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( 2 pts.) Multiple Choice.  As discussed in class, classify the following ODEs as to their order
(1st,2nd,3rd,...,nth).  (If I cannot read your answer, it is wrong.)

1.  The order of the ODE   y  + 2x5 (y)2  = cos x   is  A 1,   B 2,   C 3,    D  4,   E 5,   AB  6,  AC  7.

2.  The order of the ODE  yIV  +  e3x y = tan x  is  A 1,   B 2,   C 3,    D  4,   E 5,   AB  6,    AC  7.

( 8 pts.) True or False Circle True or False, but not both.  (If I cannot read your answer, it is WRONG.)

True or False   3.  The ODE  y  + 2x5 (y)2  = cos x   is nonlinear.

True or False   4.  The ODE  yVI  +  e3x y = tan x   is nonlinear.

True or False   5. There is exactly one function that satisfies the ODE  y' + x y = 0.

True or False   6. To solve the ODE  y' + p(x) y = g(x) where p(x) and g(x) are continuous xR,
      one uses the integrating factor given by µ = ep(x)dx.

True or False   7. When solving the ODE, y' + p(x) y = g(x), where p(x) and g(x) are continuous 
    xR, one can always obtain y explicitly as a function of x.

True or False   8. A direction field is of help in obtaining  qualitative information for the
    IVP:   y' = f(x,y), y(0) = y0, even if the solution cannot be obtained in terms of
    elementary functions.

True or False   9. There do not exist techniques to find integrating factors that will convert some 
     first order ODEs which are not exact to ones that are exact. 

True or False    10. The brothers Jakob and Johann Bernoulli did nothing to develop methods 
     of solving differential equations and to extend the range of their applications.

Possible points this page = 10. POINTS EARNED THIS PAGE = _________
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(12 pts.)  True or False.  For the given first order ODEs, determine if the following statements are true or
false.  The statements relate to possible methods of solution.  Recall from class that the possible methods
are:

1) First order linear (y as a function of x).- Integrating factor = µ = exp(  p(x) dx  )
2) First order linear (x as a function of y).- Integrating factor = µ = exp(  p(y) dy  )
3) Separable.
4) Exact Equation (Must be exact in one of the two forms discussed in class).
5) Bernoulli, but not linear (y as a function of x).  Use the substitution  v = y1-n.
6) Bernoulli, but not linear (x as a function of y).  Use the substitution  v = x1-n.
7) Homogeneous, but not separable.  Use the substitution  v = y/x or v = x/y.
8) None of the above techniques works.

Also recall the following:
a.  In this context, exact means exact as given (in either of the forms discussed in class).  
b.  Bernoulli  is not a correct method of solution if the original equation is linear.  
c.  Homogeneous (use the substitution v=y/x) is not a correct method of solution if the original 
      equation is separable.  
Circle True or False, but not both.  If I cannot read your answer, it is WRONG. 

 DO NOT SOLVE.

(#) ( x2 + 2xy ) dx + x2 dy = 0

True or False     11. (#) is a linear ode (y as a function of x).

True or False     12. (#) is an exact ode (in either of the two forms discussed in class).

True or False     13. (#) is a homogeneous ode and can be solved using the substitution v=y/x.

( *) ( y3 + x2y ) dx + x3 dy = 0

True or False     14. (*) is a linear ode (y as a function of x).

True or False     15. (*) is a Bernoulli ode (y as a function of x).

True or False     16. (*) is a homogeneous ode and can be solved using the substitution v=y/x.

Total points this page = 12.  TOTAL POINTS EARNED THIS PAGE _______
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( 12 pts.)  True or False.  For the given first order ODEs, determine if the following statements are true or
false.  The statements relate to possible methods of solution.  Recall from class that the possible methods
are:

1) First order linear (y as a function of x).- Integrating factor = µ = exp(  p(x) dx  )
2) First order linear (x as a function of y).- Integrating factor = µ = exp(  p(y) dy  )
3) Separable.
4) Exact Equation (Must be exact in one of the two forms discussed in class).
5) Bernoulli, but not linear (y as a function of x).  Use the substitution  v = y1-n.
6) Bernoulli, but not linear (x as a function of y).  Use the substitution  v = x1-n.
7) Homogeneous, but not separable.  Use the substitution  v = y/x or v = x/y.
8) None of the above techniques works.

Also recall the following:
a.  In this context, exact means exact as given (in either of the forms discussed in class).  
b.  Bernoulli  is not a correct method of solution if the original equation is linear.  
c.  Homogeneous (use the substitution v=y/x) is not a correct method of solution if the original 
      equation is separable.   
Circle True or False, but not both.  If I cannot read your answer, it is WRONG. 

  (*)    ( 3x2y + 2xy ) dx + (x3 + x2) dy = 0

True or False    17. (*) is a linear ode (y as a function of x).

True or False    18. (*) is a separable ode.

True or False    19. (*) is an exact ode (in either of the two forms discussed in class).

(#)      (4x + y) dx + (x + 3y) dy = 0

True or False    20. (#) is an exact ode (in either of the two forms discussed in class).

True or False    21. (#) is a Bernoulli ode (y as a function of x).

True or False    22. (#) is a homogeneous ode and can be solved using the substitution v=y/x.

Total points this page = 12.  TOTAL POINTS EARNED THIS PAGE _______
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23.  ( 1 pts.) To solve the first order linear Ordinary Differential Equation (ODE)    y' = 2y  + cos(x),
we first put it in the standard form (for solving first order linear ODE’s) (Circle the correct (first order
linear) standard form for this ODE’s.  Be careful.  No part credit for this problem.  Hence if you miss this
part, it may cause you to miss all parts):

A.  y = 2y  + cos(x) (It’s already in the appropriate form for solving a first order linear ODE)

B.  y + 2y  + cos(x) = 0, C.  y  2y = cos(x) ,       D.  y + 2y = cos(x)

E.  y  2y   cos(x) = 0 AB.  None of the above

24.  ( 3 pts.) To solve the first order linear Ordinary Differential Equation (ODE) given above, we must 
find an integrating factor.  An integrating factor µ for the linear ODE given above is (Circle the correct
integrating factor.  Be careful.  No part credit for this problem):

A.   µ = 2x , B.  µ  = cos(x) , C.  µ = e2x,

D.  µ = e2x E.  µ = , AB.  µ =  e cos( )x e cos( )x

AC.  µ =  ex, AD.  µ =  e-x, AE.  None of the above

25.  ( 3 pts.) In solving the linear Ordinary Differential Equation (ODE) given above, which of the
following steps occurs (Circle the step that is correct.  Be careful.  No part credit for this problem):

A. ,   B. ,     C.   
d(ye )

dx
e  sin(x)

2x
2x




d(ye )
dx

e cos(x)
2x

2x


 d(ye )
dx

e  sin(x)
2x

2x

D. ,        E. ,      AB. ,
d(ye )

dx
e cos(x)

2x
2x

d(ye )
dx

x e
cos(x)

2 cos(x)
d(ye )

dx
xe

x
x




2
2

AC. ,  AD. None of the above steps ever appears in any solution of this
d(ye )

dx
x cos(x)

2x



 problem.

Possible points this page = 7.        TOTAL POINTS EARNED  _________
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To solve the first order linear ODE, we isolate the unknown function on the left side of the equation. 
Recall that an ODE is really a “vector” equation with the infinite number of unknown variables being the
values of the function for each value of the independent variable in the function’s domain.  The isolation of
the dependent variable (or function) solves for all of the (infinite number of) unknowns simultaneously.  In
solving a particular first order linear ODE, an integrating factor and the product rule were used to reach

the following step:   .
d(ye )

dx
xe

x
x

26. (2 pts.) Circle the theorem from calculus that allows you to integrate the Left Hand Side of this 

equation:   A. Intermediate Value Theorem,   B. Mean Value Theorem  C. Rolle's Theorem,  

D. Fundamental Theorem of Calculus,  E. Chain Rule,  AB. Product Rule,  

AC. Integration by Parts.  AD.  Partial Fractions.  AE.  None of the above.

27. (5 pts.) Now complete the solution process to obtain y as a function of x.  Circle the correct 

solution or family of solutions.    A. y = x + 1 + cex,     B. y = x + 1 + cex,      C.  y = x 1 + cex,      

D.  y = x + 1 + cex,   E.  y = x + 1 + cex,     AB.  y = x  1 + cex,     AC.  y = x  1  cex,       

AD. y = x + 1 + ex  + c,   AE. y = x + 1 + ex + c    BC. y = x 1 + ex + c   BD. y = x + 1 + ex  + c    
BE.  y = x + 1 + ex + c        CD.  y = x  1 + ex + c            CE.  y = x + 1  ex + c       

DE. None of the above families of solutions is correct. 

Possible points this page = 7.        TOTAL POINTS EARNED  _________
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28.  (5 pts.) Circle the correct solution to the following exact differential equation.  Recall that your entire
solution will be graded, not just your final answer.  Show your work.  No credit will be given if you do not
explain how you obtained your solution.  However, be careful with your computations as there will be no
part credit for an incorrect answer to this problem.

ODE (2x + y2) dx + (2xy) dy = 0.

A.     ψ(x,y) = x2 +xy2

B.     ψ(x,y) = x2 +xy2 + C

C.      ψ(x,y) = x2 +2xy2 + C

D.       x2 +2xy2  = C

E.      x2 +xy2  = C

AB.   None of the above.
Possible points this page = 5.        TOTAL POINTS EARNED  _________
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29.  (2 pt) The ODE  dy/dx = 2xy + 4y3 is not linear or separable.  Choose the appropriate classification:
A) Exact Equation (Must be exact in one of the two forms discussed in class).
B) Bernoulli, but not linear (y as a function of x).  Use the substitution  v = y1-n.
C) Bernoulli, but not linear (x as a function of y).  Use the substitution  v = x1-n.
D) Homogeneous, but not separable.  Use the substitution  v = y/x or v = x/y.
E) None of the above techniques works.

30.  (2 pts.) Circle an appropriate substitution (change of variable) to convert the ODE   
dy/dx = 2xy + 4y3 to one that you can solve: A) v = 1/y B) v = 1/y2 C) v = y2

D) v = y/x E) v = 1/y3 AB) v = y3 AC) v =     AD) None of the above.  y

31.  (3 pts.)Next, circle the correct term for dy/dx in terms of x and v. 

A)  =     B) =     C)  = D)  =     
dy
dx


1

2
v dv

dx

1
2 dy

dx


1
2

v dv
dx

3
2 dy

dx


1
2

v dv
dx

3
2 dy

dx


1
2

v
3
2

E)  =     AB)  =   AC)None of the above. 
dy
dx


1

2
v dy

dx

3
2 dy

dx


1
2

v dy
dx

3
2

32.  (3 pts.) Next, circle the new ODE that is derived. 

A) + 4x v = 8   B) + 2x v = 4  C) + 4x v = 8 D)  4x v = 8   E) + 4x v = 8
dv
dx

dv
dx

dv
dx

dv
dx

dv
dx

AB)  4x v = 8   AC) None of the above. 
dv
dx

33.  ( 2 pts.) Next, circle the correct classification of the new ODE that you derived. 

A) First order linear (v as a function of x),  B) First order linear (v as a function of x)    C) Separable.  
D) Exact Equation E) None of the above.

Possible points this page = 12.             TOTAL POINTS EARNED  _________
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Suppose that the ODE  dy/dx = f(x,y) is not linear or separable, but that it can be solved using the
substitution (change of variable), v = y/x.  Suppose further that this substitution results in the derived ODE 

  v + x   = v2. 
dv
dx

34.  (2 pts.) Circle the correct classification of the new derived ODE.   
A) First order linear (v as a function of x),  B) First order linear (x as a function of v)    C) Separable.  
D) Exact Equation E) None of the above.

35.  (5 pts.) Circle the solution of the derived ODE .

A) v = ,  B) v = ,  C) v =  ,  D) v =  ,  E) v =  , AB) v =  ,  AC)None1
1 cx

x
1 cx

2x
1 cx

1
x c

x
x c

2x
x c

of the above. 

36.  (2 pts.)Circle the solution of the original ODE.  A) y = ,  B) y = ,  C) y =  , 1
1 cx

x
1 cx

2x
1 cx

D)  y =  ,  E) y =  , AB) y =  ,  AC) None of the above. 1
x c

x
x c

2x
x c

Possible points this page = 9.             TOTAL POINTS EARNED  _________
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( 4 pts.) The direction field for the ODE  y' = (3y)/2  is given below.  On this direction field sketch the
solution to the IVP given below.  (Hint: Do not solve the IVP.)

          ODE     y' = (3y)/2IVP          IC         y(0) = 2

Total points this page = 4.    TOTAL POINTS EARNED THIS PAGE __________
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( 14 pts.)   Solve: .  Recall the rules concerning implicit solutions discussed in class.  Put 
y y xy
x

2

2

2

your final answer in the box, but recall that your entire solution will be graded, not just your final answer. 
SHOW YOUR WORK.  No credit will be given if you do not explain how you obtained your final
answer.  If possible, obtain y as a function of x.

Final Answer

Possible points this page = 14.   TOTAL POINTS EARNED  _________
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( 4  pts.)  MATHEMATICAL MODELING.  As per our class discussion (attendance is mandatory),
develop a general mathematical model for an object of mass m in slugs that is travelling downward in a
medium that offers resistance equal to three times the cube of the velocity of the object where the velocity
is measured in feet per second.  Assume an initial velocity of v0 in feet per second.  Begin by making a 
list of  the variables and parameters you will use (you may add to the list as you proceed) starting with a
mass of m slugs and the magnitude of the acceleration due to gravity g.  Assume a coordinate system in
which the x-axis points down (i.e. x  becomes more positive as you move down) and make a sketch. 
Now list any assumptions you need and physical laws  you wish to use.  Now write down an Initial
Value Problem (IVP) that provides a general model for this general physical situation; that is the IVP that
can be solved to obtain the velocity v of the point particle.  DO NOT SOLVE THE IVP.

Possible points this page = 4.  POINTS EARNED THIS PAGE = ________
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( 3  pts.)  MATHEMATICAL MODELING.  Consider the following applied math problem:

An object (point particle) of mass 10 slugs is dropped from rest at time t = 0 in a medium that offers
resistance equal to three times the cube of the velocity of the object where the velocity is measured in feet
per second.

Apply the data given above to the general model you developed on the previous page to find the
specific model for the problem given above.  Also, give the units of the differential equation.    DO
NOT SOLVE THE IVP.

Possible points this page = 3.  POINTS EARNED THIS PAGE = ________


