EXAM 4 -A2 FALL 2010

SIGNATURE

MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE MATH 261 Professor Moseley

PRINT NAME	3			()	
	Last Name,	First Name	MI	(What you wish to be	called)	
ID # am_			EXAM DATE	Friday, Nov. 19, 2010	<u>11:30</u>	
	affirm that all of t	Date	Signature			

DATE

INSTRUCTIONS: Besides this cover page, there are 11 pages of questions and problems on this exam. MAKE SURE YOU HAVE ALL THE PAGES. If a page is missing, you will receive a grade of zero for that page. Page 12 contains Laplace transforms you need not memorize. Read through the entire exam. If you cannot read anything, raise your hand and I will come to you. Place your I.D. on your desk during the exam. Your I.D., this exam, and a straight edge are all that you may have on your desk during the exam. NO CALCULATORS! NO SCRATCH PAPER! Use the back of the exam sheets if necessary. You may remove the staple if you wish. Print your name on all sheets. Pages 1-11 are Fillin-the Blank/Multiple Choice or True/False. Expect no part credit on these pages. For each Fill-in-the Blank/Multiple Choice question write your answer in the blank provided. Next find your answer from the list given and write the corresponding letter or letters for your answer in the blank provided. Then circle this letter or letters. There are no free response pages. However, to insure credit, you should explain your solutions fully and carefully. Your entire solution may be graded, not just your final answer. SHOW YOUR WORK! Every thought you have should be expressed in your best mathematics on this paper. Partial credit will be given as deemed appropriate. Proofread your solutions and check your computations as time allows. GOOD LUCK!!

own and that I have neither given nor received any help during the exam.

REQUEST FOR REGRADE

Please regrade the following problems for the reasons I have indicated: (e.g., I do not understand what I did wrong on page _____.)

(Regrades should be requested within a week of the date the exam is returned. Attach additional sheets as necessary to explain your reasons.) I swear and/or affirm that upon the return of this exam I have written nothing on this exam except on this REGRADE FORM. (Writing or changing anything is considered to be cheating.)

Scores						
page	Î .	score				
1	11					
2	5					
3	12					
4	17					
5	12					
6	6					
7	8					
8	4					
9	12					
10	6					
11	7					
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						

Total	100	
-------	-----	--

MATH 261 EXAM	I 4A-2	Prof. Moseley	Page 1
PRINT NAME Last Name, 1	(First Name MI, What you wish to be) ID No called	
True-false. Laplace trans	sforms.		
1. (1 pts) A)True or B)False	The definition of the Laplace transfor	m is $\mathscr{L}{f(t)}(s) = \int_{0}^{t=\infty}$	$f(t)e^{-st}dt$
	provided the improper integral exists	t=0	
2. (1 pts) A)True or B) False	Since the Laplace transform is defin integral, it involves only one limit	-	roper
3. (1 pts) A)True or B)False	The Laplace transform exists for all $[0,\infty)$.	continuous functions of	on
4. (1 pts) A)True or B)False	The Laplace transform does not exis	st for all discontinuous	functions.
5. (1 pts) A)True or B)False	The function $f(t) = 1/(t-3)$ is piecewi	ise continuous on [0,7].
6. (1 pts) A)True or B)False	The function $f(t) = e^{4t^2} \cos(t)$ is	of exponential order.	
7. (1 pts) A)True or B)False	The Laplace transform $\mathcal{L}: \mathbf{T} \rightarrow \mathbf{F}$ is a li	inear operator.	
8. (1 pts) A)True or B)False	The inverse Laplace transform \mathfrak{L}^{-1} :	F → T is a linear operate	or.
9. (1 pts) A)True or B)False	The Laplace transform is a one-to-or continuous functions on $[0,\infty)$ for	11 0	
10. (1 pts) A)True or B)False	There is only one continuous function	ion in the null space of	fL.
11. (1 pts) A)True or B)False	The strategy of solving an ODE us transform the problem from the tin frequency domain F , solve the trans- instead of calculus, and then transf domain T .	me domain T to the (c sformed problem using	complex) g algebra

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

12. (5 pts.) The Laplace transform of the function $f(t) = \begin{cases} -8 & 0 \le t \le 5 \\ 0 & t > 5 \end{cases}$

is _______. A B C D E
Hint: Use the definition. Be careful to handle the limit appropriately as discussed in class.
A)
$$\frac{8}{s}$$
 B) $\frac{-8}{s}$ C) $\frac{8}{s}e^{-5s}$ D) $\frac{-8}{s}e^{-5s}$ E) $\frac{8}{s}(1+e^{-5s})$ AB) $\frac{8}{s}(1-e^{-5s})$ AC) $\frac{8}{s}(e^{-5s}-1)$
AD) $\frac{5}{s}$ AE) $\frac{-5}{s}$ BC) $\frac{5}{s}e^{-8s}$ BD) $\frac{-5}{s}e^{-8s}$ BE) $\frac{5}{s}(1+e^{-8s})$ CD) $\frac{5}{s}(1-e^{-8s})$
CE) $\frac{5}{s}(e^{-8s}-1)$ ABC) $\frac{5}{s}(1-e^{8s})$ ABCDE) None of the above.

Total points this page = 5. TOTAL POINTS EARNED THIS PAGE					
MATH 261 EXAM 4	A-2	Prof. Moseley	Page 3		
		5	C		
PRINT NAME	() ID No			
	st Name MI, What you wish t				
Follow the instructions on th	e Exam Cover Sheet for Fill-in	-the Blank/Multiple Ch	oice questions.		
Compute the Laplace transfor		1	1		
1 1	C				
13. (4 pts.) $f(t) = 2t - 3t^2$	(f) =	•	_ A B C D E		
· • · · · ·					
14. (4 pts.) $f(t) = -2 e^{2t} + 3 e^{-3}$	^{3t}	••	A B C D E		
15 (4 pts.) $f(t) = -2 \sin(2t) + 3$	$\Im \cos(3t) \Im(f) = $	··	A B C D E		

Possible answers this page

$$\begin{aligned} A)\frac{2}{s} + \frac{3}{s^2} \quad B)\frac{2}{s} - \frac{3}{s^2} \quad C) - \frac{2}{s} + \frac{3}{s^2} \quad D) - \frac{2}{s} - \frac{3}{s^2} \quad E) \quad \frac{2}{s^2} + \frac{6}{s^3} \quad AB) \quad \frac{2}{s^2} - \frac{6}{s^3} \quad AC) - \frac{2}{s^2} + \frac{6}{s^3} \quad AD) \quad -\frac{2}{s^2} - \frac{6}{s^3} \\ AE)\frac{2}{s+2} + \frac{3}{s+3} \quad BC) \quad \frac{2}{s+2} - \frac{3}{s+3} \quad BD) \quad -\frac{2}{s+2} + \frac{3}{s+3} \quad BE) \quad -\frac{2}{s+2} - \frac{3}{s+3} \\ CD)\frac{2}{s-2} + \frac{3}{s+3} \quad CE) \quad \frac{2}{s-2} - \frac{3}{s+3} \quad DE) \quad -\frac{2}{s-2} + \frac{3}{s+3} \quad ABC) \quad -\frac{2}{s-2} - \frac{3}{s+3} \\ ABD)\frac{4}{s^2+4} + \frac{3s}{s^2+9} \quad ABE)\frac{4}{s^2+4} - \frac{3s}{s^2+9} \quad ACD) \quad -\frac{4}{s^2+4} + \frac{3s}{s^2+9} \quad ACE) \quad -\frac{4}{s^2+4} - \frac{3s}{s^2+9} \\ ADE)\frac{4}{s^2-4} + \frac{3s}{s^2-9} \quad BCD)\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad BDE \quad D \quad -\frac{4}{s^2-4} + \frac{3s}{s^2-9} \quad CDE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ ADE \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad BCD \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad BDE \quad D \quad -\frac{4}{s^2-4} + \frac{3s}{s^2-9} \quad CDE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{3s}{s^2-9} \quad BDE \quad D \quad -\frac{4}{s^2-4} + \frac{3s}{s^2-9} \quad CDE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad BDE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad CDE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \\ -\frac{4}{s^2-4} - \frac{3s}{s^2-9} \quad DE \quad D \quad -$$

ABCD) $-\frac{2}{(s-2)^2} + \frac{3}{(s+3)^2}$ ACDE) \Re {f} exists but none ABCDE)None of the above. Total points this page = 12.7 MATH 261 EXAM	e of the above is $\mathfrak{L}{f}$ I	BCDE) $\mathcal{L}{f}$ does not exi	_			
	1 171 2	1101. Widdeley	Tugo T			
PRINT NAME	() ID No				
Last Name, Follow the instructions on <u>DEFINITION</u> . Let f:X→Y. 7		or Fill-in-the Blank/Multip	ele Choice questions.			
16.(2 pts.)	A B C D E implies 1	7(2pt)	A B C D E			
the null space N_T contains on Proof. We begin our proof o Lemma. Let $T:V \rightarrow W$ be a line	<u>THEOREM.</u> Let $T:V \rightarrow W$ be a linear operator where V and W are vector spaces over the same field K . If the null space N_T contains only the zeo vector, then T is a one-to-one mapping. Proof. We begin our proof of the theorem by first proving the following lemma: <u>Lemma.</u> Let $T:V \rightarrow W$ be a linear operator and $N_T = \{\vec{0}\}$. If $T(\vec{v}_1) = \vec{0}$, then $\vec{v}_1 = \vec{0}$. Proof of lemma: Let $T:V \rightarrow W$ be a linear operator, $N_T = \{\vec{0}\}$ and $T(\vec{v}_1) = \vec{0}$. By the definition					
of the null space we have that $T(\vec{v}_1) = \vec{0}$	t N _T = { $\vec{v} \in V: 18.(2 \text{ pt.})$		A B C D E so that			
implies that $\vec{v}_1 \in N_T$. Since N_T	contains 19.(1 pt.)		A B C D E, we			
have that $\vec{v}_1 = \vec{0}$ as was to be	proved.	QED for lea	mma.			
Having finished the proof of	the lemma, we now finisl	h the proof of the theorem	. To show that T			
is one-to-one, for $\vec{v}_1, \vec{v}_2 \in V$ w	ve assume 20.(1 pt.)		A B C D E			
and show that 21.(1 pt.)		ABCDF We use the				
STATEMENT/REASON for	 mat.					
STATEMENT	<u>REASO</u>	N				
$\mathbf{T}(\vec{\mathbf{v}}_1) = \mathbf{T}(\vec{\mathbf{v}}_2)$	22.(2 pt.))	A B C D E			
23.(2pt.)						
$T(\vec{v}_1 - \vec{v}_2) = \vec{0}$	24.(2 pt.	.)	A B C D E			
$\vec{v}_1 - \vec{v}_2 = \vec{0}$	25.(2 pt.))	A B C D E			
$\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_2$	Vector	algebra in V				
Hence T is one-to-one as was			O for the theorem.			

Possible answers for this page: A) $x_1 = 0$ B) $x_1 = x_2$ C) $x_1 + x_2 = 0$ D) $f(x_1 + x_2) = 0$ E) $f(x_1) = f(x_2)$ AB) $f(x_1) + f(x_2) = 0$ AC) $T(\vec{v}_1) = \vec{0}$ AD) $T(\alpha \vec{v}_1) = \alpha T(\vec{v}_1)$ AE) $T(\vec{v}) = \vec{0}$ BC) $T(\vec{v}_1) = T(\vec{v}_2)$ BD) Hypothesis (or Given) BE) only the zero vector CD) The lemma proved above

27. (4 pts.)
$$F(s) = \frac{-2s+4}{s^2+9}$$
 $\mathscr{L}^{-1}{F} =$ _____ A B C D E

28. (4 pts.)
$$F(s) = \frac{-2s+3}{s^2-2s+2}$$
 $\mathcal{L}^{-1}{F} =$ _____ A B C D E

Possible answers this page A) $2 + 3e^{2t}$ B) $2 - 3e^{2t}$ C) $-2 + 3e^{2t}$ D) $-2 - 3e^{2t}$ E) $2 + 3e^{-2t}$ AB) $2 - 3e^{-2t}$ AC) $-2 + 3e^{-2t}$ AD) $-2 - 3e^{-2t}$ AE) $2\cos 3t + 4\sin 3t$ BC) $2\cos 3t - 4\sin 3t$ AD) $-2\cos 3t + 4\sin 3t$ AE) $-2\cos 3t - 4\sin 3t$ BC) $2\cos t + (4/3)\sin 3t$ BC) $2\cos 3t - (4/3)\sin 3t$ AD)-2 cos 3t + (4/3) sin 3t AE) -2 cos 3t - (4/3) sin 3t BD) 2e^t cos t + 5e^t sin t BE) 2 e^t cos t - 5e^t sin t CD) -2e^t cos t + 5e^t sin t CE) -2e^t cos t - 5e^t sin t BD) 2e^t cos t + e^t sin t BE) 2 e^t cos t - e^t sin t CD) -2e^t cos t + e^t sin t CE) -2e^t cos t - e^t sin t ACDE) \mathcal{Q}^{-1} {f} exists but none of the above is \mathcal{Q} {f} BCDE) \mathcal{Q}^{-1} {f} does not exist. ABCDE)None of the above. Total points this page = 12. TOTAL POINTS EARNED THIS PAGE ______ MATH 261 EXAM 4A-2 Prof. Moseley Page 6 PRINT NAME _______ (_____) ID No. ______

Consider the IVP: ODE y'' + 4y = 0 IC's: y(0) = 3, y'(0) = -2Let $Y = \mathcal{L}{y(t)}(s)$.

29. (3 pts.) As discussed in class (attendance is mandatory), taking the Laplace transform of the ODE and using the initial conditions we may

obtain	ABCDE
Be careful, if you miss this question, you will also miss the next question.	
A) $s^{2}Y + 2s + 3 + 4Y = 0$ B) $s^{2}Y + 2s - 3 + 4Y = 0$ C) $s^{2}Y - 2s + 3 + 4Y = 0$: 0
D) $s^{2}Y - 2s - 3 - 4Y = 0$ E) $s^{2}Y + 3s + 2 - 4Y = 0$ AB) $s^{2}Y + 3s - 2 - 4Y = 0$	4 Y = 0
$AC)s^{2}Y - 3s + 2 - 4Y = 0$ AD) $s^{2}Y - 3s - 2 - 4Y = 0$ AE) $s^{2}Y - 2s + 4Y$	= 0
BC) s^2 Y - s - 3 + 4Y = 0 ABCDE) None of the above	
30. (3 pts.) The Laplace transform of the solution to the IVP	

is Y = _______A B C D E
A)
$$\frac{2s+3}{s^2+4}$$
 B) $\frac{2s-3}{s^2+4}$ C) $\frac{-2s+3}{s^2+4}$ D) $-\frac{2s+3}{s^2+4}$ E) $\frac{2s+3}{s^2-4}$ AB) $\frac{2s-3}{s^2-4}$
AC) $\frac{-2s+3}{s^2-4}$ AD) $-\frac{2s+3}{s^2-4}$ AE) $-\frac{2s}{s^2+4}$ BC) $\frac{3s-2}{s^2+4}$ ABCDE) None of the above

Total points this page = 6. TOTAL POINTS EARNED THIS PAGE _____MATH 261EXAM 4A-2Prof. MoseleyPage7

PRINT NAME _____(____) ID No. _____ Last Name, First Name MI, What you wish to be called

Answer questions using the instructions on the Exam Cover Sheet. Also, circle your answer.

31. (4 pts.) Let $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n} \subseteq V$ where V is a vector space and (*) be the vector equation $c_1 \vec{v}_1 + c_2 \vec{v}_2 + ... + c_n \vec{v}_n = \vec{0}$. Choose the correct completion of the following:

Definition. The set S is linearly independent

if ______A B C D E A). (*) has an infinite number of solutions. B)(*) has only the solution $c_1 = c_2 = \dots = c_n = 0$ C) (*) has a solution other than the trivial solution. D)(*) has at least two solutions. E) (*) has no solution. AB) the associated matrix is nonsingular. AC) the associated matrix is singular. ABCDE) None of the above 32. (4 pts.)Now let $S_1 = \{ [x_1(t), y_1(t), z_1(t)]^T, [x_2(t), y_2(t), z_2(t)]^T, \dots, [x_n(t), y_n(t), z_n(t)]^T \}$

 $\subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^3)$ and (**) be the "vector" equation $c_1 [x_1(t), y_1(t), z_1(t)]^T + c_2 [x_2(t), y_2(t), z_2(t)]^T + \dots + c_n [x_n(t), y_n(t), z_n(t)]^T = [0, 0, 0]^T \quad \forall t \in \mathbf{R}$ Apply the definition above to the space of time varying "vectors" $\mathcal{A}(\mathbf{R}, \mathbf{R}^3)$. That is, by the definition above the set $S_1 \subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^3)$ is linearly independent

if ______. A B C D E A)(**) has an infinite number of solutions B)(**) has only the solution $c_1 = c_2 = \cdots = c_n = 0$ C) (**) has a solution other than the trivial solution. D) (**) has at least two solutions. E) (**) has no solution. AB) the associated matrix is nonsingular. AC) the associated matrix is singular. ABCDE) None of the above Total points this page = 8. TOTAL POINTS EARNED THIS PAGE _____ MATH 261 EXAM 4A-2 Prof. Moseley Page8

PRINT NAME (Last Name, First Name MI, What you wish to be called

____) ID No. _____

Answer questions using the instructions on the Exam Cover Sheet. Also, circle your answer.

33. (4 pts.) You are to determine Directly Using the Definition (DUD) if the following set of time varying "vectors" are linearly independent. Let $S = \{\vec{x}_i(t), \vec{x}_i(t)\} \subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^2)$ where

$$\vec{\mathbf{x}}_{1}(t) = \begin{bmatrix} 3e^{t} \\ 4e^{t} \end{bmatrix}$$
 and $\vec{\mathbf{x}}_{2}(t) = \begin{bmatrix} 6e^{t} \\ 9e^{t} \end{bmatrix}$. Then S

is ______. A B C D E A) linearly independent as $c_1 \vec{x}_1 + c_2 \vec{x}_2 = [0,0]^T \quad \forall t \in \mathbf{R} \text{ implies } c_1 = c_2 = 0.$

B) linearly dependent as $c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t) = [0,0]^T$ $\forall t \in \mathbf{R}$ implies $c_1 = c_2 = 0$.

C) linearly independent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}.$

D) linearly dependent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}.$

E) linearly independent as the associated matrix is nonsingular.

D) linearly dependent as the associated matrix is nonsingular

AB) linearly independent as the associated matrix is singular.

AC) linearly dependent as the associated matrix is singular.

AD) neither linearly independent or linearly dependent as the definition does not apply.

ABCDE) None of the above statements are true.

Total points this page	= 4. TOTAL POINT	S EARNED THIS	PAGE	_		
MATH 261	EXAM 4A-2		Prof. Mosel	ey	Page 9	
PRINT NAME		() ID No			_
	Name, First Name M					
Answer questions usir	•			•		
	ure illustrated in class	(attendance is man	datory), find the e	eigenvalues	sof	
$\mathbf{A} = \begin{bmatrix} \mathbf{i} & 4 \\ 0 & -1 \end{bmatrix} \in \mathbf{C}^{2\mathbf{x}^2}.$						
34. (4 pts.) A polyno	omial $p(\lambda)$ where solvi	ing $p(\lambda) = 0$ yields	the eigenvalues of	f A can be	written	
as $p(\lambda) =$				ABCD	Ε	
	$(i+\lambda)(1-\lambda)$ C) $(i-\lambda)(1-\lambda)$					
	$D(i-\lambda)(2-\lambda)$ AE) (2i-					
BE) $(2i-\lambda)(1-\lambda)$ C	CD) $(2i+\lambda)(2+\lambda)$ CE)	$(2i+\lambda)(2-\lambda)$ DE)	$(2i-\lambda)(2+\lambda)$ AB	$BC)(2i-\lambda)($	2-λ)	
ABD) $(3i-\lambda)(2+\lambda)$	ABCDE)None of the	above.				
35. (2 pt.) The degree 4 E) 5 AB) 6 A	ee of p(λ) is AC) 7 ABCDE) Nor		CDE A)	1 B) 2	C) 3	D)
36. (2 pt.) Counting	repeated roots, the nu	mber of eigenvalue	es of A			
ic	ABCDE	A) $(0 \ B) 1 \ C$	(2 D) 3 F) <u>1</u> <u>A</u> R) 5	

is	·	ABCDE	A) 0	B) 1	C) 2	D) 3	E) 4	AB) 5
AC) 6	AD) 7	AE) 8	ABCDE	E) None	of the ab	ove		

37. (4 pts.) The eigenvalues of A can be written as ______A B C D E A) $\lambda_1 = 1$, $\lambda_2 = i$ B) $\lambda_1 = 1$, $\lambda_2 = -i$ C) $\lambda_1 = -1$, $\lambda_2 = i$ D) $\lambda_1 = -1$, $\lambda_2 = -i$ E) $\lambda_1 = 2$, $\lambda_2 = i$ AB) $\lambda_1 = 2$, $\lambda_2 = -i$ AC) $\lambda_1 = -2$, $\lambda_2 = i$ AD) $\lambda_1 = -2$, $\lambda_2 = -i$ AE) $\lambda_1 = 1$, $\lambda_2 = 2i$ BC) $\lambda_1 = 1$, $\lambda_2 = -2i$ BD) $\lambda_1 = -1$, $\lambda_2 = 2i$ BE) $\lambda_1 = -1$, $\lambda_2 = -2i$ CD) $\lambda_1 = 2$, $\lambda_2 = 2i$ CE) $\lambda_1 = 2$, $\lambda_2 = -2i$ DE) $\lambda_1 = -2$, $\lambda_2 = 2i$ ABC) $\lambda_1 = -2$, $\lambda_2 = -2i$ ABCDE) None of the above Total points this page = 12. TOTAL POINTS EARNED THIS PAGE _____MATH 261EXAM 4A-2Prof. MoseleyPage 10

PRINT NAME

____) ID No. _____

Last Name, First Name MI, What you wish to be called Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

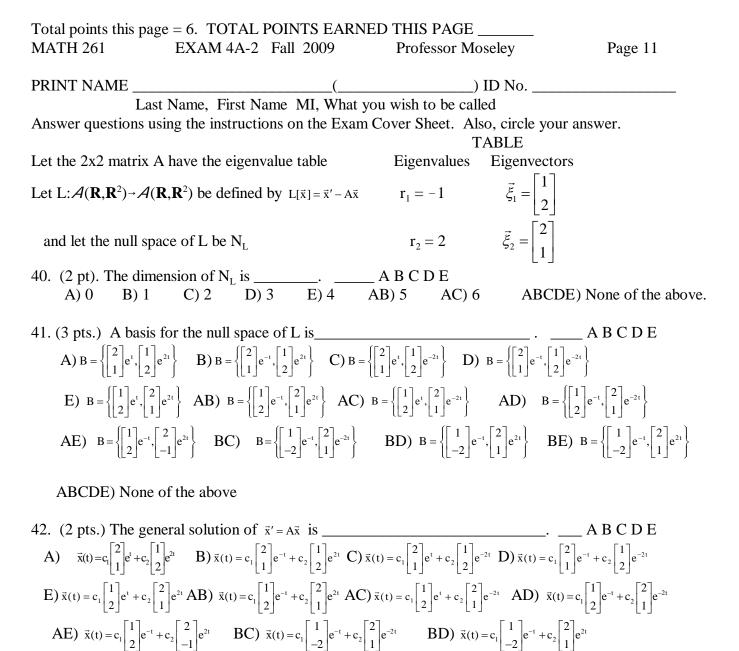
Note that $\lambda_1 = -1$ is an eigenvalue of the matrix $A = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$

38. (5 pts.) Using the conventions discussed in class (attendance is mandatory), a basis B for

___ABCDE the eigenspace associated with λ_1 is B = _____ C) $\{[1,2]^{T}\}$ D) { $[1,2]^{T}$, $[4,8]^{T}$ } A) $\{[1,1]^{\mathrm{T}}, [4,4]^{\mathrm{T}}\}$ B) $\{[1,1]^{T}\}$ E) { $[2,1]^{T}$ } AB) $\{[1,3]^{T}\}$ AC) { $[1,4]^{T}$ } AD) $\{[4,1]^T\}$ AE) { $[3,1]^{T}$ } BC) { $[1,-1]^{T}, [4,4]^{T}$ } BE) { $[1,-2]^{T}$ } CD) { $[1,-2]^{T}$, $[4,8]^{T}$ } BD) { $[1,-1]^{T}$ } CE) { $[2,1]^{T}$ } DE) { $[1,3]^{T}$ } ABC) { $[1, -4]^{T}$ } ABD) $\{[4, -1]^T\}$ ABE) $\{[3, -1]^T\}$ ACD) $\lambda = 2$ is not an eigenvalue of the matrix A ACE) $\lambda = -1$ is not an eigenvalue of the matrix A ADE) $\lambda = 3$ is not an eigenvalue of the matrix A ABCDE) None of the above is correct.

39. (1pt.) Although there are an infinite number of eigenvectors associated with any eigenvalue, the eigenspace associated with λ_1 is often one dimensional. Hence conventions for selecting eigenvector(s) associated with λ_1 have been developed (by engineers). We say that the eigenvector(s) associated with λ_1

__. ____A B C D E is (are) D) $[1,2]^{T}$, $[4,8]^{T}$ C) $\{[1,2]^{T}\}$ A) $[1,1]^{\mathrm{T}}, [4,4]^{\mathrm{T}}$ B) $[1,1]^{T}$ E) $[2,1]^{T}$ BC) $[1, -1]^{T}, [4, 4]^{T}$ AB) $[1,3]^{T}$ AC) $[1,4]^{T}$ AD) $[4,1]^{T}$ AE) $[3,1]^{T}$ BE) $[1,-2]^{T}$ CD) $[1,-2]^{T}$, $[4,8]^{T}$ CE) $[2,1]^{T}$ DE) $[1,3]^{T}$ BD) $[1, -1]^{T}$ ABC) $[1, -4]^{T}$ ABD) $[4, -1]^{T}$ ABE) $[3, -1]^{T}$ ACD) $\lambda_1 = 2$ is not an eigenvalue of the matrix A ACE) $\lambda_1 = -1$ is not an eigenvalue of the matrix A ADE) $\lambda = 3$ is not an eigenvalue of the matrix A ABCDE) None of the above is correct.



BE)
$$\vec{\mathbf{x}}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$
 ABCDE)None of the above

Total points this page = 7. TOTAL POINTS EARNED THIS PAGE _____