EXAM-4 FALL 2008

MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE

MATH 261 Professor Moseley

PRINT NAME_			()
Last Name,	First Name	MI	(What you	wish to b	e called)
ID #		_ EXAM DATE	Friday, Nov	vember 14	, 2008
I swear and/or affirm that all of the work presented on thi own and that I have neither given nor received any help d			page	Scores	s score
own and that I have hereful gives	That received any nexp	during the chain	1	11	T SCOTE
SIGNATURE		DATE	2	5	
INSTRUCTIONS: Besides this of	3	12			
tions and problems on this exam. MAKE SURE YOU HAVE ALL THE PAGES. If a page is missing, you will receive a grade of zero for that page. Page 15 contains Laplace transforms you need not memorize.				12	
				12	
Read through the entire exam. Is hand and I will come to you. Pla	•	6	6		
exam. Your I.D., this exam, and	hat you may have	7	6		
on your desk during the exam. NO CALCULATORS! NO SCRATCH PAPER! Use the back of the exam sheets if necessary. You may remove the staple if you wish. Print your name on all sheets. Pages 1-14 are Fill-in-the Blank/Multiple Choice or True/False. Expect no part credit on these pages. For each Fill-in-the Blank/Multiple Choice question write your answer in the blank provided. Next find your answer from the list given and write the corresponding letter or letters for your answer in the blank provided. Then circle this letter or letters. There are no free				4	
				6	
				4	
				8	
				5	
response pages. However, to inssolutions fully and carefully. Yo		13	5		
your final answer. SHOW YOUR WORK! Every thought you have should be expressed in your best mathematics on this paper. Partial cr will be given as deemed appropriate. Proofread your solutions and che			14	6	
			15		
your computations as time allow		16			
	T FOR REGRADE		17		
Please regrade the following pro (e.g., I do not understand what I			18		
			19		
			20		
(Regrades should be requested	within a week of the da	te the exam is	21		
returned. Attach additional she I swear and/or affirm that upon	22				
nothing on this exam except of changing anything is considered		Total	102		
Date Signature_					

MATH 261

EXAM 4

Fall 2008

Prof. Moseley

Page 1

PRINT NAME

Last Name, First Name MI, What you wish to be called

True-false. Laplace transforms.

- 1. (1 pts) A)True or B)False By definition, $\mathcal{L}\{f(t)\}(s) = \int_{t=0}^{t=\infty} f(t)e^{-st}dt$ provided the improper integral exists.
- 2. (1 pts) A)True or B) False Since the Laplace transform is defined in terms of an improper integral, it involves only one limit process.
- 3. (1 pts) A)True or B)False The Laplace transform exists for all continuous functions on $[0,\infty)$.
- 4. (1 pts) A)True or B)False The Laplace transform does not exist for any discontinuous functions.
- 5. (1 pts) A)True or B)False The function f(t) = 1/(t-3) is piecewise continuous on [0,7].
- 6. (1 pts) A)True or B)False The function $f(t) = e^{4t^2} \cos(t)$ is of exponential order.
- 7. (1 pts) A)True or B)False The Laplace transform \mathcal{L} : $\mathbf{T} \rightarrow \mathbf{F}$ is a linear operator.
- 8. (1 pts) A)True or B)False The inverse Laplace transform \mathcal{Q}^{-1} : $\mathbf{F} \rightarrow \mathbf{T}$ is a linear operator.
- 9. (1 pts) A)True or B)False The Laplace transform is a one-to-one mapping on the set of continuous functions on [0,∞) for which the Laplace transform exists.
- 10. (1 pts) A)True or B)False There is at most one continuous functions in the null space of \mathcal{Q} .
- 11. (1 pts) A)True or B)False The strategy of solving an ODE using Laplace transforms is to transform the problem from the time domain **T** to the (complex) frequency domain **F**, solve the transformed problem using algebra instead of calculus, and then transform the solution back to the time domain **T**.

Fall 2008 Prof. Moseley Page 2

PRINT NAME ______(_____) ID No. ______ Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

12. (5 pts.) The Laplace transform of the function $f(t) = \begin{cases} 5 & 0 \le t \le 8 \\ 0 & t > 8 \end{cases}$

is _____. A B C D E Hint: Use the definition. Be careful to handle the limit appropriately as discussed in class.

A)
$$\frac{8}{s}$$
 B) $\frac{-8}{s}$ C) $\frac{8}{s}e^{-5s}$ D) $\frac{-8}{s}e^{-5s}$ E) $\frac{8}{s}(1+e^{-5s})$ AB) $\frac{8}{s}(1-e^{-5s})$ AC) $\frac{8}{s}(e^{-5s}-1)$

AD)
$$\frac{5}{s}$$
 AE) $\frac{-5}{s}$ BC) $\frac{5}{s}e^{-8s}$ BD) $\frac{-5}{s}e^{-8s}$ BE) $\frac{5}{s}(1+e^{-8s})$ CD) $\frac{5}{s}(1-e^{-8s})$

CE)
$$\frac{5}{s}(e^{-8s}-1)$$
 ABC) $\frac{5}{s}(1-e^{8s})$ ABD) None of the above.

PRINT NAME ______ (______) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Compute the Laplace transform of the following functions.

13. (4 pts.)
$$f(t) = 2t + 3t^2$$
 $\mathcal{L}(f) =$ ______ A B C D E

14. (4 pts.)
$$f(t) = 2 e^{2t} + 3 e^{-3t}$$
 $\mathcal{Q}(f) =$ ______ A B C D E

15 (4 pts.)
$$f(t) = 2 \sin(2t) + 3 \cos(3t)$$
 $\mathcal{L}(f) =$ ______ A B C D E

Possible answers this page

A)
$$\frac{2}{s} + \frac{3}{s^2}$$
 B) $\frac{2}{s} - \frac{3}{s^2}$ C) $\frac{2}{s^2} + \frac{3}{s^3}$ D) $\frac{2}{s^2} - \frac{3}{s^3}$ E) $\frac{2}{s^2} + \frac{6}{s^3}$ AB) $\frac{2}{s^2} - \frac{6}{s^3}$

$$(\frac{2}{2} - \frac{3}{s^3})$$
 E)

E)
$$\frac{2}{s^2} + \frac{6}{s^3}$$
 AB)

AC)
$$\frac{2}{s+2} + \frac{3}{s+3}$$
 AD) $\frac{2}{s-2} + \frac{3}{s+3}$ AE) $\frac{2}{s+2} + \frac{3}{s-3}$ BC) $\frac{2}{s-2} + \frac{3}{s-3}$

AE)
$$\frac{2}{s+2} + \frac{3}{s-3}$$

BC)
$$\frac{2}{s-2} + \frac{3}{s-3}$$

BD)
$$\frac{2}{(s-2)^2} + \frac{3}{(s+3)^2}$$
 BE) $\frac{2}{s^2+2} + \frac{3s}{s^2+3}$ CD) $\frac{2s}{s^2+2} + \frac{3}{s^2+3}$ CE) $\frac{4}{s^2+4} + \frac{3s}{s^2+9}$

BE)
$$\frac{2}{s^2 + 2} + \frac{3s}{s^2 + 3}$$

CD)
$$\frac{2s}{s^2+2} + \frac{3}{s^2+3}$$

CE)
$$\frac{4}{s^2 + 4} + \frac{3s}{s^2 + 9}$$

DE)
$$\frac{2s}{s^2 + 4} + \frac{9}{s^2 + 9}$$

ABC)
$$\frac{4}{s^2 - 4} + \frac{3s}{s^2 - 9}$$

ABD)
$$\frac{2s}{s^2 - 4} + \frac{9}{s^2 - 9}$$

DE)
$$\frac{2s}{s^2+4} + \frac{9}{s^2+9}$$
 ABC) $\frac{4}{s^2-4} + \frac{3s}{s^2-9}$ ABD) $\frac{2s}{s^2-4} + \frac{9}{s^2-9}$ ABE) None of the above.

Total points this page = 12. TOTAL POINTS EARNED THIS PAGE ____

MATH 261	EXAM IV	Fall 2008	Prof. Moseley	Page 4
PRINT NAME		() ID No.	
I. Follow the inst	ast Name, First Nam ructions on the Exam	e MI, What you wish to Cover Sheet for Fill-in-t ne-to-one if $\forall x_1, x_2 \in X$	be called he Blank/Multiple Ch	
16.(2 pts.)	A B C	D E implies 17(2pt)		_ A B C D E
THEOREM. Let	T:V→W be a linear op	perator where V and W	are vector spaces over	r the same field K . If
the null space $N_{\scriptscriptstyle T}$	is $\{\vec{0}\}$, then T is a on	e-to-one mapping.		
Proof. We begin	our proof of the theor	rem by first proving the f	following lemma:	
	$\vec{0}$ } and $T(\vec{v}_1) = \vec{0}$, then			
Proof of lemma: I	Let us assume $N_T = \{\vec{0}\}$	and $T(\vec{v}_1) = \vec{0}$. By the d	lefinition of the null sp	pace we have
that $N_{\scriptscriptstyle T} = \{ \ \vec{v} \in V \colon$	18.(1 pt.)	A B C	CDE so that $T(\vec{v}_1) = 0$	implies that
$\vec{v}_1 \in N_T$. Since N_T	contains 19.(1 pt.)			A B C D E, we
	s was to be proved.		QED for lemma.	
Having finished th	ne proof of the lemma	, we now finish the proof	f of the theorem. To	show that T
is one-to-one, for	$\vec{v}_1, \vec{v}_2 \in V$ we assume	20.(1 pt.)		_A B C D E
and show that 21.	(1 pt.)		A B C D E.	We use the
STATEMENT/R				
STATEMEN		<u>REASON</u>		ADCDE
$T(\vec{v}_1) = T(\vec{v}_1)$	-			ABCDE
		DE Vector algebra in '	w 	A R C D E
$T(\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2) = \vec{0}$				
$\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2 = \vec{0}$ $\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_2$		Vector algebra in		
	o-one as was to be pro	· ·		the theorem.
Tience I is one to	one as was to be pro	ved.	QLD for	the theorem.
		$\mathbf{A}(\mathbf{C}) = \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{C} \mathbf{A}(\mathbf{C}) \mathbf{B} \mathbf{B} \mathbf{C} \mathbf{B} \mathbf{C} \mathbf{B} \mathbf{C}$		
		y the zero vector BE)		
		or algebra in W DE)	_	
ABD) $T(\vec{v}_1 - \vec{v}_2)$	$ABE) T(\vec{v}_1 - \vec{v}_2) = \vec{0} BC$	$(D) \text{Tr}_{\vec{V_1} + \vec{V_2}) = \vec{0}} BCE) \vec{v}$	$_{1} = \vec{0}$ BDE) T is a one	-to-one mapping
CDE) T is a linear	r operator ABCD) D	Definition of T ABCE) T		
ACDE) Definition	n of f BCDE) Non	e of the above.		

Total points this page = 12. TOTAL POINTS EARNED THIS PAGE _____

EXAM 4 Fall 2008 Prof. Moseley Page 5

PRINT NAME ______ (______) ID No. _____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Compute the inverse Laplace transform of the following functions.

26. (4 pts.)
$$F(s) = \frac{2}{s} + \frac{3}{s+2}$$
 $\mathcal{L}^{-1}{F} = \underline{\qquad}$ A B C D E

27. (4 pts.)
$$F(s) = \frac{2s+4}{s^2+9}$$
 $\mathcal{L}^{-1}{F} = \underline{\hspace{1cm}}$ A B C D E

28. (4 pts.)
$$F(s) = \frac{2s+3}{s^2-2s+2}$$
 $\mathcal{Q}^{-1}\{F\} = \underline{\hspace{1cm}}$ A B C D E

A)
$$2 + 3e^{2t}$$
 B) $2 + 3e^{-2t}$ C) $2 - 3e^{2t}$ D) $2 - 3e^{-2t}$ E) $2 + e^{-2t}$ AB) $2 \cos 3t + 4 \sin 3t$

AC)
$$2\cos 3t - 4\sin 3t$$

AD)
$$2 \cos 3t + (4/3) \sin 3t$$

AC)
$$2 \cos 3t - 4 \sin 3t$$
 AD) $2 \cos 3t + (4/3) \sin 3t$ AE) $3 \cos 3t - (4/3) \sin 3t$

BC)
$$2 \cos t + 3 \sin t$$

BD)
$$2e^{t} \cos t + 5e^{t} \sin t$$

BC)
$$2 \cos t + 3 \sin t$$
 BD) $2e^{t} \cos t + 5e^{t} \sin t$ BE) $2 e^{t} \cos t - 5e^{t} \sin t$

CD)
$$2e^t \cos t + e^t \sin t$$
 CE) $2e^t \cos t - e^t \sin t$ DE) None of the above

CE)
$$2 e^{t} \cos t - e^{t} \sin t$$

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

$$y'' + 4y = 0$$
 IC's

Consider the IVP: ODE
$$y'' + 4y = 0$$
 IC's $y(0) = 2$, $y'(0) = 3$ ($y(0) = 3$, $y'(0) = 2$)

Let $Y = \mathcal{L}\{y(t)\}(s)$.

29. (3 pts.) As discussed in class (attendance is mandatory), taking the Laplace transform of the ODE and using the initial conditions we may

obtain ____

bbtain ______. ___A B C D E Be careful, if you miss this question, you will also miss the next question.

A)
$$s^2Y + 2s + 3 + 4Y = 0$$

B)
$$s^2Y + 2s + 3 - 4Y = 0$$

C)
$$s^2Y - 2s - 3 + 4Y = 0$$

D)
$$s^2Y - 2s - 3 - 4Y = 0$$

E)
$$s^2Y + 3s + 2 + 4Y = 0$$

A)
$$s^2Y + 2s + 3 + 4Y = 0$$
 B) $s^2Y + 2s + 3 - 4Y = 0$ C) $s^2Y - 2s - 3 + 4Y = 0$ D) $s^2Y - 2s - 3 - 4Y = 0$ E) $s^2Y + 3s + 2 + 4Y = 0$ AB) $s^2Y + 3s + 2 - 4Y = 0$ AC) $s^2Y - 3s - 2 + 4Y = 0$ AD) $s^2Y - 3s - 2 - 4Y = 0$ AE) $s^2Y - 2s + 4Y = 0$

BC)
$$s^2Y - s - 3 + 4Y = 0$$
 BD) None of the above

30. (3 pts.) The Laplace transform of the solution to the IVP

is Y =

MATH 261

EXAM 4

Fall 2008

Prof. Moseley

Page 7

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Consider the system of ode's

$$x_1' = 3x_1 + 2x_2$$

 $x_2' = 2x_1 - 2x_2$

31. (1pt.) Solving the first equation for x_2 we obtain

E)
$$(3/2) x_1' + 2x_1$$
 AB) $2x_1' - x_1$ AC) $-2 x_1' + x_1$ AD) $-2x_1' - x_1$ AE) $2x_1' + 2x_1$

BC)
$$2x_1' - 2x_1$$
 BD) $-2x_1' + 2x_1$ BE) $x_1' - 2x_1$ CD) None of the above.

32. (5 pts.) Using the procedure illustrated in class (attendance is mandatory), eliminate x_2 in the system to obtain a single second order ODE in x₁. The ODE obtained by the process discussed

in class is ______. ____ A B C D E

 $A)x_1'' + 5x_1' + 2x_1 = 0$ $B)x_1'' + 5x_1' - 2x_1 = 0$ $C)x_1'' + 5x_1' + 10x_1 = 0$ $D)x_1'' + 5x_1' - 10x_1 = 0$ $E)x_1''$ $-5x_1' + 2x_1 = 0 \quad AB) \ x_1'' - 5x_1' - 2x_1 = 0 \quad AC)x_1'' - 5x_1' + 10x_1 = 0 \quad AD) \ x_1'' - 5x_1' - 10x_1 = 0 \quad AE)x_1'' + x_1'' - x_1$ $+2x_1 = 0$ BC) $x_1'' + x_1' - 2x_1 = 0$ BD) $x_1'' + x_1' + 10x_1 = 0$ BE) $x_1'' + x_1' - 10x_1 = 0$ $CD)x_1''-x_1'+2x_1=0$ $CE)x_1''-x_1'-2x_1=0$ $DE)x_1''-x_1'+10x_1=0$ ABC) $x_1''-x_1'-10x_1=0$ ABD) None of the above.

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

33. (4 pts.) Consider the scalar equation u'' + 4u' + 2u = 0 where u = u(t) (i.e. the dependent variable u is a function of the independent variable t so that u' = du/dt and u'' = du/dt). Convert this to a system of two first order equations by letting u = x and u' = y. (I.e. obtain two first order scalar equations in x and y. You may think of u = x as the position and u' = y as the velocity of a point particle). Now write this system of two scalar equations in the vector form

 $\vec{x}' = A\vec{x}$ where $\vec{x} = \begin{vmatrix} x \\ y \end{vmatrix}$ and A is a 2x2 matrix given by

_____. ____. A B C D E

A) $\begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ B) $\begin{bmatrix} 1 & 0 \\ -2 & 4 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 0 \\ -2 & -4 \end{bmatrix}$ E) $\begin{bmatrix} 1 & 0 \\ 4 & 2 \end{bmatrix}$ AB) $\begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix}$

 $AC) \begin{bmatrix} \begin{smallmatrix} 1 & & 0 \\ 4 & & -2 \end{bmatrix} \quad AD) \begin{bmatrix} \begin{smallmatrix} 1 & & 0 \\ -4 & & 2 \end{bmatrix} \quad AE) \begin{bmatrix} 1 & & 0 \\ -4 & -2 \end{bmatrix} \quad BC) \begin{bmatrix} \begin{smallmatrix} 0 & & 1 \\ 2 & & 4 \end{bmatrix} \quad BD) \begin{bmatrix} 0 & & 1 \\ & -2 & & 4 \end{bmatrix} \quad BE) \begin{bmatrix} \begin{smallmatrix} 0 & & 1 \\ 2 & & -4 \end{bmatrix}$

CD) $\begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix}$ CE) $\begin{bmatrix} 0 & 1 \\ 4 & 2 \end{bmatrix}$ DE) $\begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix}$ ABC) $\begin{bmatrix} 0 & 1 \\ 4 & -2 \end{bmatrix}$ ABD) $\begin{bmatrix} 0 & 1 \\ -4 & 2 \end{bmatrix}$

ABE) $\begin{vmatrix} 0 & 1 \\ -4 & -2 \end{vmatrix}$ BCD) None of the above.

MATH 261	EXAM IV	Fall 2008	Prof. Moseley	Page9	
) ID No		
	tions on the Exam Co	e MI, What you wish over Sheet for Fill-in-t	to be called he Blank/Multiple Choice	questions. Also,	
	· 1 2 n·		or space and (*) be the vec		
equation $c_1\vec{v}_1+c_2\vec{v}_2++c_n\vec{v}_n=\vec{0}$. Choose the correct completion of the following: <u>Definition</u> . The set S is linearly independent					
if			. A B C D E		
A) (*) has only C) (*) has a so E) (*) has no	If the solution $c_1 = c_2 = 0$ the solution other than the solution. AB) the as	$= \cdots = c_n = 0.$ B) (*) has an infinite number o(*) has at least two solutinsingular.		
	let $S_1 = \{ [x_1(t), y_1(t), and (**) be the "vect" \}$		$z_{2}(t)]^{T}$,, $[x_{n}(t), y_{n}(t),$	$z_n(t)]^T$ }	
			$[\mathbf{x}_{n}(t), \mathbf{y}_{n}(t), \mathbf{z}_{n}(t)]^{T} = [0, 0]^{T}$ vectors" $\mathcal{A}(\mathbf{R}, \mathbf{R}^{3})$. That		
by the definition above the set $S_1 \subseteq \mathcal{A}(\mathbf{R},\mathbf{R}^3)$ is linearly independent					

- if ______. A B C D E A) (**) has only the solution $c_1 = c_2 = \cdots = c_n = 0$. B) (**) has an infinite number of solutions C) (**) has a solution other than the trivial solution. D) (**) has at least two solutions.
- E) (**) has no solution. AB) the associated matrix is nonsingular.
- AC) the associated matrix is singular. AD) None of the above

MATH 261

EXAM IV

Fall 2008

Prof. Moseley

Page10

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

36. (4 pts.) You are to determine Directly Using the Definition (DUD) if the following set of time varying "vectors" are linearly independent. Let $S = \{\vec{x}_i(t), \vec{x}_j(t)\} \subseteq \mathcal{A}(\mathbf{R}, \mathbf{R}^2)$ where

$$\vec{x}_1(t) = \begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix}$$
 and $\vec{x}_2(t) = \begin{bmatrix} 6e^t \\ 8e^{-t} \end{bmatrix}$. Then S

- is ______ A B C D E A) linearly independent as $c_1 \vec{x}_1(t) + c_2 \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R} \text{ implies } c_1 = c_2 = 0.$
- B) linearly independent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}$.
- C) linearly independent as the associated matrix is nonsingular.
- D) linearly independent as the associated matrix is singular.
- E) linearly dependent as $c_1\vec{x}_1(t) + c_2\vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}$ implies $c_1 = 0$ and $c_2 = 0$.
- D) linearly dependent as $-2 \vec{x}_1(t) + \vec{x}_2(t) = [0,0]^T \quad \forall t \in \mathbf{R}$.
- AB) linearly dependent as the associated matrix is nonsingular.
- AC) linearly dependent as the associated matrix is singular.
- AD) neither linearly independent or linearly dependent as the definition does not apply.
- AE) None of the above statements are true.

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Using the procedure illustrated in class (attendance is mandatory) find the eigenvalues of $\mathbf{A} = \begin{bmatrix} i & 4 \\ 0 & 1 \end{bmatrix} \in \mathbf{C}^{2x2}.$

37. (3 pts.) A polynomial $p(\lambda)$ where solving $p(\lambda) = 0$ yields the eigenvalues of A can be written

____. __ A B C D E as $p(\lambda) =$ A) $(i+\lambda)(1+\lambda)$ B) $(i+\lambda)(1-\lambda)$ C) $(i-\lambda)(1+\lambda)$ D) $(i-\lambda)(1-\lambda)$ E) $(i+\lambda)(2+\lambda)$ AB) $(i+\lambda)(2-\lambda)$ AC) $(i-\lambda)(2+\lambda)$ AD) $(i-\lambda)(2-\lambda)$ AE) $(2i+\lambda)(1+\lambda)$ BC) $(2i+\lambda)(1-\lambda)$ BD) $(2i-\lambda)(1+\lambda)$ BE) $(2i-\lambda)(1-\lambda)$ CD) $(2i+\lambda)(2+\lambda)$ CE) $(2i+\lambda)(2-\lambda)$ DE) $(2i-\lambda)(2+\lambda)$ ABC) $(2i-\lambda)(2-\lambda)$ ABD) $(3i-\lambda)(2+\lambda)$ ABE)None of the above.

 $p(\lambda) =$

38. (1 pt.) The degree of $p(\lambda)$ is ______. _ A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC) 7 AD) None of the above.

39. (1 pt.) Counting repeated roots, the number of eigenvalues of A

AB) 5 AE) 8 BC) None of the above AC) 6 AD) 7

40. (3 pts.) The eigenvalues of A can be written as ______ . ___ A B C D E A) $\lambda_1 = 1$, $\lambda_2 = i$ B) $\lambda_1 = 1$, $\lambda_2 = -i$ C) $\lambda_1 = -1$, $\lambda_2 = i$ D) $\lambda_1 = -1$, $\lambda_2 = -i$ E) $\lambda_1 = 2$, $\lambda_2 = i$

AB) $\lambda_1 = 2$, $\lambda_2 = -i$ AC) $\lambda_1 = -2$, $\lambda_2 = i$ AD) $\lambda_1 = -2$, $\lambda_2 = -i$ AE) $\lambda_1 = 1$, $\lambda_2 = 2i$

BC) $\lambda_1 = 1$, $\lambda_2 = -2i$ BD) $\lambda_1 = -1$, $\lambda_2 = 2i$ BE) $\lambda_1 = -1$, $\lambda_2 = -2i$ CD) $\lambda_1 = 2$, $\lambda_2 = 2i$

CE) $\lambda_1 = 2$, $\lambda_2 = -2i$ DE) $\lambda_1 = -2$, $\lambda_2 = 2i$ ABC) $\lambda_1 = -2$, $\lambda_2 = -2i$ ABD) None of the above

PRINT NAME

(_____) ID No. ____ Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer.

Note that $\lambda_1 = 2$ is an eigenvalue of the matrix $A = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$

41. (4 pts.) Using the conventions discussed in class (attendance is mandatory), a basis B for

the eigenspace associated with λ_1 is B =________. ____A B C D E $C) \{[1,2]^T\}$ $D) \{[1,2]^T, [4,8]^T\}$ A) $\{[1,1]^T, [4,4]^T\}$ B) $\{[1,1]^T\}$ E) $\{[2,1]^T\}$ AB) $\{[1,3]^T\}$ AD) $\{[4,1]^T\}$ AE) $\{[3,1]^T\}$ BC) { $[1,-1]^T$, $[4,4]^T$ } AC) $\{[1,4]^T\}$ BE) $\{[1,-2]^T\}$ CD) $\{[1,-2]^T, [4,8]^T\}$ CE) $\{[2,1]^T\}$ DE) $\{[1,3]^T\}$ BD) $\{[1,-1]^T\}$ ABC) $\{[1,-4]^T\}$ ABD) $\{[4,-1]^T\}$ ABE) $\{[3,-1]^T\}$

ACD) $\lambda = 2$ is not an eigenvalue of the matrix A

ACE) $\lambda = -1$ is not an eigenvalue of the matrix A ADE) None of the above is correct.

42. (1pt.) Although there are an infinite number of eigenvectors associated with any eigenvalue, since the eigenspace associated with λ_1 is one dimensional and we have developed conventions for selecting a basis for the eigenspace associated with λ_1 , we say that the eigenvector associated

_. ____A B C D E with λ_1 is ___ C) $\{[1,2]^T\}$ D) $\{[1,2]^T, [4,8]^T\}$ A) $\{[1,1]^T, [4,4]^T\}$ B) $\{[1,1]^T\}$ E) $\{[2,1]^T\}$ BC) { $[1,-1]^T$, $[4,4]^T$ } AC) $\{[1,4]^T\}$ AD) $\{[4,1]^T\}$ AE) $\{[3,1]^T\}$ AB) $\{[1,3]^T\}$ BE) $\{[1,-2]^T\}$ CD) $\{[1,-2]^T, [4,8]^T\}$ BD) $\{[1,-1]^T\}$ CE) $\{[2,1]^T\}$ DE) $\{[1,3]^T\}$ ABC) $\{[1,-4]^T\}$ ABD) $\{[4,-1]^T\}$ ABE) $\{[3,-1]^T\}$

ACD) $\lambda_1 = 2$ is not an eigenvalue of the matrix A

ACE) $\lambda_1 = -1$ is not an eigenvalue of the matrix A ADE)None of the above is correct.

MATH 261	EXAM	4 Fall 2008	Prof. N	Moseley Page 13	
PRINT NAME _		() ID :	No	
L	ast Name, F	First Name MI, What yo	ou wish to be called		
U	×n square ma			is hypothesis, determine wh	icł
43. (1 pt.) A)True	e or B)False	A real square matrix ma	ny have only real eige	nvalues.	
44. (1 pt.) A)True	e or B)False	A real square matrix w	ill always have distin	ct eigenvalues.	
45. (1 pt.) A)True	e or B)False	A real symmetric matri	x will have only real	eigenvalues.	
46. (1 pt.) A)True	e or B)False	A Hermitian matrix wil	l always have real ei	genvalues.	
47. (1 pt.) A)True	e or B)False	A Hermitian matrix wil	l always have distinc	t eigenvalues.	

PRINT NAME _

(_____) ID No. ____

Last Name, First Name MI, What you wish to be called

Follow the instructions on the Exam Cover Sheet for Fill-in-the Blank/Multiple Choice questions. Also, circle your answer. **TABLE**

Let the 2x2 matrix A have the eigenvalue table

Eigenvalues Eigenvectors

Let L: $\mathcal{A}(\mathbf{R}, \mathbf{R}^2) \rightarrow \mathcal{A}(\mathbf{R}, \mathbf{R}^2)$ be defined by $L[\vec{x}] = \vec{x}' - A\vec{x}$ $r_1 = 1$ $\vec{\xi}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$

$$\vec{\xi}_1 = 1$$
 $\vec{\xi}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

and let the null space of L be N_L

$$\mathbf{r}_2 = 2 \qquad \qquad \vec{\xi}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

48. (1 pt). The dimension of N_L is ______. A B C D E
A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC) 7

- AD) None of the above.

AE)

A) $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} \right\}$ B) $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} \right\}$ C) $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-2t} \right\}$ D) $B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-2t} \right\}$ 49. (3 pts.) A basis for the null space of L is_____

$$\mathbf{A}) \mathbf{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} \right\}$$

$$\mathbf{B})\,\mathbf{B} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix} e^{-t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{2t} \right\}$$

C) B =
$$\left\{\begin{bmatrix} 2\\1 \end{bmatrix} e^{t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-2t} \right\}$$

$$\mathbf{D}) \mathbf{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} \right\}$$

E)
$$B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\}$$
 AB) $B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\}$ AC) $B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} \right\}$ AD) $B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} \right\}$

AB)
$$B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} \right\}$$
 A

$$\mathbf{BD}) \mathbf{B} = \left\{ \begin{bmatrix} 1 \\ e^{-t} \end{bmatrix} \begin{bmatrix} 2 \\ e^{2t} \end{bmatrix} \right\}$$

$$B = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} e^{2t} \right\} \quad BC) \quad B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} \right\} \quad BD) \quad B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\} \quad BE) \quad B = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \right\} \quad CD)$$

None of the above

50. (2 pts.) The general solution of $\vec{x}' = A\vec{x}$ is

A)
$$\vec{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^2$$

$$A) \qquad \vec{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} \qquad B) \ \vec{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{2t} \quad C) \ \vec{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-2t} \quad D) \ \vec{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-2t}$$

$$E) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \ AB) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \ AC) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} \ AD) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t}$$

AE)
$$\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} e^{2t}$$

BC)
$$\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2}$$

$$AE) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} e^{2t} \qquad BC) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} \qquad BD) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$

$$BE) \ \vec{x}(t) = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} \qquad CD) None \ of \ the \ above$$