EXAM 4 -B2 FALL 2012 MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE MATH 261 Professor Moseley

Date

Signature

PRINT NAME	E			()
	Last Name,	First Name	MI	(What you wish to be called)
ID #			EXAM DATE	Friday, Nov. 19, 2012 11:30
am				
I arrison and/on	offirms that all of t	he work presented on th	a awara ia may	

DATE

I swear and/or affirm that all of the work presented on this exam is my own and that I have neither given nor received any help during the exam.

SIGNATURE

INSTRUCTIONS: Besides this cover page, there are 11 pages of questions and problems on this exam. MAKE SURE YOU HAVE ALL THE PAGES. If a page is missing, you will receive a grade of zero for that page. Page 12 contains Laplace transforms you need not memorize. Read through the entire exam. If you cannot read anything, raise your hand and I will come to you. Place your I.D. on your desk during the exam. Your I.D., this exam, and a straight edge are all that you may have on your desk during the exam. NO CALCULATORS! NO SCRATCH PAPER! Use the back of the exam sheets if necessary. You may remove the staple if you wish. Print your name on all sheets. Pages 1-11 are Fillin-the Blank/Multiple Choice or True/False. Expect no part credit on these pages. For each Fill-in-the Blank/Multiple Choice question write your answer in the blank provided. Next find your answer from the list given and write the corresponding letter or letters for your answer in the blank provided. Then circle this letter or letters. There are no free response pages. However, to insure credit, you should explain your solutions fully and carefully. Your entire solution may be graded, not just your final answer. SHOW YOUR WORK! Every thought you have should be expressed in your best mathematics on this paper. Partial credit will be given as deemed appropriate. Proofread your solutions and check your computations as time allows. GOOD LUCK!!

REQUEST FOR REGRADE

Please regrade the following problems for the reasons I have indicated: (e.g., I do not understand what I did wrong on page _____.)

(Regrades should be requested within a week of the date the exam is returned. Attach additional sheets as necessary to explain your reasons.) I swear and/or affirm that upon the return of this exam I have written nothing on this exam except on this REGRADE FORM. (Writing or changing anything is considered to be cheating.)

Scores						
page	points	score				
1	11					
2	5					
3	12					
4	17					
5	12					
6	6					
7	8					
8	4					
9	12					
10	6					
11	7					
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						

Total	100	
-------	-----	--

MATH 261 E	XAM 4-B2	Prof. Moseley	Page 1				
PRINT NAME							
True-false. Laplace transforms.							
1. (1 pts) A)True or B)F	1. (1 pts) A)True or B)False The definition of the Laplace transform is $\mathcal{L}{f(t)}(s) = \int_{1}^{t=\infty} f(t)e^{-st}dt$						
	provided the improper	r integral exists.	[=-3)				
2. (1 pts) A)True or B)	1	nsform is defined in terms of only one limit process.	f an improper				
3. (1 pts) A)True or B)F	Talse The Laplace transform on $[0,\infty)$.	n does not exist for some co	ntinuous functions				
4. (1 pts) A)True or B)F	alse The Laplace transform	n exists for some discontinue	ous functions.				
5. (1 pts) A)True or B)F	Talse The function $f(t) = 1/(t)$	(t-4) is piecewise continuous	s on [0,7].				
6. (1 pts) A)True or B)False The function $f(t) = 5e^{4t^2} \cos(t)$ is of exponential order.							
7. (1 pts) A)True or B)F	alse The Laplace transform	n £: T → F is not a linear oper	ator.				
8. (1 pts) A)True or B)F	alse The inverse Laplace t	transform 𝖓 ⁻¹ : F → T is a linea	r operator.				
9. (1 pts) A)True or B)F	-	m is a one-to-one mapping on son $[0,\infty)$ for which the Lap					
10. (1 pts) A)True or B)	False There is only one co	ntinuous function in the null	space of L.				
11. (1 pts) A)True or B)	transform the proble frequency domain F ,	ng an ODE using Laplace tr em from the time domain T solve the transformed probl and then transform the solut	to the (complex) em using algebra				

Total points this page	e = 11. TOTAL POINTS EARNED	D THIS PAGE	
MATH 261	EXAM 4-B2	Prof. Moseley	Page 2
PRINT NAME) ID No	
Last	Name, First Name MI, What you	wish to be called	
Follow the instruc	tions on the Exam Cover Sheet for	Fill-in-the Blank/Multiple	e Choice questions.
Also, circle your answ	wer.		
		$\begin{bmatrix} 2 & 0 \le t \le 5 \end{bmatrix}$	
12. (5 pts.) The Lapl	ace transform of the function $f(t) =$	$\begin{cases} 2 & 0 \le t \le 5 \\ 0 & t > 5 \end{cases}$	
		$\begin{bmatrix} 0 & t > 5 \end{bmatrix}$	

is ______. A B C D E Hint: Use the definition. Be careful to handle the limit appropriately as discussed in class.

Possible answers this page.

A)
$$\frac{1}{s}$$
 B) $\frac{-1}{s}$ C) $\frac{1}{s}e^{-5s}$ D) $\frac{-1}{s}e^{-5s}$ E) $\frac{1}{s}(1+e^{-5s})$ AB) $\frac{1}{s}(1-e^{-5s})$ AC) $\frac{1}{s}(e^{-5s}-1)$

AD) $\frac{5}{s}$ AE) $\frac{-5}{s}$ BC) $\frac{5}{s}e^{-8s}$ BD) $\frac{-5}{s}e^{-8s}$ BE) $\frac{1}{s}(1+e^{5s})$ CD) $\frac{2}{s}(1-e^{-5s})$
CE) $\frac{3}{s}(1-e^{-5s})$ ABC) $\frac{4}{s}(1-e^{5s})$ ABCDE) None of the above.
Total points this page = 5. TOTAL POINTS EARNED THIS PAGEMATH 261EXAM 4-B2Prof. MoseleyPage 3
PRINT NAME () ID No
Last Name, First Name MI, What you wish to be called Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Compute the Laplace transform of the following functions.
13. (4 pts.) $f(t) = 2t - 2t^2$ $\Im(f) = $ A B C D E
14. (4 pts.) $f(t) = 2 e^{2t} - 2 e^{-3t}$ $\Im(f) =$ A B C D E
15 (4 pts.) $f(t) = 2 \sin(2t) - 2 \cos(3t)$ $\Im(f) = $ A B C D E
Possible answers this page A) $\frac{2}{s^2} + \frac{2}{s^3}$ B) $\frac{2}{s^2} - \frac{2}{s^3}$ C) $\frac{2}{s^2} + \frac{4}{s^3}$ D) $\frac{2}{s^2} - \frac{4}{s^3}$ E) $\frac{2}{s^2} + \frac{6}{s^3}$ AB) $\frac{2}{s^2} - \frac{6}{s^3}$ AC) $\frac{2}{s^2} + \frac{8}{s^3}$ AD) $\frac{2}{s^2} - \frac{8}{s^3}$ AE) $\frac{2}{s-2} + \frac{1}{s+3}$ BC) $\frac{2}{s-2} - \frac{1}{s+3}$ BD) $\frac{2}{s-2} + \frac{2}{s+3}$ BE) $\frac{2}{s-2} - \frac{2}{s+3}$ CD) $\frac{2}{s-2} + \frac{3}{s+3}$ CE) $\frac{2}{s-2} - \frac{3}{s+3}$ DE) $\frac{2}{s-2} + \frac{4}{s+3}$ ABC) $\frac{2}{s-2} - \frac{4}{s+3}$

$$(ABD) \frac{4}{s^{2}+4} + \frac{s}{s^{2}+9} (ABE) \frac{4}{s^{2}+4} - \frac{s}{s^{2}+9} (ACD) \frac{4}{s^{2}+4} + \frac{2s}{s^{2}+9} (ACE) \frac{4}{s^{2}+4} - \frac{2s}{s^{2}+9} (ACD) \frac{4}{s^{2}+4} + \frac{2s}{s^{2}+9} (ACE) \frac{4}{s^{2}+4} - \frac{2s}{s^{2}+9} (ACE) \frac{4}{$$

ADE) $\frac{4}{s^{2}+4} + \frac{3s}{s^{2}+9}$ BCD) $\frac{4}{s^{2}+4} - \frac{3}{s^{2}+4}$ ABCD) $-\frac{2}{(s-2)^{2}} + \frac{3}{(s+3)^{2}}$ ABCE) $\frac{3}{s^{2}}$ ACDE) $\mathcal{L}\{f\}$ exists but none of the above	$\frac{2}{1+2} + \frac{3s}{s^2+3}$	ABDE) $\frac{2s}{s^2+2} + \frac{3}{s^2+3}$			
ABCDE)None of the above. Total points this page = 12. TOTAL POIN MATH 261 EXAM 4-B2	NTS EARNE	D THIS PAGE Prof. Moseley	Page 4		
PRINT NAME Last Name, First Name Follow the instructions on the Exam Co	MI, What yo over Sheet fo	u wish to be called r Fill-in-the Blank/Multip			
$\underline{\text{DEFINITION}}. \text{ Let } f: X \rightarrow Y. \text{ Then } f \text{ is one-} \\ 16.(2 \text{ pts.}) \underline{\qquad} A B C D \\ \underline{\text{A}} B C D $			A B C D E		
<u>THEOREM.</u> Let $T:V \rightarrow W$ be a linear oper the null space N_T contains only the zeo ve Proof. We begin our proof of the theorem	ector, then T i n by first prov	is a one-to-one mapping. ving the following lemma	:		
<u>Lemma.</u> Let $T: V \rightarrow W$ be a linear operator, $\vec{v}_1 \in V$, and $N_T = \{\vec{0}\}$. If $T(\vec{v}_1) = \vec{0}$, then $\vec{v}_1 = \vec{0}$. Proof of lemma: Let $T: V \rightarrow W$ be a linear operator, $\vec{v}_1 \in V$, $N_T = \{\vec{0}\}$ and $T(\vec{v}_1) = \vec{0}$. By the definition					
of the null space we have that N_{T} = { $\vec{v} \in V$	V: 18.(2 pt.)	A	B C D E so that		
$T(\vec{v}_1) = \vec{0}$ implies that $\vec{v}_1 \in N_T$. Since N_T con	ntains 19.(1 p	t.)	A B C D E, we		
have that $\vec{v}_1 = \vec{0}$ as was to be proved. Having finished the proof of the lemma, w	ve now finish	QED for least the proof of the theorem			
is one-to-one, for $\vec{v}_1, \vec{v}_2 \in V$ we assume 20	.(1 pt.)	A B C	C D E and show that		
21.(1 pt.)A B	C D E. We <u>REASON</u>		EASON format.		
$T(\vec{v}_1) = T(\vec{v}_2)$ 23.(2pt.)	22.(2 pt.) _		A B C D E		
$T(\vec{v}_1 - \vec{v}_2) = \vec{0}$			A B C D E		
$\vec{v}_1 - \vec{v}_2 = \vec{0}$	25.(2 pt.)_		A B C D E		
$\vec{v}_1 = \vec{v}_2$		lgebra in V			
Hence T is one-to-one as was to be prove	ea.	QEI	D for the theorem.		

Possible answers for this page: A) $x_1 = x_2$ B) $x_1 + x_2 = 0$ C) $f(x_1 + x_2) = 0$ D) $f(x_1) = f(x_2)$

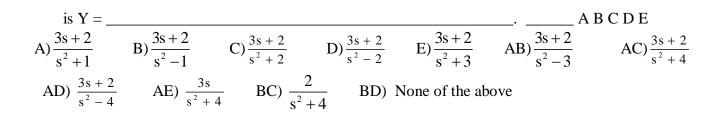
E) $f(x_1) + f(x_2) = 0$ AB) Definition of f AC) Hypothesis (or Given) AD) only the zero vector AE) The lemma proved above BC) T is a one-to-one mapping BD) T is a linear operator BE)Definition of T CD)Theorems from Calculus CE)Vector algebra in V DE)Vector algebra in W ABC)only the vector \vec{v}_1 ABD) $\vec{v}_1 = \vec{0}$ ABE) $\vec{v}_1 = \vec{v}_2$ ACD) $T(\vec{v}_1) = \vec{0}$ ACE) $T(\vec{v}_2) = \vec{0}$ ADE) $T(\vec{v}) = \vec{0}$ BCD) $T(\vec{v}_1) - T(\vec{v}_2) = \vec{0}$ BCE) $(\alpha \vec{v}_1) = \alpha T(\vec{v}_1)$ BDE) $T(\vec{v}_1) = T(\vec{v}_2)$ CDE) $T(\vec{v}_1 - \vec{v}_2)$ ABCD) $T(\vec{v}_1 + \vec{v}_2) = \vec{0}$ ABCDE) None of the above. Total points this page = 17. TOTAL POINTS EARNED THIS PAGE ______ MATH 261 EXAM 4-B2 Prof. Moseley Page 5 PRINT NAME ________ (______) ID No. ________

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Compute the inverse Laplace transform of the following functions.

26. (4 pts.) $F(s) = \frac{2}{s^3} - \frac{2}{s+2}$ $\mathcal{L}^{-1}{F} =$ _____ A B C D E

27. (4 pts.)
$$F(s) = \frac{2s-4}{s^2+9}$$
 $\mathcal{L}^{-1}{F} =$ _____ A B C D E

28. (4 pts.)
$$F(s) = \frac{2s-3}{s^2-2s+2}$$
 $\mathcal{L}^{-1}{F} =$ _____ A B C D E


Possible answers this page A) $t^2 + e^{-2t}$ B) $t^2 - e^{-2t}$ C) $t^2 + 2e^{-2t}$ D) $t^2 - 2e^{-2t}$ E) $t^2 + 3e^{-2t}$ AB) $t^2 - 3e^{-2t}$ AC) $t^2 + 4e^{-2t}$

AD) $t^2 - 4e^{-2t}$ AE) cos 3t + (4/3) sin 3t BC) cos 3t - (4/3) sin 3t AD) 2 cos 3t + (4/3) sin 3t AE) $2 \cos 3t - (4/3) \sin 3t$ BC) $2 \cos t + (4/3) \sin 3t$ BC) $2 \cos 3t - (4/3) \sin 3t$ AD) $3\cos 3t + (4/3)\sin 3t$ AE) $3\cos 3t - (4/3)\sin 3t$ BD) $4\cos 3t + (4/3)\sin 3t$ BE) $4 \cos 3t - (4/3) \sin 3t$ CD) $e^t \cos t + 2e^t \sin t$ CE) $e^t \cos t - 2e^t \sin t$ BD) $2e^t \cos t + e^t \sin t$ BE) $2e^t \cos t - e^t \sin t$ CD) $3e^t \cos t$ CE) $4e^t \cos t + e^t \sin t$ DE) $4e^t \cos t - e^t \sin t$ ACDE) $\mathcal{L}^{-1}{f}$ exists but none of the above is $\mathcal{L}{f}$ BCDE) \mathcal{L}^{-1} {f} does not exist. ABCDE)None of the above. Total points this page = 12. TOTAL POINTS EARNED THIS PAGE _____ Prof. Moseley Page 6 MATH 261 EXAM 4-B2 PRINT NAME _______ (______) ID No. ______ Last Name, First Name MI, What you wish to be called Answer questions using the instructions on the Exam Cover Sheet. Also, circle your answer. Consider the IVP: ODE y'' + 2y = 0 IC's: y(0) = 3, y'(0) = 2Let $Y = \mathcal{L}{y(t)}(s)$.

29. (3 pts.) As discussed in class (attendance is mandatory), taking the Laplace transform of the ODE and using the initial conditions we may

obtain ______. A B C D E Be careful, if you miss this question, you will also miss the next question. A) $s^2Y - 3s - 2 + Y = 0$ B) $s^2Y - 3s - 2 - Y = 0$ C) $s^2Y - 3s - 2 + 2Y = 0$ D) $s^2Y - 3s - 2 - 2Y = 0$ E) $s^2Y - 3s - 2 + 3Y = 0$ AB) $s^2Y - 3s - 2 - 3Y = 0$ AC) $s^2Y - 3s - 2 + 4Y = 0$ AD) $s^2Y - 3s - 2 - 4Y = 0$ AE) $s^2Y - 3s + 4Y = 0$ BC) $s^2Y - 2 + 4Y = 0$ BD) None of the above

30. (3 pts.) The Laplace transform of the solution to the IVP

Total points this page = 6. TOTAL POINTS EARNED THIS PAGE ______MATH 261EXAM 4-B2Prof. MoseleyPage7

31. (4 pts.) Let $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n} \subseteq V$ where V is a vector space and (*) be the vector equation $c_1 \vec{v}_1 + c_2 \vec{v}_2 + ... + c_n \vec{v}_n = \vec{0}$. Choose the correct completion of the following:

Definition. The set S is linearly independent

if ______. A B C D E A) (*) has only the solution $c_1 = c_2 = \cdots = c_n = 0$. B) (*) has an infinite number of solutions. C) (*) has a solution other than the trivial solution. D) (*) has at least two solutions. E) (*) has no solution. AB) the associated matrix is nonsingular. AC) the associated matrix is singular. AD) None of the above

32. (4 pts.)Now let $\mathbf{S}_1 = \{ [\mathbf{x}_1(t), \mathbf{y}_1(t), \mathbf{z}_1(t)]^T, [\mathbf{x}_2(t), \mathbf{y}_2(t), \mathbf{z}_2(t)]^T, \dots, [\mathbf{x}_n(t), \mathbf{y}_n(t), \mathbf{z}_n(t)]^T \}$ $\subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^3)$ and (**) be the "vector" equation $\mathbf{c}_1 [\mathbf{x}_1(t), \mathbf{y}_1(t), \mathbf{z}_1(t)]^T + \mathbf{c}_2 [\mathbf{x}_2(t), \mathbf{y}_2(t), \mathbf{z}_2(t)]^T + \dots + \mathbf{c}_n [\mathbf{x}_n(t), \mathbf{y}_n(t), \mathbf{z}_n(t)]^T = [0, 0, 0]^T \quad \forall t \in \mathbf{R}$ Apply the definition above to the space of time varying "vectors" $\mathcal{A}(\mathbf{R}, \mathbf{R}^3)$. That is, by the definition above the set $\mathbf{S}_1 \subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^3)$ is linearly independent

if ______. A B C D E A) (**) has only the solution $c_1 = c_2 = \cdots = c_n = 0$. B) (**) has an infinite number of solutions C) (**) has a solution other than the trivial solution. D) (**) has at least two solutions. E) (**) has no solution. AB) the associated matrix is nonsingular. AC) the associated matrix is singular. AD) None of the above Total points this page = 8. TOTAL POINTS EARNED THIS PAGE _____ Page8 MATH 261 EXAM 4-B2 Prof. Moseley

PRINT NAME ______(____) ID No. ______ Last Name, First Name MI, What you wish to be called Answer questions using the instructions on the Exam Cover Sheet. Also, circle your answer.

33. (4 pts.) You are to determine Directly Using the Definition (DUD) if the following set of

time varying "vectors" are linearly independent. Let $S = {\vec{x}_1(t), \vec{x}_2(t)} \subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^2)$ where

$$\vec{\mathbf{x}}_1(t) = \begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix}$$
 and $\vec{\mathbf{x}}_2(t) = \begin{bmatrix} 6e^t \\ 9e^{-t} \end{bmatrix}$. Then S

is ______. A B C D E A) linearly independent as $c_1 \vec{x}_1 + c_2 \vec{x}_2 = [0,0]^T \quad \forall t \in \mathbf{R} \text{ implies } c_1 = c_2 = 0.$

B)) linearly dependent as $c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}$ implies $c_1 = c_2 = 0$.

C) linearly independent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}.$

D) linearly dependent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}.$

E) linearly independent as the associated matrix is nonsingular.

D) linearly dependent as the associated matrix is nonsingular

AB) linearly independent as the associated matrix is singular.

AC) linearly dependent as the associated matrix is singular.

AD) neither linearly independent or linearly dependent as the definition does not apply.

ABCDE) None of the above statements are true.

Using the procedure illustrated in class (attendance is mandatory), find the eigenvalues of

$$\mathbf{A} = \begin{bmatrix} \mathbf{i} & 4 \\ \mathbf{0} & \mathbf{a} \end{bmatrix} \in \mathbf{C}^{2x^2}.$$

34. (4 pts.) A polynomial $p(\lambda)$ where solving $p(\lambda) = 0$ yields the eigenvalues of A can be written

as $p(\lambda) =$ ________. A B C D E A) $(i+\lambda)(1+\lambda)$ B) $(i+\lambda)(1-\lambda)$ C) $(i-\lambda)(1+\lambda)$ D) $(i-\lambda)(1-\lambda)$ E) $(i+\lambda)(2+\lambda)$ AB) $(i-\lambda)(2-\lambda)$ AC) $(i-\lambda)(3+\lambda)$ AD) $(i-\lambda)(3-\lambda)$ AE) $(i-\lambda)(4+\lambda)$ BC) $(i-\lambda)(4-\lambda)$ BD) $(2i-\lambda)(1+\lambda)$ BE) $(2i-\lambda)(1-\lambda)$ CD) $(2i+\lambda)(2+\lambda)$ CE) $(2i+\lambda)(2-\lambda)$ DE) $(2i-\lambda)(2+\lambda)$ ABC) $(2i-\lambda)(2-\lambda)$ ABD) $(3i-\lambda)(2+\lambda)$ ABE)None of the above.

35. (2 pt.) The degree of $p(\lambda)$ is ______. A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC) 7 AD) None of the above.

36. (2 pt.) Counting repeated roots, the number of eigenvalues of A

is	·	ABCDE	A) 0	B) 1	C) 2	D) 3	E) 4	AB) 5
AC) 6	AD) 7	AE) 8	BC) No	ne of the	e above			

37. (4 pts.) The eigenvalues of A can be written as ______A B C D E A) $\lambda_1 = 1$, $\lambda_2 = i$ B) $\lambda_1 = 1$, $\lambda_2 = -i$ C) $\lambda_1 = -1$, $\lambda_2 = i$ D) $\lambda_1 = -1$, $\lambda_2 = -i$ E) $\lambda_1 = 2$, $\lambda_2 = i$ AB) $\lambda_1 = 2$, $\lambda_2 = -i$ AC) $\lambda_1 = 3$, $\lambda_2 = i$ AD) $\lambda_1 = 4$, $\lambda_2 = i$ AE) $\lambda_1 = 1$, $\lambda_2 = 2i$ BC) $\lambda_1 = 1$, $\lambda_2 = -2i$ BD) $\lambda_1 = -1$, $\lambda_2 = 2i$ BE) $\lambda_1 = -1$, $\lambda_2 = -2i$ CD) $\lambda_1 = 2$, $\lambda_2 = 2i$ CE) $\lambda_1 = 2$, $\lambda_2 = -2i$ DE) $\lambda_1 = -2$, $\lambda_2 = 2i$ ABC) $\lambda_1 = -2$, $\lambda_2 = -2i$ ABD) None of the above Total points this page = 12. TOTAL POINTS EARNED THIS PAGE _____MATH 261EXAM 4-B2Prof. MoseleyPage 10

PRINT NAME ______(_____) ID No. _

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Note that $\lambda_1 = 2$ is an eigenvalue of the matrix $A = \begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$

38. (4 pts.) Using the conventions discussed in class (attendance is mandatory), a basis B for

ABCD E the eigenspace associated with λ_1 is B = ____ D) { $[1,2]^{T}$, $[4,8]^{T}$ } A) { $[1,1]^{T}$, $[4,4]^{T}$ } C) $\{[1,2]^{T}\}$ B) $\{[1,1]^{T}\}$ E) { $[1,-1]^{T}$ } AC) $\{[1,-3]^{T}\}$ AB) { $[1,-2]^{T}$ } AD) $\{[1, -4]^T\}$ AE) $\{[3,1]^{T}\}$ BC) { $[1,-1]^{T}, [4,4]^{T}$ } BD) $\{[2,-1]^T\}$ BE) { $[3,-2]^{T}$ } CD) { $[1,-2]^{T}$, $[4,8]^{T}$ } CE) { $[2,1]^{T}$ } DE) { $[1,3]^{T}$ } ABC) { $[1,-4]^{T}$ } ABD) { $[4, -1]^{T}$ } ABE) { $[3,-1]^{T}$ } ACD) $\lambda = 2$ is not an eigenvalue of the matrix A ACE) $\lambda = -1$ is not an eigenvalue of the matrix A ADE) $\lambda = 3$ is not an eigenvalue of the matrix A ABCDE) None of the above is correct.

39. (2pt.) Although there are an infinite number of eigenvectors associated with any eigenvalue, the eigenspace associated with λ_1 is often one dimensional. Hence conventions for selecting eigenvector(s) associated with λ_1 have been developed (by engineers). We say that the eigenvector(s) associated with λ_1

ABCDE is (are) D) $[1,2]^{T}$, $[4,8]^{T}$ B) $[1,1]^{T}$ C) $\{[1,2]^{T}\}$ A) $[1,1]^{\mathrm{T}}$, $[4,4]^{\mathrm{T}}$ E) $[2,1]^{T}$ AC) $[1, -2]^{T}$ AB) $[1, -1]^{T}$ AE) $[1, -4]^{T}$ BC) $[1, -1]^{T}, [4, 4]^{T}$ AD) $[1, -3]^{T}$ BD) $[2, -1]^{T}$ BE) $[3,-2]^{T}$ CD) $[1,-2]^{T}$, $[4,8]^{T}$ CE) $[2,1]^{T}$ DE) $[1,3]^{T}$ ABC) $[1, -4]^{T}$ ABD) $[4, -1]^{T}$ ABE) $[3, -1]^{T}$ ACD) $\lambda_1 = 2$ is not an eigenvalue of the matrix A ACE) $\lambda_1 = -1$ is not an eigenvalue of the matrix A ADE) $\lambda = 3$ is not an eigenvalue of the matrix A ABCDE) None of the above is correct.

Total points this page = 6. TOTAL POINTS EARNED THIS PAGE _____ **MATH 261 EXAM 4-B2 Professor Moseley** Page 11 _____) ID No. _____ PRINT NAME _ (Last Name, First Name MI, What you wish to be called Answer questions using the instructions on the Exam Cover Sheet. Also, circle your answer. TABLE Let the 2x2 matrix A have the eigenvalue table Eigenvectors Eigenvalues $\vec{\xi}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ Let L: $\mathcal{A}(\mathbf{R}, \mathbf{R}^2) \rightarrow \mathcal{A}(\mathbf{R}, \mathbf{R}^2)$ be defined by $L[\vec{x}] = \vec{x}' - A\vec{x}$ $r_1 = 1$ $\mathbf{r}_2 = 2$ $\vec{\xi}_2 = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ and let the null space of L be N_L 40. (2 pt). The dimension of N_L is _____. A B C D E A) 0 B) 1 C) 2 D) 3 E) 4 AB) 5 AC) 6 AD) None of the above. A) $B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{t}, \begin{bmatrix} 1\\1 \end{bmatrix} e^{2t} \right\} \quad B) B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t}, \begin{bmatrix} 1\\1 \end{bmatrix} e^{2t} \right\} \quad C) B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{t}, \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t} \right\} \quad D) B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t} \right\}$ 41. (3 pts.) A basis for the null space of L is B =_____ E) $B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{t}, \begin{bmatrix} 3\\1 \end{bmatrix} e^{2t} \right\} \quad AB) \quad B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t}, \begin{bmatrix} 3\\1 \end{bmatrix} e^{2t} \right\} \quad AC) \quad B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{t}, \begin{bmatrix} 4\\1 \end{bmatrix} e^{2t} \right\} \quad AD) \quad B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t}, \begin{bmatrix} 4\\1 \end{bmatrix} e^{2t} \right\}$ AE) $B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} e^{2t} \right\}$ BC) $B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} \right\}$ BD) $B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\}$ BE) $B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\}$ CD) None of the above 42. (2 pts.) The general solution of $\vec{x}' = A\vec{x}$ is $\vec{x}(t) =$ ______. A B C D E E) $\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + c_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} e^{2t} AB) \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} e^{2t} AC) \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + c_2 \begin{bmatrix} 4 \\ 1 \end{bmatrix} e^{2t} AD) \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 4 \\ 1 \end{bmatrix} e^{2t} AD$ AE) $\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} e^{2t}$ BC) $\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t}$ BD) $\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$

BE) $\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$ **CD**)None of the above

Total points this page = 7. TOTAL POINTS EARNED THIS PAGE _____