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Handout #1 INTRODUCTION TO PARTIAL DIFFERENTIAL Prof. Moseley
EQUATIONS   (PDES)

We begin by giving several examples of partial differential equations.  For each equation,
be able to identify its common name and the physical situation that it is used to model.  To obtain
a complete model of the dynamic behavior of a physical situation, boundary and initial
conditions must be specified for the partial differential equation.  For steady-state (equilibrium)
behavior, only boundary conditions are needed.

          PDE COMMON NAME USED TO MODEL

tt xx1.  u   =  c  u 1-(space) dimensional Dynamic behavior of the vibrations2

tt xx    ( u  )  c  u   = 0) wave equation  in a taut elastic string with no 2

    (homogeneous) external force applied to the string.

t xx2.  u   =  c  u 1-(space) dimensional Dynamic behavior of heat 2

conduction

t xx     (u   )  c  u   = 0) heat (diffusion) equation in a rod (bar) with no external heat2

     (homogeneous) source applied to the rod.

xx yy3. u  + u   =  0 2-(space) dimensional 1. Steady state deformation of a 
     (homogeneous) Laplace's equation drum head with boundary 

deformation and no external force 
applied to the drum head.

2. Steady state heat conduction in a 
plate with an external non-

time- varying heat source applied to the
plate.

xx yy4. u  + u   =  f(x,y) 2-(space) dimensional 1. Steady state deformation of an  
    (nonhomogeneous) Poisson's equation elastic drum head with fixed 

boundary deformation and an 
external non-time-varying force 
(e.g. gravity or a mechanical force) 

on the drum head..
2. Steady state heat conduction in a 
plate with an external non-time-

       varying heat source applied to the plate.

tt xx yy5. u   =  c  (u  + u ) 2-(space) dimensional Dynamic behavior of the vibrations2

tt xx yy    (u  )  c  (u  + u ) = 0 ) wave equation of an elastic drum head with no2

    (homogeneous) external force applied to the drum 
head.
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t xx yy6.  u   =  c  (u  + u ) 2-(space) dimensional Dynamic behavior of heat 2

conduction

t xx yy    (u  )  c  (u  + u )  = 0) heat (diffusion) equation in a plate with no external heat 2

      (homogeneous) source applied to the plate.

xx yy zz7.  u   +  u   + u  =  0 3-(space) dimensional 1. Steady state  deformation of an
      (homogeneous) Laplace's equation elastic body in space with boundary   
   (Using the L notation deformations but no external force 
         L@Lu = L u = 0) applied internally to the body.2

2. Steady state heat flow in a body 
with no external heat source applied 
internally to the body.

xx yy zz8. u  + u   + u   =  f(x,y) 3-(space) dimensional 1. Steady state  deformation of an
    (nonhomogeneous) Poisson's equation elastic body in space with an external 
    (Using the L notation non-time-varying force (e.g. gravity)  
       L@Lu = L u = 0) applied internally to the body.2

2. Steady state heat flow in a body 
with  no external non-time-varying 
heat source applied internally to the 
body.

tt xx yy zz9. u   =  c  (u  + u  + u ) 3-(space) dimensional Dynamic behavior of the vibrations2

tt xx yy zz  ( u  ) c  (u  + u  + u )= 0 )     wave equation of an elastic body with no external     2

    (homogeneous) force applied internally to the 
   (Using the L notation body.

tt      u   =  L@Lu = L u)2

t xx yy zz10.  u   =  c  (u  + u  + u ) 3-(space) dimensional Dynamic behavior of heat 2

conduction 

t xx yy zz   (u  ) c  (u  + u  + u ) = 0 )     heat (diffusion) equation in a body in space with no external     2

    (homogeneous) heat source applied internally to the    
  (Using the L notation body.

t   u   =  L@Lu = L u)2

Ch. 4 Pg. 3



PDE's DERIVATION OF THE HEAT CONDUCTION EQUATION
Handout #2 USING CONSERVATION OF ENERGY Prof. Moseley

     To develop a mathematical model for heat conduction in a rod, we first use conservation of
energy to determine how heat flows in within the rod.  This results in the heat (or diffusion)
equation.  We begin this process by noting some facts about heat conduction.  These are a result
of experimentation, observation, and measurement to validate theoretical physics.
     1.  Conservation of energy.  Heat energy is neither created or destroyed in the rod or bar.
     2.  Fourier's Law (Newton's "Microscopic or Continuous" Law of Cooling) The rate at which
heat energy H is transferred through an area A is proportional to A and to the directional
derivative of the temperature field normal to the area
     3.  Heat flows in the direction of decreasing temperature  T (i.e. hot to cold).  This is a result
of the convention of using a scale that assumes that hotter bodies (i.e. those with more internal
energy) have a higher temperature than cooler bodies (those with less internal heat energy).

 Thus, in general 

x y z =   k A  ( ) L T @ ) =  ) k A(    +     +   ) @  ( n    +  n     +  n ) 

x y z=  ) k A(   n  +      n  +   n )     

where L @ T is the gradient of the scalar field of temperatures T = T(x, y, z, t) = T( , t),

x y z  = n   + n   + n    is the unit normal  to the area A which points in the positive direction

and has unit length, and k is the proportionality constant.  For a long rod (or bar) of length R that
is insulated on its sides, we assume that T = T(x,t)  (i.e. that the temperature does not vary over
the cross section and hence heat flows only in the direction of  ) MT/Mx.  

       ////////////////////////////////////////////////////////////////////////////////////////////////////////
   ')))))))))))))))))))))))))))))))))))))))))))))))))) '* 

   '           ' *
 /))))))))))))))))))))))))))))))))))))))))))))))))))'   *
*          *  '
*          *'
  ))))))))))))))))))))))))))))))))))))))))))))))))))
 /////////////////////////////////////////////////////////////////////////////////////////////////////////
 ))))))))))))))))))))))))))))))))))))))))))))))))))))))))v X *           *

 0           R
Before proceeding, we review Newton's Law of Cooling as developed for first order ODEs:

0When two bodies are in contact with one kept at a constant temperature T  , then the rate at
which the temperature of the other body changes is proportional to the difference in temperature
between the two bodies.  That is,
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0  = -k ( T ) T  ). (1)

The minus sign insists that heat flow from hot to cold.   The difference in temperatures 

0(T ) T ) corresponds to the directional derivative in the microscopic (continuous) model.

  ')))))))))))))))))))' 

      ' ' *               '*
  /)))))))))) A*)))))))  *
 0   * T * ' T      * '

* *'          *'
  ))))))))))))))))))))
  Body 1               Body 2
      ))))))))))))))))))v

0   Direction of heat flow if  T  >  T

We might refer to Eq. (1) as the macroscopic (or discrete) form of Newton's Law of Cooling 
since it gives only macroscopic effects.  Realistically, we cannot sustain a jump discontinuity 
between two bodies in contact.  

        ÄV
  '))))))))))))))))))))'))))))))))))))))))))))))))))' 

 '  '  ,    '*           '* 

  /)))))))))))))))))))) A*)' *)))))))))))))))))))))) ')*
* *  '     '         * '
* *'   *'         *'
  )))))))))))))))))))))))))))))))))))))))))))))))))

x      x+Äx
 )))))))))))))))))))))))))))))))))))))))))))))))))))))))v X *           *

 0           R

We apply the Law of Conservation of energy to the volume ÄV by calculating the rate at which
the heat is flowing out of the volume ÄV in two ways.  We first compute the heat flowing across
the boundary.  To do this we  apply Fourier's Law (Newton's "Microscopic or Continuous" Law
of Cooling) to the two cross sectional boundaries, the one at x and the one at x+Äx.  Let 

T(x,t) =  the temperature distribution over the rod at time t and  

ÄVH  = Quantity of heat energy in the volume ÄV.

Then Fourier's Law implies

Rate at which Heat energy crosses any cross section A (to the right)    =   ) K A 

where MT/Mx is evaluated at that cross section and

K = thermal conductivity  (  )  = proportionality constant.

For any volume in space, the rate at which heat energy crosses the boundary of  the volume is
given by the surface integral (i.e. we sum up the heat flow through all of the boundaries):
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Rate at which heat energy crosses the boundary   = .

Since the sides are insulated, there is no heat flow out of the sides.  Since the heat flow 

into ÄV is   ,  the heat flow out of ÄV is given by  

)      =  ( Heat flow out at x+Äx)  )   ( Heat flow in at x ) 

x x x        =  ( ) K A T (x+Äx,t)  )  )  ( ) K A T (x,t) )               ( T (x,t) = MT/Mx )   

x x        =   ) K A  (   T (x+Äx,t)   )  T (x,t)   ) (2)

On the other hand, we can also calculate the heat flow out of the volume LV as follows:

ÄVH   =  Quantity of  heat energy in ÄV = Sum of the energy in each dV in ÄV

        =  = s ñ A  . s ñ A T(x,t) Äx 

where  s   =   specific heat  (  )

          ñ  =   mass density  (  )

Units check  (dimensional analysis)

s ñ A T Äx -  (  )   (  ) ( cm  ) ( deg ) ( cm)  = ( calories) 2

Since  the  heat flow into ÄV  is   , the heat flow out of ÄV is 

t )     .  )  s ñ A T  Äx (3)

twhere T   = MT/Mt.  Equating our two expressions for ) MH/Mt, Equations (2) and (3), we obtain

x x t) K A (T (x,t) ) T (x,t) ) . ) s ñ A T  Äx. (4)

tSolving for T  we obtain
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tT   =   (5)

Letting Äx v 0  we obtain 

t xxT    = á  T         where  á   = K/(sñ) > 0. (6).2 2

Note that á  depends only on the properties of the material.  This derivation can be done more2

generally in three space dimensions by using Gauss's divergence theorem.  Since we will use T
for a different function in the process of separation of variables, we rewrite (6) using the standard
notation with temperature being u as 

t xxu   =  á  u . (7)2
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PDE's THE BOUNDARY VALUE PROBLEM FOR
Handout #3 THE HEAT CONDUCTION MODEL Prof. Moseley

t xx     The heat equation can be written in the standard form L[u] = 0, where L[u] = u   ! á u .  The2

null space of the linear operator L is infinite dimensional.  To obtain a model for heat conduction
in a rod of length R  which is insulated on the sides (i.e. whose solution uniquely determines the
value of the temperature at each point in the rod for all nonnegative time), we must add boundary
conditions at the ends of the rod and an initial temperature distribution at t = 0 over the length of

t xxthe rod to the PDE  u   = á  u  .  Recall that the PDE forces conservation of energy internally in2

the rod.   The assumption that the sides are insulated implies that the problem is one dimensional
and forces conservation of energy on the sides.  To assure conservation of energy, we must also
specify conditions at both ends of the rod.  Several possibilities arise.  However, for
mathematical convenience we begin with homogeneous Direchet boundary conditions.  That is,
we require the temperature at both ends to be zero.  Later, we will see how to handle arbitrary
temperatures (nonhomogeneous conditions) and insulated ends (Neuman conditions).  
 

t xxPDE u   =  á  u 0 < x < R ,   t > 0 2

BVP BC u(0, t) = 0 ,   u(R,t) = 0  t > 0
(homogeneous Dirichet boundary conditions)

0IC u(x,0) = u (x) 0 < x < R
(initial temperature distribution)

We can represent this BVP schematically as follows: 

 � * u(x,o) =f(x)
 *
 *
 *              ))))))))))))))))))))))
 *             /          \
 *           '            GGGG(
 *         '          (
 *       '           (
 *     '            (
 *    ' (
 *i/  G))))))))))))))
 *
 * 
 )))))))))))))))))))))))))))))))))))))))))))))))))))))))))v X *           *

 0           R
))) u(0,t) = 0 
*
*    ////////////////////////////////////////////////////////////////////////////////////////////////////////
�  '))))))))))))))))))))))))))))))))))))))))))))))))))* 

   '           '* 

 /)))))))))))))))))))))))))))))))))))))))))))))))))'   * w)) u(R,t)=0*          *  '
*          *'
  ))))))))))))))))))))))))))))))))))))))))))))))))))
 /////////////////////////////////////////////////////////////////////////////////////////////////////////
 ))))))))))))))))))))))))))))))))))))))))))))))))))))))))v X *          *
 0           R
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To formulate the heat conduction in a rod problem as a linear mapping problem we let D

HC= (!R,R)×(0,4),  = [!R,R]×[0,4), A ( ,R;R) = {u(x,t)0F( ,R): u0A (D,R)1C( ,R)} and

HC HC HC t xx HC,0L (á ,R):A ( ,R;R) 6A (D,R) be defined by L (á ,R)[u] = u  !á u .  Now let A ( ,R;R) =2 2 2

HC HC,0 HC,0{u(x,t)0A ( ,R)): u(0,t) = 0 and u(R,t) = 0 for t > 0}, L (á ,R):A ( ,R) 6A (D,R) be2

HC,0 t xxdefined by L (á ,R)[u] = u  !á u ,  Thus we incorporate the boundary conditions into the2 2

tdomain of the operator.  Often, instead of specifying a notation for these cases, we let L[u] = u

xx!á u  and describe the domain we intend.  However, it is important to recall that the domain is2

part of the definition of an operator.  Hence you should have a clear understanding of the domain

HC,0of interest in any particular discussion.  Now let  be the null space of L (á ,R) and2

HC,0,o,fs HC,0,o,fsA ( ,R;á ,R) = {u(x,t)0 : u(x,0)0 } and A ( ,R;á ,R) =2 2

HC,0,o,ffs HC,o,fs{u(x,t)0 : u(x,0)0 }.  Hence A ( ,R;á ,R) fA ( ,R)f f2

HC,0 HCA ( ,R)f A ( ,R;R).  We would like a "basis" for .  We will obtain a linearly

HC,0,o,ffsindependent set that is a Hamel basis for  A ( ,R;á ,R) and a Schauder basis for2

HC,o,fsA ( ,R).
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PDE METHOD OF SEPARATION OF VARIABLES
Handout #4 Prof. Moseley

    Recall that to solve the homogeneous linear system with constant coefficients given by

 = 0 (1)

we assumed (i.e. guessed) that there was a solution of the form = e  where r is a constant r t

and  is a constant (i.e. independent of t, but the components can be different) vector to be

determined later.  This yielded an eigenvalue problem whose solution yielded a basis for the null
space of the operator L[] =  ! A .  To solve the linear PDE ("with constant linear
coefficients") given by

t xxu   =  á   u (2)2

and the BCs   u(0, t) = 0 ,   u(R,t) = 0     t > 0  (homogeneous Dirichet boundary conditions) we
could assume (i.e. guess and hope that there is ) a solution of the form  u(x,t) = X(x) e .  Our  r t

hopes would be fulfilled.  However, we need not assume the form of the time function.  This 
need not be guessed, but can be determined by the process.  Since this makes our method more
general, we assume (i.e. need only guess and hope that there is) a solution of the form 

u(x,t) = X(x) T(t). (3)

and substitute into the Equation (2) using

tu  =    =  X(x) Tw'(th)ere TN(t) =  

xxu  =   =  XO(x) T(t)   where XO(x) =  

Omitting the function notation we obtain

X TN  =  á  XO  T. (4)2

If we had assumed that u(x,t) = X(x) e , then since e  would have appeared on both sides, we r t  r t

would have obtained  r X = á  XO, a second order linear homogeneous ODE with constant2

coefficients.  Instead, we use separation of the variables.  Dividing both sides by á  X T, we2

obtain
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    =      

or

    =     =  ! ë  =  constant (5)

Note that we have some choices.  Since á  is a constant, we could put it on either side of the2

equation.  It is not a priori evident that this choice will make the notation slightly easier later.
If we had assumed u(x,t) = X(x) e  ,  then the e   factor would "cancel" and we would r t  r t

have obtained   r/á   =  XO/X  = constant.  The standard argument for the more general technique2

is as follows:  Since the left side of Equation (5)  ( TN/(á  T) ) is a function of t only and the other2

side 
(XO/X ) is a function of x only, the only way that they can be equal (i.e. the only way to obtain
solutions of the form u = XT) is for both sides to be constant.  Whether you believe the argument
justifies setting both sides equal to the same constant is in some sense unimportant, if we can
come up with a solution of any form by any method, we can check that it is a solution by
substituting it back into the  equation.  We make no uniqueness claim, either that all solutions are
of the form obtained, or that we have obtained all solutions of this form.  The choice of  ) ë
(instead of +ë) will make the notation easier later, but again this  is not a priori apparent.  The
various choices are not substantively different, and any is "correct".  

Equation (5) yields the two ODEs

X''  +   ëX  = 0 (space equation) (6)

T'   + ëá  T = 0 (time equation) (7)2

The lack of minus signs in these two equations explains our choice of ! ë.  The next step is to
derive an ODE eigenvalue problem using the homogeneous boundary conditions and the space
equation.  Not having to deal with á  in this process explains why we  put it with the time2

t xxequation.  The EVP results from addressing the linear operator consisting of  L[u] = u  ! á u2

and the BCs   u(0, t) = 0 ,  u(R,t) = 0 ,   t > 0  (homogeneous Dirichet boundary conditions).  The
dimension of the null space of the linear operator (even with the restrictions imposed by the
boundary conditions) is infinite.
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Handout #5 DERIVATION AND SOLUTION OF Prof. Moseley
THE ODE EIGENVALUE PROBLEM

Recall that by assuming a solution of the form u(x,t) = X(x) T(t) and applying the process
of separation of variables  to the heat conduction equation (PDE) we obtained the two ODEs

X''  +   ëX  = 0 (space equation) (1)

T'   + ëá  T = 0 (time equation) (2)2

Also recall that the BCs for the BVP for the model of heat conduction in a rod with
homogeneous Dirichet BCs (both ends of the rod are at zero degrees) are given by 
BC u(0, t) = 0 ,   u(R,t) = 0        t > 0 (homogeneous Dirichet boundary conditions)

Applying these two conditions to u(x,t)  = X(x) T(t), we obtain

u(0,t) = X(0) T(t) = 0, u(R,t) = X(R) T(t) = 0               for all t > 0 (3)

For Equation (3) to hold for all t > 0, we must have either T(t) = 0 for all t>0, which means 
u(x,t) = X(x) T(t) = 0 for all t > 0 (u=0 is the trivial solution which satisfies the BC and the initial
condition u(x,0) = 0) or X(0) = 0 and X(R ) = 0   for all t > 0  (a more likely prospect to obtain a
collection of solutions.  Putting the space ODE with these BCs, we obtain the ODE BVP

X''  +   ëX  = 0 (4)

    X(0) = 0,           X(R)  = 0               � t > 0 (5)

We solve this ODE  EVP using the standard procedure.  As previously indicated, this will yield a

t xxbasis of the null space of the linear operator defined by L[u] = u   ) á u    and the BCs  2

u(0, t) = 0 ,  u(R,t) = 0 , for all t > 0  (homogeneous Dirichet boundary conditions).  Recall that the
dimension of this null space is infinite even with the restrictions imposed by the BCs.

SOLUTION TO THE ODE EVP.  Although it is not readily apparent, it is well known that the
operator consisting of  L[X] = X'' + ëX and the BCs  X(0) = 0,  X(R)  = 0 for all t > 0   is  self-
adjoint.  (This is analogous to an operator defined by matrix multiplication being Hermitian.) 
Thus we know that the eigen values are real.  (We also refer to the problem as self-adjoint.) 
Substituting X = e  into the ODE we obtain the auxiliary equation:rt

r   + ë = 0. Auxiliary Equation2

1,2Hence   r    =   ± .   We consider three cases:

1Case 1.  ë < 0.   We have ë <  0 implies  ! ë  >  0 so that  the roots r  =  and 
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2r  = !  are real and distinct.  Hence the general solution of the ODE is given by 

1 2X(x) = c   + c  

Applying the BCs we obtain

1 2X(0) =  0  = c   + c   

1 2X(R) =  0  =   c   + c   
or

1 2 2 1   0  =   c         +    c       which implies   c   =  !  c

1 2 1 1  0  =  c   + c       so that   0  =  c   ! c   
or

1  c   (   !  =  0.

1Hence either   c   =  0  or     !   =  0.  There is something wrong with both of

1 2 1these cases.  c   =  0 implies c   =  ) c   = 0 as well and hence X(x)  = 0 � x 0 [0, R]. This is the 

trivial solution  and never part of any basis.  We can handle     !   =  0 two
ways: (1) Directly using the properties of the exponential function e , or (2) dividing the equationx

by 2 and recalling that   (  !  )/2  =  sinh( R ).  We use method (2) and

 leave (1) as an exercise.  Using method (2) we obtain  sinh ( R )  = 0.  But the only zero of 

sinh(x) is zero ( recall the graph of sinh(x) ).  Hence we obtain   R   =  0.  Hence (since 

R  � 0 ),   =  0, so that  ë  =  0.  But we assumed in this case that  ë  �  0.  Hence it can not

be the case that       !   =  0  since this implies that ë = 0 and this is not allowed
in this case.  The result is that there are no eigenvalues for ë <  0 (i.e. no negative eigenvalues)

1,2Case 2.    ë  =  0   so that  the roots  r  = 0, 0. are real and repeated.  Hence the general
solution of the ODE is given by 

1 2X(x) = c   + c  x

Applying the BCs we obtain

1 2 1X(0) =  0  = c    + c  (0) which implies  c   =  0

1 2 2 1X(R) =  0  =  c    + c  (R) so that   c   =  c /R  = 0
so that

X(x)  = 0.            for all  x 0 [0,R ]

Hence  ë  =  0  is not an eigenvalue.
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1,2Case 3.  ë > 0   so that  the roots r   = ±    =  ±     =  ± i  are not real  (recall

that ë is assumed to be real since the problem is self-adjoint) and distinct.  Hence the general
solution of the ODE is given by 

1 2X(x) = c  cos(  x ) + c  sin (  x  )

Applying the BCs we obtain

1 2X(0) =  0  =  c  cos(  0 ) + c  sin (   0  )

1 2X(R) =  0   =  c  cos(  R ) + c  sin (  R  )
or

1 20  = c  cos(0 ) + c  sin (  0  )

1 20  = c  cos(  R ) + c  sin ( R  )
or

1 2 10  = c  (1) + c   ( 0 )        which implies     c   = 0

1 2 20  = c  cos(  R ) + c  sin (   R  ) so that  c  sin(  R ) = 0  

2 1 2Hence either   c   =  0  or  sin (  R ) =  0.    c   =  0  and  c   = 0  implies X(x)  = 0 for all 

x 0 [0,R].  This is the trivial solution  and never part of any basis.  Thus to obtain any eigenvalues,
we must look for solutions of the "auxiliary equation"

sin(  R )  =  0 (6)

The zeros of sin(x) are   n ð  where  n 0 Z.  Hence 

  R   =  nn  ð0 Z (7)

Hence, let 

në  =                 n 0 Z (8)

However, there is a problem with n = 0.  If n = 0, then ë = 0.  But we assumed ë > 0 for this 
case.  Hence we must exclude n = 0.  

në  =                n = ± 1, 2, 3, ... . (9)

nNote that ë  is the same whether n is positive or negative.  Before excluding negative n, we need
to see what the eigenfunctions ("vectors") are associated with n positive and n negative. The
dimension of the null space of the linear operator L[X] = X''  + ë X is  two independent of the
value of ë.  Hence the dimension of this operator L with the boundary conditions X(0) = 0 and 
X(R) =  0  must be  either zero,  one or two.  Referring back to the solution of the ODE and the 

1 2 1application of the BCs we see that X(x) = c  cos( x ) + c  sin (  x  )   with c   =  0.  Thus 
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the eigenfunctions ("vectors") which are associated with these eigenvalues are 

2 2X(x) = c  sin (  x  )  =  c  sin( nð/R)                  n  = ± 1, 2, 3, ... .    

The eigen spaces are clearly one dimensional.  Each eigen space is just the scalar multiples of a
given function.  Hence a basis for each is just

nX (x) = sin(  x  ).                  n = ± 1, 2, 3, ... .    

However there is a problem.  Since sin(!x ) = !sin( x )  we see that the family of scalar 

multiplies of sin ( nð/R)  for n = 1, 2, 3, ... and that of the scalar multiples of sin( !nð/R) for 
n = 1, 2, 3, ... are exactly the same.  Hence n negative generates no additional eigen functions.  
Summarizing,

TABLE
Eigenvalues Eigenfunctions

1 1ë  =  X   =  sin(  x )

2 2ë  =  4ð /R X   =  sin(  ))  x )2  2

3 3ë  =  9ð /R X   =  sin(  x )2  2

      @ @
      @ @
      @ @

n në  =  X   =  sin(   x )

      @ @
      @ @
      @ @
When solving an eigen value problem for an ODE always summarize in a table as illustrated
above giving several specific values and then the general case.
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Handout #5 GENERAL SOLUTION OF Prof. Moseley
THE PDE AND BOUNDARY CONDITIONS

     We review the results of the process thus far.  Applying the method of separation of variables
to the PDE

t xxPDE u   =  á   u (1)2

yielded the two ODEs

X''  +   ëX  = 0 (space equation) (2)

T'   + ëá  T = 0 (time equation) (3)2

Application of the BCs   u(0, t) = 0 ,   u(R,t) = 0     t > 0   (homogeneous Dirichet boundary
conditions)
yielded the ODE   EVP

X''  +   ëX  = 0 (4)

    X(0) = 0,           X(R)  =0 (5)

Solution of this ODE  EVP yielded the eigenvalues and eigenfunctions:

TABLE
Eigenvalues Eigenfunctions

1 1ë  =  X   =  sin(  x )

2 2ë  =  4ð /R X   =  sin(   x )2  2

3 3ë  =  9ð /R X   =  sin(  x )2  2

      @ @
      @ @
      @ @

n në  =  X   =  sin(   x )

      @ @
      @ @
      @ @

Solving Equation (3)  we obtain the auxiliary equation   r + ëá  = 0 so that using 2
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në = ë  = (nð/R)   we obtain2

T(t)  =     =  

Letting 

nT (t)  =   

as solutions to the PDE and BCs

t xxPDE u   =  á   u (6)2

BC     u(0, t) = 0 ,   u(R,t) = 0    t > 0  (homogeneous Dirichet boundary conditions) (7)

we obtain

n n n u (x,t)   =  T (t)  X (x)   =    sin(  x ) (8)

By superposition (for the homogeneous PDE with homogeneous BC), a (finite) linear 
combination of (linearly independent) solutions  is a solution.  Hence we obtain that the family of
solutions given by 

 u(x,t)   =   (9)

nwhere the c 's are arbitrary constants.  It is interesting to note that as t v 4 , the temperature

ssapproaches the trivial, u(x,t) v 0.  Thus u (x,t) = 0 is the steady-state or equilibrium solution. 

Recall that   a Hamel basis of  and a Schauder basis of

HC,0 HC,0,o,fs.  Also recall that  is the null space of L (á ,R) and A ( ,R;á ,R) =2 2

HC,0,o,ffs{u(x,t)0 : u(x,0)0 } and A ( ,R;á ,R) = {u(x,t)0 : u(x,0)02

HC,0,o,ffs HC,o,ffs HC,0} so that A ( ,R;á ,R) fA ( ,R)f f. A ( ,R).  We claim2

HC,0,o,ffsthat  is a Hamel basis for  A ( ,R;á ,R) and a Schauder2

HC,o,fsbasis for A ( ,R).  Hence we can solve the initial value problem (IVP) if the initial

0 0condition (IC) u (x) is in  .  If u (x)0 the IVP is particularly easy. 
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EXAMPLE. Solve

t xxPDE u   =  u 0 < x < ð ,   t > 0 

BVP BC u(0, t) = 0 ,   u(ð,t) = 0       t > 0

IC u(x,0) = 5 sin(x) + 3sin(3x) + 2 sin(6x)    0 < x < ð

Solution.  First note that á  = 1 and R = ð.  Hence the family of solutions given by (9) is2

 u(x,t)   =   (10)

Thus at t = 0 we obtain 
           

1 2 @ 3 u(x,0)   =    = c  sin(x) + c  sin(2x) + c@  @s i+n (s3inx()N +x) (11)

Matching coefficients, we can satisfy the initial condition

IC u(x,0) = 5 sin(x) + 3 sin(3x) + 2 sin(6x)    0 < x < ð

1 2 3 3 4 5 6 nif we let c  = 5, c  = 0, c  = 3, c  = c  = c  = 0, c  = 2, and c  = 0 for n = 7, 8, 9, ... .  Hence the
solution is

 u(x,t)   =   5 e   sin( x )  +  3 e   sin( 3 x )   +   2  e   sin( 6 x ) (12) )   t  )   9 t  )  36 t

Note that since the exponent has n  as a factor, the higher order terms decay much faster than the2

lower order terms.  
    The IC for the above problem was nice.  To handle more complicated IC, we consider letting 

N  go to infinity.  If there are no convergence problems, we obtain 

 u(x,t)   = (13)

as a family of solutions.  That is, a "linear combination" of an infinite number of linearly
independent solutions  is in the null space of the linear operator defined by the PDE and the BCs
and in some sense gives the "general" solution to the problem defined by the PDE and the BCs.
Clearly the dimension of this null space is  infinite..  We assume no convergence problems and
blindly try to use (13) to satisfy the IC in the BVP 
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t xxPDE u   = á  u 0 < x < R ,   t > 0 2

BVP BC u(0, t) = 0 ,   u(R,t) = 0  t > 0

IC u(x,0) = f(x) 0 < x < R

Letting t= 0 in (13) we obtain

 u(x,0)   =    

   =    

Hence we require 

f(x)   =    � x 0 [0,R] (14)

Expressing an arbitrary function as the infinite sum of sine (and cosine) functions requires
Fourier series.
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