
`A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND
NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED

MATHEMATICIANS

DE CLASS NOTES 4

A COLLECTION OF HANDOUTS ON 

PARTIAL DIFFERENTIAL EQUATIONS (PDE's)

 

CHAPTER 3

Fourier Series

1.  Periodic Functions 

2.  Facts about the Sine and Cosine Function

3.  Fourier Theorem and Computation of Fourier Series Coefficients

4.   Even and Odd Functions

5.   Sine and Cosine Series

Ch. 3 Pg. 1



Handout #1    PERIODIC FUNCTIONS Professor Moseley

We consider the general problem of trying to represent a periodic function by an infinite
series of sine and cosine functions.  One application is the heat conduction model.  Another is the
response of an electric circuit to a square wave.  Nonhomogeneous superposition can be used to
obtain the spectrum of frequencies in the forcing function.

DEFINITION.  A function f:R 6 R is periodic of period T  if  � x 0 R we have 
f( x + T ) = f( x ).  The smallest positive period is called the fundamental period.

We can check this property either graphically or analytically (or both).

EXAMPLE.
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THEOREM.  If f:R 6 R is is a periodic function with period T, then 2T, 3T, ... and  ) T,  ) 2T, ...
are also periods. 

(Idea of) PROOF.  (A proof would require mathematical induction.)  
Let us assume that f is periodic of period T.  We prove that 2T is a period.

STATEMENT REASON
f(x + 2T) = f( (x + T) + T) (Theorems from) Algebra

    = f( x + T ) Hypothesis (assumption) that f  is periodic of period T
    = f( x ) Hypothesis that f is periodic of period T

Since f(x + 2T) = f(x),  2T is a period.  (The general case requires mathematical induction.)

THEOREM.  If f:R 6 R is is a periodic function with period T, then there need not be a
fundamental period.

PROOF.  We give a counter example to the statement "Every periodic function has a
fundamental period".   Let f(x) = 4 (or any constant function).  Then f(x+T) = f(x) = 4   �  x, T  0 
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ú.  Since all real numbers are periods, there is no smallest positive period and hence no
fundamental period.

peDEFINITION.  If  f:( ) R,R ]vú, then we define the periodic extension , f  , of  f  by

pef  ( x + 2nR ) = f(x)   � x 0 ( ) R,R ]  and  � n 0 Z.
      
DEFINITION.  Let  = {f0F(R,R):1) f is periodic of period 2R, 2) f and f' are

piecewise continuous on [)R,R], and  3) f(x) =( f( x+) + f( x))/2 at points of discontinuity}, 
 be the functions in  with their domains restricted to [!R,R] and

be the subspace of  for which the fourier series is finite. 

EXERCISES on Periodic Functions

EXERCISE.  Sketch the periodic extensions of:

1. f(x) = x        x 0 ( ) 2, 2]
2. f(x) = x       x 0 ( ) 1, 1]2
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Handout #2     FACTS ABOUT THE SINE AND COSINE FUNCTIONS Professor Moseley

THEOREM #1.  (Facts about Trigonometric Functions)

1. sin(  x ) and cos(  x )  where n 0 Z. 

    are periodic with fundamental period T = 

    All are periodic of  (common) period  2R.

2.     

 

3.     

 

4.     

 
These properties say that these functions form an orthogonal (perpendicular) set of nonzero
functions.  A theorem from linear algebra says that such a set is linearly independent.  Our 
Fourier Theorem will tell us the subspace "spanned" by this set.  We will see that 

is  a Hamel basis of  and a

Schauder basis of .  

EXERCISES on Facts about the Sine and Cosine Function

EXERCISE 1. Write a proof of part 1. of Theorem #1 using the definition of periodicity.

EXERCISE 2. Write a proof of part 2. of Theorem #1 using properties of the cosine function.

EXERCISE 3. Write a proof of part 3. of Theorem #1 using properties of trigonometric 
functions.

EXERCISE 4. Write a proof of part 4. of Theorem #1 using properties of the sine functions.
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Handout #3 FOURIER THEOREM AND       Professor Moseley
COMPUTATION OF FOURIER SERIES

THEOREM. (Fourier).  Let f:R v R.  Suppose
1. f is periodic of period 2R.
2. f and f' are piecewise continuous on [)R,R].
Then at the points of continuity of f, we have that

where 

ma    =       for    m  =  0, 1, 2, 3,  ... 

mb     =       for    m  =  1, 2, 3, ... .

That is, the series converges pointwise, (i.e. for each value of x)  to the function f(x).
At points of discontinuity, the series converges to ( f( x+) + f( x))/2 where 

f( x+) =  f(t)  and f(x-) =   f(t).

We wish to give a name to the function space where we are sure that the fourier series
coefficients exist and where we know that the fourier series converges pointwise as explained in
the theorem.  Hence the subset of F(R,R) that has the two properties given in the theorem and

the property that they are defined at points of discontinuity by ( f( x+) + f( x))/2 we call
.  We see that  is a subspace of F(R,R) so that it is a vector space.  We

let  be the functions in  with their domains restricted to [!R,R].  Since

functions in  are well-defined once their values on [!R,R) are known, we see that

there is an isomorphism between  and .  We let be the

subspace of  for which the fourier series is finite.  Since the set

is linearly independent (every finite subset is

linearly independent) and every function in   can be written as a (finite) linear

combination of functions in  , we call 

a Hamel basis of .  Since every

function if   can be written as a "infinite linear combination" of functions in 

Ch. 3 Pg. 5



, we call 

a Schauder basis of .

EXAMPLE.  Find the Fourier series for f(x) if  f is periodic of period 2R and

f(x) =   

Sketch the graph for several periods (i.e. four: one between )R and R, two to the right and one to
the left).  Indicate in an appropriate manner the function to which the Fourier series converges. 
Note that values for the function are not given at the points of discontinuity.  Explain why.

Solution.  We begin by sketching the graph.

      �
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The Fourier series will converge to the function at points of continuity.  It will converge to  
( f( x+) + f( x))/2  (i.e. to the average of the limits from the right and left) at points of
discontinuity.  These are indicated by an ×.  The Fourier series is given by

where 

ma    =       for    m  =  0, 1, 2, 3,  ... 

mb     =       for    m  =  1, 2, 3, ... .

0Always compute  a    separately.

0a    =     =     = +
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     = +   =     = ( R !0) = 1 

0Hence   a /2  = 1/2. 

mNext we compute a   for m = 1, 2, 3, ... .

ma    =     = +  

       = +  =  

=     = 

      =  sin(mð) = 0

mHence a   =  0  for m = 1, 2, 3, ...  .

mProceeding to b  , for m = 1, 2, 3, ... we obtain

mb    =     = +  

       = +  =  

=     = 

      =  [1!cos(mð) =   [1!(!1) ]  =  m

Ch. 3 Pg. 7



We summarize in a table  (Be sure you always list your Fourier coefficients in a table.).)

TABLE.

0a  / 2 =  1 / 2

ma    =  0                 for  m =  1, 2, 3, ...

mb    =   

We now write the Fourier series:

 =  

=  =  

=  =  =    

     k   =      0    1    2    3   4   @ @ @
Letting  m = 2k + 1  for k = 0, 1, 2, 3, ...  so that   ))))))))))))))))))))))))

       m = 2k + 1 =   1    3    5    7   9   @ @ @
Hence 

f(x) =    

 =   +   +  +  + + + @ @ @  
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Handout #4          EVEN AND ODD FUNCTIONS ` Professor Moseley

Read Section 10.3 of Chapter 10 of text (Elem. Diff. Eqs. and BVPs by Boyce and Diprima,
seventh ed.) again.  Also read Section 10.4.  Pay particular attention to Examples 1-2 on pages
567-569.

DEFINITION.  A function f:R v R is even  if  � x 0 R we have f( !x ) = f( x ).
f is odd if � x 0 R, f( !x)  =  !f( x ).

We can check this property either graphically or analytically (or both).

EXAMPLES.  

1.  f(x) = sin(x)
�    ))       ))                   ))                      ))

 '    ( *  '    (                '    (                  '     (   
           '        ( *'        (             '       (               '       ( 
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  _'                    (_' *               (_'                    (_'                    (

    STATEMENT REASON

  f( !x)  = sin(!x) Definition of the function f
              = !sin(x) Trig identity
              = !f(x) Definition of the function f
Hence f(x) = sin(x) is an odd function

2.  f(x) = cos(x)
�     ))            ))                      ))                      ))

          (         ' * (                 '    (                  '      (   
           (                 ' *   (              '       (              '         ( 

     ))))())))) ') *))()))) ')))) ()))) ')))) ()))))))))v 
               (          ' -x *  x  (        '             (        '               (
                 (      ' *       (     '                 (     '                  (
                   (_' *         (_'                    (_'                     (

   STATEMENT REASON

  f( !x)  = cos(! x) Definition of the function f
              =  cos( x) Trig identity
              =  f(x) Definition of the function f
Hence f(x) = cos(x) is an even function

3.  f(x) = x2

   ( �        '    ( *     '
                 ( *   '  

                               (_*_'     
 ))))))))))))))))))))))))))))))))))))))))))))))))v 
                            -x    *   x

*
    STATEMENT REASON
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  f(!x)  = (!x) Definition of the function f2

              = x (Theorem from) Algebra2

              =  f(x) Definition of the function f
Hence f(x) = x   is an even function2

4.  f(x) = x3

�      '   *    '
*  '
*' 

      ))))))))))))'))))))))))))))))))))))))v 
    -x  '*   x
       ' *
     ' *
    '

    STATEMENT REASON

  f(!x)  = (!x) Definition of the function f3

             = ! x (Theorem from) Algebra3

              =  f(x) Definition of the function f
Hence f(x) = x   is an odd function3

5.  f(x) = x  +  x2

�      '   *    '
    ( *  '
      ( *' 

       ))))))()))))')))))))))))))))))))))))v 
          (    -x '*   x 

           (___' *
*

    STATEMENT REASON

  f(!x)  = !x   +  (!x) Definition of the function f2

              = !x  +  x (Theorem from) Algebra2

              �  f(x) or  !f(x) At least so it seems

Hence we believe that f(x) = x  +  x   is neither odd nor even but we do not have a proof.2

How do you think you could construct a proof.  Hint: Look at the definition of odd and even and 
note that the  equations must hold � x 0 ú

PROPERTIES OF ODD AND EVEN FUNCTIONS.

THEOREM #1. We state this theorem informally.

1. The sum (or difference) and product (or quotient) of two even functions are even.
2.. The sum (or difference) of two odd functions is odd.  However, the  product (or quotient) of 
    two odd functions is  even.
3. The product of an odd function and an even function is odd.

A formal statement with proof that the sum of two even functions is even follows:
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THEOREM #2.  Let f:RvR and g:RvR  be even functions.  The h = f@ g defined by 
h(x) = f(x)@ g(x)  is an even function.

PROOF.   Let f:RvR and g:RvR be even functions so that f( !x) =  f(x) and g(!x) = g(x) 
� x 0 R.  Let h = f@g so that h(x) = f(x) @g(x) � x 0 R.  Then

STATEMENT REASON
h(!x) = f(!x)@ g(!x)     � x 0 R Definition of h as the product of f and g
          =  f(x) @ g(x)    � x 0 R f and g are assumed to be even functions
          =  h(x)    � x 0 R Definition of h as the product of f and g

Since  h(!x) = h(x)     � x 0 R, by the definition of what it means for a function to be even, 
h is even.

QED

EXERCISES on Even and Odd Functions

EXERCISE #1.  Give formal statements to the remaining parts of Theorem #1.

EXERCISE #2.  Give formal proofs of the statements in the previous exercise.

THEOREM.  Let f:R6R be an even function and g:R6R be an odd function so that 
f(!x) = f(x) and g(!x) = !g(x)   � x 0 R.  Then

1)    =    2    and     2)        =  0.

EXERCISE #3.  Write a proof of the above theorem using the STATEMENT REASON format.
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Handout #5          SINE AND COSINE SERIES Professor Moseley

epeDEFINITION.  Let   f:[0, R] v R.  We define the  even periodic extension f  as follows:  

e1.  Let f (!x) = f(x)    for  x 0  (!R, 0) so that    f(!x ) = f( x )   � x 0 (!R, R ].  

epe  e2,  Let f  be the periodic extension of f , that is, 

epe e     f  ( x + 2nR ) = f (x)   � x 0 (!R,R ]  and  � n 0 Z. 

DEFINITION.  Let   f:[0, R] v R.  We define the  Fourier cosine series for f  as the  Fourier

epeseries of the even periodic extension, f , of f. 

Recall:

where 

ma    =       for    m  =  0, 1, 2, 3,  ... 

mb     =       for    m  =  1, 2, 3, ... .

epe Since f  is an even function, we have

ma    =     =   =  

                     even ×  even = even   

mb     =      =  0

even × odd = odd

Summarizing, given f:[0, R]vR, to compute the Fourier cosine series for f given by

 
compute the Fourier cosine series coefficients using
 

Ch. 3 Pg. 12



ma    =       for    m  =  0, 1, 2, 3,  ... 

 We let  be the subspace of  containing only even functions.  We let

 be the functions in  with their domains restricted to [0,R].  We let

be the subspace of  for which the fourier series is finite.  Since the set

is linearly independent (every finite subset is linearly

independent) and every function in   can be written as a (finite) linear combination

of functions in  , we call  a

Hamel basis of .  Since every function if   can be written as a

"infinite linear combination" of functions in  , we call 

a Schauder basis of .

Similarly, given f:[0, R]v R, to compute the Fourier sine series for f given by

compute the Fourier sine Series coefficients using

mb     =       for    m  =  1, 2, 3, ... .

 We let  be the subspace of  containing only odd functions.  We let

 be the functions in  with their domains restricted to [0,R].  We let

be the subspace of  for which the fourier series is finite.  Since the

set is linearly independent (every finite subset is linearly independent)

and every function in   can be written as a (finite) linear combination of functions

in  , we call  a Hamel basis of . 

Since every function if   can be written as a "infinite linear combination" of

functions in  , we call  a Schauder basis of

.

Ch. 3 Pg. 13



EXERCISES on Sine and Cosine Series

EXERCISE #1.  Give a formal definition of the odd periodic extension of f  where f:[0,R}vú 
where f(0) = 0.  (Why is this required?)
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