EXAM-4 FALL 2005

MATH 261: Elementary Differential Equations EXAMINATION COVER PAGE

MATH 261 Professor Moseley

PRINT NAME			()
Last Name,	First Name	MI	(What you v	wish to be	called)
ID#		EXAM DATE	Friday, Nove	ember 18,	2005
I swear and/or affirm that all of t and that I have neither given nor	-		page	Scores points	score
			1	11	
SIGNATURE		DATE	2	5	
NSTRUCTIONS . Besides this cover page, there are 14 pages of questions and problems on this exam. Page 15 contains Laplace transforms you need not memorize. MAKE SURE YOU HAVE ALL THE PAGES. If a				12	
				12	
	5	6			
page is missing, you will receive a grade of zero for that page. Read through the entire exam. If you cannot read anything, raise your hand and I will come to you.				5	
and I will come to you. 2. Place your I.D. on your desk during the exam. Your I.D., this exam,			7	6	
and a straight edge are all that you may have on your desk during the exam. NO CALCULATORS! NO SCRATCH PAPER! Use the back of the exam sheets if necessary. You may remove the staple if				5	
				6	
you wish. Print your name on all sheets. 3. Pages 1-14 are multiple choice. Expect no part credit on these pages.			10	4	
There are no free response pages. However, to insure credit, you should explain your solutions fully and carefully. Your entire solution				4	
may be graded, not just you	r final answer. SHOV	V YOUR WORK!	12	5	
Every thought you have sho on this paper. Partial credit			13	14	
Proofread your solutions a	_		14	5	
allows. OOD LUCK!!			15		
REQUES	T FOR REGRADE		16		
Please regrade the following pro		I have indicated:			
(e.g., I do not understand what			17		
			18		
			19		
(Regrades should be requested	within a week of the d	ate the exam is	20		
returned. Attach additional she	ets as necessary to exp	olain your reasons.)	21		
I swear and/or affirm that upon nothing on this exam except of			22		
changing anything is considered		. (Total	100	
Date Signature_					

PRINT NAME () ID No.

Last Name, First Name MI, What you wish to be called

(11 pts) True-false. Laplace transforms.

True or False 1. By definition, $\mathcal{L}\{f(t)\}(s) = \int_{0}^{t=\infty} f(s)e^{-st}dt$ provided the improper integral exists.

True or False 2. Since the Laplace transform is defined in terms of an improper integral, it involves only one limit processes.

True or False 3. The Laplace transform exists for all continuous functions on $[0,\infty)$.

True or False 4. The Laplace transform does not exist for any discontinuous functions.

True or False 5. The function f(t) = 1/(t-3) is piecewise continuous on [3,7].

True or False 6. The function $f(t) = e^{4t} \cos(t)$ is of exponential order.

True or False 7. The Laplace transform $\mathcal{L}: \mathbf{T} \to \mathbf{F}$ is a linear operator.

True or False 8. The inverse Laplace transform $\mathcal{L}^{-1}: \mathbf{F} \to \mathbf{T}$ is not a linear operator.

True or False 9. The Laplace transform is a one-to-one mapping on the set of continuous functions on $[0,\infty)$ for which the Laplace transform exists.

True or False 10. There is more that one continuous function in the null space of \mathfrak{L} ..

True or False 11. The stategy of solving an ODE using Laplace transforms is not to transfrom the problem into the (complex) frequency domain, solve the transformed problem using algebra instead of calculus, and then transform the solution back to the time domaiin.

PRINT NAME _____(____) ID No. ______ Last Name, First Name MI, What you wish to be called

12. (5 pts.) Compute the Laplace transform of the function

$$f(t) = \begin{cases} 8 & 0 \le t \le 5 \\ 0 & t > 5 \end{cases}$$
 Hint: Use the definition. Be careful to handle the limit

appropriately as discussed in class.

Circle the correct answer below.

BC. None of the above.

Total points this page = 5. TOTAL POINTS EARNED THIS PAGE _____

MATH 261

EXAM 4

Fall 2005

Prof. Moseley

Page 3

PRINT NAME ______(____) ID No. _____

Last Name, First Name MI, What you wish to be called

(12 pts.) Compute the Laplace transform of the following functions. Then circle the letter corresponding to the Laplace transform of the function.

13.
$$f(t) = 2 + 3t$$
 A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE

14.
$$f(t) = 2 e^{2t} + 3 e^{-3t}$$
 A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE

$$15 \quad f(t) = 2 \sin(2t) + 3 \cos(3t) \qquad \qquad A \quad B \quad C \quad D \quad E \quad AB \quad AC \quad AD \quad AE \quad BC$$

$$BD \quad BE \quad CD \quad CE \quad DE \quad ABC \quad ABD \quad ABE$$

A.
$$\frac{2}{s} + \frac{3}{s^2}$$
, B. $\frac{2}{s^2} + \frac{3}{s^3}$, C. $\frac{2}{s^2} + \frac{3/2}{s^3}$, D. $\frac{2}{s^2} + \frac{1}{s^3}$, E. $\frac{1}{s} + \frac{1}{s^2}$, AB. $2 + \frac{3}{s}$

AC. $\frac{2}{s-2} + \frac{3}{s+3}$, AD. $\frac{2}{s+2} + \frac{3}{s-3}$, AE. $\frac{2}{s-3} + \frac{3}{s+2}$, BC. $\frac{2}{(s-3)^2} + \frac{3}{(s+3)^3}$,

BD. $\frac{2}{s-4} + \frac{4}{s+2}$, BE. $\frac{2}{s^2+1} + \frac{3s}{s^2+4}$, CD. $\frac{2s}{s^2+4} + \frac{3}{s+9}$, CE. $\frac{2}{s^2-1} + \frac{3}{s^2-4}$,

DE. $\frac{2}{s^2+4} + \frac{3}{s^2+9}$, ABC. $\frac{2}{s^2+4} + \frac{2s}{s^2+9}$, ABD. $\frac{2s}{s^2+4} + \frac{3}{s^2+9}$ ABE. None of the above.

Total points this page = 12. TOTAL POINTS EARNED THIS PAGE _____

MATH 261

EXAM 4

Fall 2005

Prof. Moseley

Page 4

_____(_____) ID No. _____ PRINT NAME _____

Last Name, First Name MI, What you wish to be called

(12 pts.) Compute the inverse Laplace transform of the following functions:

16.
$$F(s) = \frac{2}{s} + \frac{3}{s+2}$$
 A B C D E AB AC AD AE BC BD BE CD CE CF DE

17.
$$F(s) = \frac{2s+4}{s^2+9}$$
 A B C D E AB AC AD AE BC BD BE CD CE CF DE

$$18 \quad F(s) = \frac{2s+3}{s^2-2s+2} \qquad \qquad A \quad B \quad C \quad D \quad E \quad AB \quad AC \quad AD \quad AE \quad BC \quad BD$$

$$BE \quad CD \quad CE \quad CF \quad DE$$

A. $2 + 2e^{-2t}$, B. $3 + 2e^{-2t}$, C. $2 + 2e^{-3t}$, D. $2 + 3e^{-2t}$, E. $2 + e^{-2t}$, AB. $2\cos 3t + (4/3)\sin 3t = 2\cos 3t$ 3t,

AC. $2\cos 3t + 4\sin 3t$, AD. $2\cos 2t + (4/3)\sin 2t$, AE. $3\cos 3t + (4/3)\sin 3t$,

BC. $2 \cos 3t + 3 \sin 3t$, BD. $2 e^{t} \cos 3t + 5 e^{t} \sin 3t$, BE. $2 e^t \cos t + 5 e^t \sin t$, CE. $5 e^{t} \cos 3t + 5 e^{t} \sin 3t$, DE. None of the above CD. $2 e^{t} \cos 3t + 2 e^{t} \sin 3t$, Total points this page = 12. TOTAL POINTS EARNED THIS PAGE Fall 2005 EXAM 4 Prof. Moseley MATH 261

PRINT NAME ______ (_____) ID No. Last Name, First Name MI, What you wish to be called

Consider the IVP: ODE y'' + 4y = 0 IC's y(0) = 2, y'(0) = 0

19. (3 pts.) Letting $Y = \mathcal{L}\{y(t)\}(s)$, compute the Laplace transform of the ODE using the IC's. Circle the correct answer. Be careful, if you miss this question, you will also miss the next question.

A.
$$s^2Y - 2s - 1 + 4Y = 0$$
,

B.
$$s^2Y - 2s + 4Y = 0$$
,

C.
$$s^2Y - 2 + 4Y = 0$$
,

D.
$$s^2Y - s - 1 + 4Y = 0$$
,

E.
$$s^2Y + s + 1 - 4Y = 0$$
.

Page 5

AC.
$$s^2Y - 2s - 2 + 4Y = 0$$
, AD. $s^2Y + 2s + 2 + 4Y = 0$, AE. $s^2Y - 2s + 4Y = 0$,

AE.
$$s^2Y - 2s + 4Y = 0$$
.

BC. $s^2Y - s - 1 + 4Y = 0$, BD. None of the above

20. (3 pts.) Now use algebra to solve in the frequency domain for the Laplace transform of the solution to the IVP.

A.
$$Y = \frac{2s+1}{s^2+4}$$
, B. $Y = \frac{2s}{s^2+4}$, C. $Y = \frac{-2}{s^2+4}$, D. $Y = \frac{s+1}{s^2+4}$,

B.
$$Y = \frac{2s}{s^2 + 4}$$

C.
$$Y = \frac{-2}{s^2 + 4}$$

D.
$$Y = \frac{s+1}{s^2+4}$$

E.
$$Y = \frac{-s-1}{s^2+4}$$
,

AB.
$$Y = \frac{2s+2}{s^2+4}$$

AC.
$$Y = \frac{2s+1}{s^2+4}$$

E.
$$Y = \frac{-s-1}{s^2+4}$$
, AB. $Y = \frac{2s+2}{s^2+4}$, AC. $Y = \frac{2s+1}{s^2+4}$, AD. $Y = \frac{2s+1}{s^2+4}$,

AE.
$$Y = \frac{2s+1}{s^2+4}$$
, BC. $Y = \frac{2s+1}{s^2+4}$, BD. None of the above

BC.
$$Y = \frac{2s+1}{s^2+4}$$

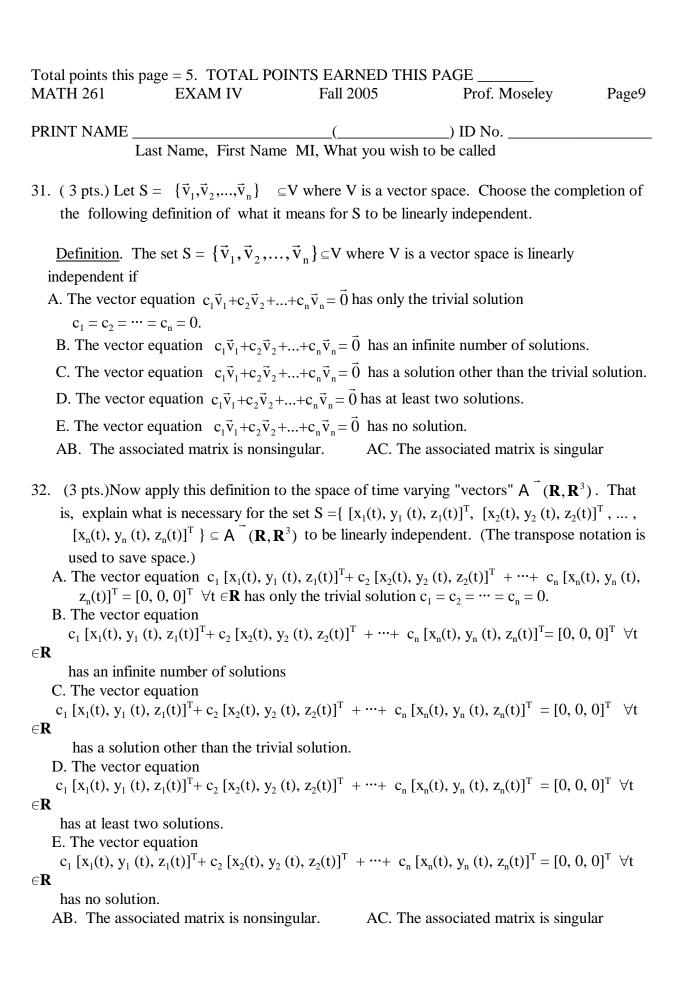
Total points th	nis page = 6. TOTAL POI	NTS EARNED T	HIS PAGE	
MATH 261	EXAM 4	Fall 2005	Prof. Moseley	Page 6
PRINT NAMI	E Last Name, First Name			
Assume A is a	or false. Eigenvalue Problem n×n square matrix of posch of the following is true	ssibly complex nur	mbers. Under this hypothesis,	
True or False	21. A real square matrix	will have only real	eigenvalues.	
True or False	22. A real square matrix	will have only disti	nct eigenvalues.	
True or False	23. A real symmetric matri	rix will have only r	eal eigenvalues.	
True or False	24. A Hermitian matrix w	vill have only real e	eigenvalues.	

True or False 25. A Hermitian matrix will have only distinct eigenvalues.

_							. ~-			
	tal points this p ATH 261	•				THIS P.				Page 7
PR	INT NAME	ast Name, Fi								
	L	ast Name, 11	ist maine	1011, 001	nat you	wish to	be caned			
	Consider the	matrix A =	$\begin{bmatrix} i & 3 \\ 0 & 1 \end{bmatrix} \in \mathbf{C}$	$\mathbf{C}^{2\times 2}$.						
26.	(1 pt.) The o	degree of the	polynomia	al where	the sol	ution of	$p(\lambda) = 0$	yields the	eige	nvalues of
abo	A is	A. 1, B. 2	, C.3,	D. 4,	E. 5,	AB.6,	AC. 7,	AD. No	ne of	the
27.	(2 pt.) The J	polynomial p(λ) where	the solut	tion of 1	$p(\lambda) = 0$	yields the	e eigenval	ues o	f A
Γ	is D. $p(\lambda) = (\lambda+1)$ O. AD. None	$(\lambda + i)$, E. p(λ	$\lambda = (\lambda - 3)$	_						
28.	(1 pt.) Coun	ting repeated	roots, the	matrix A	A given	above l	nas how n	nany eige	nvalu	es?
	A. 0, B	1, C. 2,	D. 3,	E 4,	AB.	5, A	AC. 6,	AD. 7	,	AE. 8.
29.	(2 pts.) The	eigenvalues o	f A are	··						
3i,	A. $\lambda_1 = 2$, λ	$\lambda_2 = i$, B. $\lambda_1 =$	$= 1, \ \lambda_2 = 2$	2i, C. λ ₁	$_{1}=1, \lambda$	$_2 = i$, D	$\lambda_1=3,$	$\lambda_2 = i$, E	λ. λ ₁ =	λ_1 : 1, λ_2 =
	BC. $\lambda_1 = -1$, λ	$A_2 = 2i$, AC. $A_2 = -2i$, BD.								

Total points this page = 6. TOTAL POINTS EARNED THIS PAGE _____ MATH 261 EXAM 4 Fall 2005 Prof. Moseley

Page 8


PRINT NAME ______(____) ID No. ______

Last Name, First Name MI, What you wish to be called

30. (5 pts.)
$$\lambda = 2$$
 is an eigenvalue of the matrix $A = \begin{bmatrix} 3 & -1 \\ 4 & -2 \end{bmatrix}$. Using the conventions

discussed in class (attendance is mandatory), find a basis B for the eigenspace associated with this eigenvalue. Such vectors are usually called the eigenvectors associated with the eigenvalue $\lambda = 2$. Circle the correct answer. Recall that basis sets are not unique so that conventions discussed in class are mandatory.

A.
$$B = \{[1,1]^T, [4,4]^T\}$$
, B. $B = \{[1,1]^T\}$, C. $B = \{[1,2]^T\}$, D. $B = \{[1,2]^T, [4,8]^T\}$
E. $B = \{[2,1]^T\}$ AB. $B = \{[1,3]^T\}$ AC. $B = \{[1,4]^T\}$, AD. $B = \{[4,1]^T\}$
AE. $B = \{[3,1]^T\}$, BC. $B = \emptyset$ BD. None of the above.

Total points this	page = 6. TOTAL PO	INTS EARNED THI	S PAGE	
MATH 261	EXAM IV	Fall 2005	Prof. Moseley	Page10
PRINT NAME		() ID No	
	Last Name First Name	e MI What you wish	to be called	

33. (4 pts.) You are to determine Directly Using the Definition (DUD) if the following set of time varying "vectors" are linearly independent. Let $S = \{\vec{x}_1, \vec{x}_2\} \subseteq A$ (R, R^2) where

$$\vec{x}_1 = \begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix}$$
 and $\vec{x}_2 = \begin{bmatrix} 6e^t \\ 8e^{-t} \end{bmatrix}$. Thus you are to determine if the set S is linearly independent.

Circle the statement that is true.

A. S is linearly independent as $c_1 \begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix} + c_2 \begin{bmatrix} 6e^t \\ 8e^{-t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \forall t \in \mathbf{R}$ implies $c_1 = 0$ and $c_2 = 0$.

B. S is linearly independent as $-2\begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix} + \begin{bmatrix} 6e^t \\ 8e^{-t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \forall t \in \mathbf{R}.$

C. S is linearly dependent as $c_1\begin{bmatrix} 3e^t\\ 4e^t \end{bmatrix} + c_2\begin{bmatrix} 6e^t\\ 8e^{-t} \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix} \quad \forall t \in \mathbf{R} \text{ implies}$ $c_1 = 0 \text{ and } c_2 = 0.$

D. S is linearly dependent as $-2\begin{bmatrix} 3e^t \\ 4e^t \end{bmatrix} + \begin{bmatrix} 6e^t \\ 8e^{-t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \forall t \in \mathbf{R}.$

E. S is neither linearly independent or linearly dependent as the definition does not apply.

AB. None of the above statements are true.

Total points this p	page = 4 . TOTA	AL POINTS EARNE	D THIS PAGE _		
MATH 261	EXAM IV	Fall 2005	Pro	of. Moseley	Page 11
PRINT NAME _		() ID :	No	
I	Last Name, First	Name MI, What yo	ou wish to be call	ed	
variable u is a Convert this t two first orde as the velocity	a function of the to a system of the or scalar equation by of a point part	equation $u'' + 4u' - 4u'$ independent variable wo first order equations in x and y; you make icle). Now write to $\vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ and A is a	et so that u' = du ons by letting u = ay think of u = x his system of two	u/dt and u" = = x and u' = as the position scalar equa	= du/dt). y (i.e. obtaing and u' = yutions in the
		B. $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & 2 \end{bmatrix}$.* _ 		
D. $\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$	$E. \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & -4 \end{bmatrix}$	$\begin{bmatrix} x \\ y \end{bmatrix}$, AB.	$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	$ \begin{array}{c c} 1 & x \\ 4 & y \end{array} $
AC. $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$	AD. $ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} $	$\begin{bmatrix} 1 \\ -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \qquad A$	AE. None of	f the above.

Total points this page = 4. TOTAL POINTS EARNED THIS PAGE						
MATH 261	EXAM 4	Fall 2005	Prof. Moseley	Page 12		
			·			
PRINT NAME		() ID No			
	Last Name, First Nan	ne MI, What you wish	to be called			

35. (5 pts.) Using the procedure illustrated in class (attendance is mandatory), eliminate x_2 in the following system to obtain a single second order ODE in x_1 .

$$x_1' = 3x_1 - 2x_2$$

 $x_2' = 2x_1 - 2x_2$

This ODE is: A.
$$x_1'' + x_1' + 2x_1 = 0$$
, B. $x_1'' + x_1' - 2x_1 = 0$, C. $x_1'' - x_1' + 2x_1 = 0$, D. $x_1'' - x_1' - 2x_1 = 0$, E. $x_1'' + 2x_1' + x_1 = 0$, AB. $x_1'' + 2x_1' - x_1 = 0$, AC. $x_1'' - 2x_1' + x_1 = 0$, AD. $x_1'' - 2x_1' - x_1 = 0$, AE. $x_1'' + 2x_1' + 2x_1 = 0$, BC. $x_1'' + 2x_1' - 2x_1 = 0$, BD. $x_1'' - 2x_1' + 2x_1 = 0$, BE. $x_1'' - x_1' - 2x_1 = 0$, CD. None of the above.

Total points this page	e = 5. TOTAL POINTS	S EARNED THIS PA	GE	
	EXAM IV	Fall 2005		Page 13
PRINT NAME		() ID No	
	Name, First Name Ml			
	etter(s) for the possible $f: X \rightarrow Y$. Then f is one-to-	~		
THEOREM . Let T	:V→W be a linear opera	tor where V and W ar	e vector spaces over	the same
field K . If the null sp	pace N_T is $\{\vec{0}\}$, then T	is a one-to-one mappi	ng.	
_	proof of the theorem b	= =	_	
•	and $T(\vec{v}) = \vec{0}$, then $\vec{v} = \vec{0}$			
Proof of lemma: Let definition	us assume <u>37.(1 pts.)</u>	(give the hypo	thesis of the lemma)	. By the
of the null space, N_T $\bar{v} \in N_T$.	$= \{ \vec{v} \in V: \underline{38.(2 \text{ pts.})} $	} so that <u>39</u>	9.(1 pts.) im	plies that
	, we have that _41	(1pt.)		ed. D for
lemma.			QEI	J 101
	proof of the lemma, we	now continue with the	proof of the theorem	n. To
	sume <u>42.(1 pts.)</u>		at 43.(1 pts.)	·
	MENT/REASON FORM			
<u>STATEMENT</u>		REASON		
$T(\vec{v}_1) = T(\vec{v}_2)$		44. (1 pt.)		
45. (1pt.)		Vector algebra in W		
$\vec{v}_1 - \vec{v}_2 = \vec{0}$		46(1 pt.)		
$\vec{\mathrm{v}}_{1} = \vec{\mathrm{v}}_{2}$		47. (1 pt.)		
Hence T is one-to-or	ne as was to be proved.			
	r r		QED for the theore	em.
Possible answers.				
A. $f(x_1) = f(x_2)$ implies	es $x_1 = x_2$, B. $f(x_1) = f(x_2)$	(x_2) , $C.x_1 = x_2$, $D.x_1 = x_2$	$= x_2 \text{ implies } f(x_1) = f(x_2)$	$(x_2),$
E. $N_T = \{\vec{0}\}$ and $T(\vec{v})$	$(a) = \vec{0}, AB. T(\alpha \vec{v}_1)$	$\alpha = \alpha T(\vec{v}_1), AC. T$	$\Gamma(\alpha \vec{v}_1 + \beta \vec{v}_2) = \alpha T(\vec{v}$	1)+
$\beta T(\vec{v}_2),$				
AD. $T(\vec{v}) = \vec{0}$, All	E. $N_T = \{\vec{0}\}, BC. Hy$	pothesis (or Given),	BD. $T(\vec{v}_1) = T(\vec{v}_2)$),
	red above, CD. Vecto	=	_	
	C. $\vec{v}_1 = \vec{v}_2$, ABD. T(
	is a one-to-one mappin			
of T,			, =====	

ABCE .Theore	ems from Calculus,	ACDE. Defi	nition of T,	BCDE,	None of the	e above.	
Total points th	is page = 14. TOTA	L POINTS EA	ARNED THIS	PAGE			
MATH 261	EXAM IV	Fall	2005	Prof. I	Moseley	Page 14	
PRINT NAMI	Ξ	(_		_) ID No			
	Last Name, First						
48. (5 pts.) Yo	ou are to solve the fo	ollowing Boun	dary Value Pro	oblem (BV	P).		
BVP	ODE $y'' + y = 0$.						
DVI	BC's $y(0) = 0$, $y($	$(\pi)=0$					
The solution	The solution set S for this BVP is $S = \underline{\hspace{1cm}}$.						
A. ∅ (i.e	e. the BVP has no so	olution)	B. {sin x }	C. {	$\{\cos x\}$		
D. { c sin	$\mathbf{x}: \mathbf{c} \in \mathbf{R}$ E. {	$c\cos x: c\in \mathbf{R}$	AB. {ta	an x } A	C. { c tan	$x: c \in \mathbb{R}$,	
AD. None	of the above sets is	the solution se	t for this boun	dary value	problem.		

Total points this page MATH 261	e = 5. TOTAL POINTS E EXAM 4	ARNED THIS PAG	EE Professor Moseley	Page 15
	Name, First Name MI, W LAPLACE TRANSFORM	-		D
$f(t) = \mathcal{L}^{-1}\{F(s)\}$	F	$f(\mathbf{s}) = \mathcal{L}\{\mathbf{f}(\mathbf{t})\}$		Domai n F(s)
))))))))))))))))))))))))))))
t^n n = positive integer	er	$\{n,n,n\}$:	s > 0
sinh (at)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:	s > *a *
cosh (at)		<u> </u>	,	s > *a *
e ^{at} sin (bt)		(s)) b) } }) }	;	s > a
e ^{at} cos(bt)		$\left(s^{\frac{1}{2}}\right)^{\frac{3}{2}}\left(s^{\frac{1}{2}}\right)^{$:	s > a
$t^n e^{at}$ $n = positive interpretation t^n e^{at}$	eger		:	s > a
u(t))_{S}^{1})	:	s > 0
u(t - c)		9-cs)		s > 0
$e^{ct}f(t)$		F(s - c)		
f(ct) $c > 0$		¹ / _c F (^S / _c)		
$\delta(t)$		1		
$\delta(t - c)$		e ^{-cs}		