\sqrt{2}), e^{-2x}\sin(-2x)\} BE\}\{\sqrt{2}\cos(-\sqrt{2}), e^{-2x}\sin(-2x)\} BE\}\{\sqrt{2}\cos(-\sqrt{2}), e^{-2x}\sin(-2x)\} BE\}\{\sqrt{2}\cos(-\sqrt{2}), e^{-2x}\sin(-2x)\} ABCDE\} None of the equation of (*) is y(x) = \frac{1}{A}BCDE And y(x) = \frac{1}{A}BCDE And y(x) = \frac{1}{A}BCDE But y(x) = \frac{1}{A}BCD$	r = A)1.3 B)-13	C)2.4 D)-24 E)2+	$\frac{1}{\sqrt{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	A B C D E $0.7 - 2 - \sqrt{2}$ $0.7 - \sqrt{2}$ $0.7 - \sqrt{2}$ i B $0.7 - 2 - 2$ i, - None of the above.	2-
	AC) { $e^{(3+\sqrt{2})x}$, $e^{(3+\sqrt{2})x}$	$e^{(-3+\sqrt{L})x}$ $e^{(-3+\sqrt{L})x}$ $e^{(-3+\sqrt{L})x}$ $e^{(-3+\sqrt{L})x}$ $e^{(-3+\sqrt{L})x}$	$e^{(-3-\sqrt{2})x}$ $e^{2x}\cos(\sqrt{2} x), e^{2x}\sqrt{2} x)$	$ AE \} \{e^{2x}\cos(x), e^{2x}\sin(x)\} $ $ BE \} \{\sqrt{2}\cos(\sqrt{2}), e^{-2x}\sin(\sqrt{2})\} $	al
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AB) $c_1e^{(-2+\sqrt{2})x}$ AE) $c_1e^{2x}\cos(x)$ BE) $c_1e^{-2x}\cos(x)$ CE) $c_1e^{-3x}\cos(x)$ Points this page = c_1	$+c_2e^{(-2-\sqrt{2})x}$ c_1 $+c_2e^{2x}\sin(x)$ } BC) c_1e^{-x} $\sqrt{2}$ $x+c_2$), e^{-2x} $\sqrt{2}$ $\sqrt{2}$ x) $+c_2e^{-3x}$ $\sqrt{2}$ 9. TOTAL POINTS E.	$c_1e^{(3-\sqrt{1})x} + c_2e^{(3-\sqrt{1})x} + C$ $c_1e^{(-3-\sqrt{1})x} + C$ $c_2e^{(-3-\sqrt{1})x} + C$ $c_2e^{(-3-\sqrt{1})x} + C$ $c_3e^{(-3-\sqrt{1})x} + C$ $c_3e^{(-3-$	$+c_{2}e^{(-3-\sqrt{2})x} \qquad AD)$ $os(\sqrt{2} x)+c_{2}e^{2x}\sqrt{2} x)\}$ $os(\sqrt{2} x)+c_{2}e^{2x}\sqrt{2} x)$	

PRINT NAME		()]	ID No.	
Follow the instruction addition, circle you Let $y = y(x)$ so the L: $(\mathbf{R}, \mathbf{R}) \rightarrow (\mathbf{R}, \mathbf{R})$	Name, First Name M ctions on the Exam Covour answers. The consideration of the operator defined revious page solve (*) a	I, What you wish to be call wer Sheet for Fill-in-the Blacker the ODE $y''+4y'+2y=0$ by $L[y]=y''+4y'+2y$, and		
44. (1 pt) The dimer E)5 AB)6 AC)	nsion of N _L is 7 AD)Countably infir	A B C D ite AE) Uncountably infir	E A)1 B)2 C)3 D)4 nite ABCDE)None of the above.	
E) $r^2 + 4r + 3 =$ AE) $r^2 + 6r + 7$	0 AB) $r^2 - 4r + 3 = 0$ = 0 E) $r^2 - 6r + 7r = 0$	C) $r^2 + 4r + 2 = 0$ O AC) $r^2 + 6r + 6 = 0$ = 0 AB) None of the about the auxiliary equation a	bove.	
AD)-3+ $\sqrt{2}$	$\sqrt{2}$ AE)2+i,2-i	BC) $-2+i$, $-2-i$ $\sqrt{2}$)2- i ABC	A B C D E A)1,3 B)-1,-3 $ \frac{1}{2} \sqrt{2} \text{C})3+ ,3- \\ +\sqrt{2} \text{i},2- \sqrt{2} \text{i} \text{B} \sqrt{2} \text{2}+ \\ \text{CDE) None of the above.} $,-2
AC) { $e^{(3+\sqrt{2})x}$, $e^{(3-\sqrt{2})x}$, $e^{(3-\sqrt{2})x}$ BC) { $e^{-2x}\cos(x)$, $e^{-2x}\cos(x)$	$e^{(-3+\sqrt{2})x}$ $e^{(-3+\sqrt{2})x}$ $e^{2x}\sin(x)$ BD) $\{e^{2x}\cos(x)\}$ $\{e^{2x}\cos(x)\}$	e ^{(-3-√2)x}	A B C D E A) $\{e^{x}, e^{3x}\}$ $e^{(-2+\sqrt{2})x}, e^{(-2-\sqrt{2})x}$ $AE)\{e^{2x}\cos(x), e^{2x}\sin(x)\}$ $x)\} BE)\{\sqrt{2}\cos(\sqrt{2}), e^{-2x}\sin(x)\}$ $\sqrt{2}, e^{-3x}\sin(x)\}$	x)}
AB) $c_1e^{(-2+\sqrt{2})x} + c_2$ AE) $c_1e^{2x}\cos(x) + c_2$ BE) $c_1e^{-2x}\cos(\sqrt{2})$	$e^{(-2-\sqrt{5})x}$ $qe^{(3+\sqrt{5})x}$ $e^{2x}\sin(x)$ } BC) $c_1e^{-2x}\cos(x+c_2)$, $e^{-2x}\sqrt{2}$	$c_{1} = \frac{1}{c_{2} e^{4x} D)c_{1}e^{-2x} + c_{2}e^{-4x}} + c_{2}e^{-4x} C + c_{2}e^{-3x} C + c_{2}e^{-3x} C + c_{2}e^{-3x} C + c_{2}e^{-2x} \sin(x) BD)c_{1}e^{-3x} C + c_{2}e^{-3x} \cos(x) C + c_{2}e^$	$c^{2x}\cos(\sqrt{2} x) + c_2 e^{2x} \sqrt{2} x)$ $\sqrt{2} c_2 e^{3x} \sin(x)$	
Points this page = 9.	TOTAL POINTS EAR	RNED THIS PAGE	·	
MATH 261	EXAM 2 -D1	Prof. Mos	seley Page 11	

PRINT NAME	() ID No
	ne MI, What you wish to be called
Follow the instructions on the Exam C addition, circle your answers.	Cover Sheet for Fill-in-the Blank/Multiple Choice questions. In
Let $y = y(x)$ so that $y' = dy/dx$. Co	ensider the ODE $2y''+y'-y=0 \ \forall \ x \in \mathbf{R}$ which we call (*). Let
L:A $(\mathbf{R},\mathbf{R}) \rightarrow \mathcal{A}(\mathbf{R},\mathbf{R})$ be the operator de	fined by $L[y] = 2y'' + y' - y$, and let N_L be the null space of L.
	e (*) and then answer the questions below. Be careful! Once
you make a mistake, the rest is wrong.	
49. (1 pt) The dimension of N _L is E)5 AB)6 AC)7 AD)Countably	A B C D E A)1 B)2 C)3 D)4 infinite AE) Uncountably infinite ABCDE)None of the above.
50. (1 pts). The auxiliary equation for	r (*) is ABCDE
A) $2r^2 + r + 1 = 0$ B) $2r^2 + r - 1 = 0$	r (*) is A B C D E C) $2r^2 - r + 1 = 0$ D) $2r^2 - r - 1 = 0$ E) $2r^2 + 3r + 1 = 0$
	= 0 AD) $2r^2 - 3r - 1 = 0$ AE) $2r^2 + r + 3 = 0$ BC $2r^2 + r - 3 = 0$
	CD) $2r^2 + 5r + 3 = 0$ CE) $2r^2 + 5r - 3 = 0$ ABC) $2r^2 - 5r + 3 = 0$
ABD) $2r^2 - 5r - 3 = 0$ ABCDE) Nor	
51. (2 pts). Listing repeated roots, the	roots of the auxiliary equation are
E) 1,3/2 AB)1,-3/2 AC) -1, 3/2	A B C D E A)1,1/2 B)1, $-1/2$ C) -1 ,1/2 D) -1 , $-\frac{1}{2}$ AD) -1 , $-\frac{3}{2}$ AE) $1+(\frac{1}{2})i$, $1-(\frac{1}{2})i$ BE) $-1+(\frac{3}{2})i$, $-1-(\frac{3}{2})i$
	ABC) -2, 3 ABD) -2, -3 ABE) None of the above.
50 (2 m/s) A havin fam N in D	$A D C D E \qquad A Y \left(-x - \frac{1}{2} \right) x $
52. (3 pts). A basis for N_L is $B = B$ B) $\{e^x, e^{-(1/2)x}\}$ C) $\{e^{-x}, e^{(1/2)x}\}$ D) $\{e^{-x}, e^{-(3/2)x}\}$ AE) $\{e^x, e^{-(1/2)x}\}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	BE) $\{e^{-x}\cos((3/2)x), e^{-x}\sin((3/2)x)\}\ $ CD) $\{e^{x}\cos(x), e^{x}\sin(x)\}\ $
	$\{e^{-2x}, e^{3x}\}$ ABD) $\{e^{-2x}, e^{-3x}\}$ ABCDE)None of the above
53. (2 pt) The general solution of (*) is	$ s y = \underbrace{c_1 e^{-x} + c_2 e^{(1/2)x} D) c_1 e^{-x} + c_2 e^{-(1/2)x} E) c_1 e^{x} + \underbrace{c_2 e^{(3/2)x}}_{} A B C D E $
A) $c_1e^x + c_2e^{(1/2)x}$ B) $c_1e^x + c_2e^{-(1/2)x}$ C)	$c_1e^{-x} + c_2 e^{(1/2)x} D)c_1e^{-x} + c_2 e^{-(1/2)x} D)c_1e^{x} + c_2 e^{(3/2)x}$
	(1/2)x AD) $c_1e^{-x}+c_2e^{-(3/2)x}$ AE) $c_1e^x\cos((1/2)x)+c_2e^x\sin((1/2)x)$ (2)x) BD) $y = c_1e^x\cos((3/2)x)+c_2e^x\sin((3/2)x)$
	(2)x) BD)y $c_1 c \cos((3/2)x) + c_2 c \sin((3/2)x)$ (x) CD) $c_1 e^{(1/2)x} + c_2 e^{3x}$ CE) $c_1 e^{(1/2)x} + c_2 e^{-3x}$
	$c_2 e^{3x}$ ABD) $c_1 e^{-2x} + c_2 e^{-3x}$ ABCDE)None of the above.
Points this page = 9 TOTAL POINTS	S EARNED THIS PAGE