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Handout # 1 EIGENVALUE PROBLEMS Professor Moseley
FOR SECOND ORDER LINEAR ODE'S

We consider the Eigenvalue Problem (EVP) for Second Order Linear ODE's 
(it is a special case of a more general EVP known as a regular Sturm-Liouville problem): 

           ODE   - (p(x)y')' - q(x)y = ëy
EVP

0 1           IC's        y(x ) = 0,  y(x ) = 0.

0 1We assume p 0 C (I) 1 C( ), q 0 C( ), and p(x) > 0 � x 0   (e.g. p(x) = 1 ), where I = (x ,x ). 1

Note that if ë is given, then this is a homogenous boundary value problem (BVP).  We can
rewrite the problem as

           ODE  p(x) y" + p'(x)y'  + (q(x) + ë)y = 0
EVP

0 1           IC's   y(x ) = 0,  y(x ) = 0.

The theory of this EVP is similar to that of the matrix EVP

                 Ax = ëx or                 (A - xëI)x = 0.

Since for fixed ë we have a homogenous BVP, the "problem" EVP always has at least one
solution, namely y = 0, no matter what the value of ë.  However, the Eigen Value Problem (EVP)
is not simply to solve the BVP for a given ë.  By definition, the EVP requires you to find all of
the values of ë such that the BVP problem defined by that value of ë has at least one nontrivial
solution.  However, remember that if it has one nontrivial solution, then by linearity, it will have
an infinite number of solutions (all scalar multiples of solutions are solutions).  In fact, the

0 1solution set will be a nontrivial subspace of C (I) 1 C( ) where I = (x ,x ).  Like matrix EVP”s,2

often this subspace will be one dimensional; that is, all of the eigen vectors (we will call them
eigen functions since now our vector space is a function space) are multiples of a (non-unique)
function which is a basis for the eigen space.

THEOREM #1.  The eigen value problem EVP defined above is self-adjoint.  (We could also
say that the operator in the eigenvalue problem is self-adjoint but you must remember that the
operator includes the boundary conditions as well as the differential operator.) 

The important thing to remember is that since the problem is self-adjoint, the eigen values are
real.  Also the eigen functions can be chosen to be real.  

If the ODE has constant coefficients, the procedure for solving an EVP is similar to the
procedure for solving a BVP and IVP for second order ODE's: Since ë is a constant we first find

Ch. 2 Pg. 2



the general solution to the ODE and then apply the boundary conditions.  We illustrate with an
example.

EXAMPLE #1.  Solve the eigenvalue problem 

           ODE   y" + ëy = 0
EVP
           IC's   y(0) = 0,  y(1) = 0.

Solution. Since the problem (or operator which defines the problem) is self-adjoint, the eigen 
values are all real.  The general solution of the ODE depends on three cases.

Case 1. ë < 0. In this case letting y = e  yields the auxiliary equation r  + ë = 0 or (since -ë > 0)rx 2

1 2 r = ± .  Hence we obtain y = C  exp(   x ) + C  exp( !  x ). 

Case 2. ë = 0. In this case letting y = e  yields the auxiliary equation r  + ë = 0 or (since ë > 0) rx 2

1 2r = 0,0.  Hence we obtain y = C  x + C .

Case 3. ë > 0. In this case letting y = e  yields the auxiliary  equation  r  + ë = 0 or (since ë > 0)  rx 2

1 2r = ± .  Hence we obtain y = C  sin( x ) + C  cos( x ).

 
We now apply the boundary conditions in these three cases to determine if there are any (real) 
values of ë for which the "problem" EVP has nontrivial solutions.

Case 1. ë < 0.  Recall that the general solution of the ODE for this case is  

1 2y = C  exp(  x) + C  exp( !  x).  Applying the boundary conditions yields

1 2   0 = C  exp( 0 ) + C  exp( 0 )

1 2   0 = C  exp( ) + C  exp( ! )

2 1The first condition is independent of the value of ë and yields  C  = - C .  Substituting into the 
second equation (which is not independent of ë ) yields

1 1   C  exp(  )  ! C  exp( !  )  =  0.

or

1   C  (exp( ) ! exp( !  )  =  0.

1This means  C  = 0 or (exp( )  )  exp( ! )  =  0.

1 2 1If  C  = 0, then  C  = - C  = 0 so that y = 0.  That is we get only the trivial solution.  There are 

two ways to handle the case when (exp( ) ! exp( ! ) = 0.  We do one.  The other is 

left as an exercise.  If you remember the definition of the hyperbolic sine function as 
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sinh(x) = (e  - e )/2, then dividing the condition by 2 yields sinh( ) = 0.  Since (if youx -x

remember the properties of the sinh function) the only zero of  the sinh function is zero, we

obtain  = 0 so that !ë  = 0 and hence ë  = 0.  However, we are considering the case when ë

< 0.  Hence for no ë < 0 are there any eigen values.

EXERCISE. Using only the properties of e  and ln x show that if x

exp( ) ! exp( ! ) = 0, then ë = 0.

The bottom line is that there are no eigenvalues in Case 1.

Case 2. ë = 0.  Recall that the general solution of the ODE for 

1 2this case is  y = C  x + C  .  Applying the boundary conditions yields

1 2   0 = C  ( 0 ) + C ,

1 2   0 = C  ( 1 ) + C .

2 2 1The first condition implies  C  = 0.  The second condition then implies   C  = - C  = 0.  Hence y =
0.  Thus we get only the trivial solution and ë = 0 is not an eigen values.

Case 3. ë > 0.  Recall that the general solution of the ODE for this case is  

1 2y = C  sin( x) + C  cos( ! x).  Applying the boundary conditions yields

1 2   0 = C  sin( 0 ) + C  cos( 0 )

1 2   0 = C  sin( ) + C  cos( ! )

2The first condition is independent of the value of ë and yields  C  = 0.  Substituting into the
second equation (which is not independent of ë ) yields
 

1   C  sin( ) = 0.

1 1This means  C  = 0 or sin( ) = 0.  If  C  = 0, then y = 0.  That is we get only the trivial

solution.  Hence our only hope to find any eigen values is if there are values of ë such that the
equation

    sin( ) = 0

has positive solutions.  Hence this equation is called the characteristic equation for this eigen
value problem.  Recalling from the graph of the sine function that the zeros of the sine function
are 0, ±ð, ±2ð, ±3ð, ... or ± n where n 0 {0}cN where N = {1,2,3,4,...}, we see that the solutions
are given by
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      =  nð or      ë   =  n ð .2 2

Recall that n = 0, ±1, ±2, ±3, ... .  However, if n = 0, then  ë = 0.  But we are in the case where 
ë > 0.  Hence we must throw this value of n out.  Also note that if n is negative we get the same 
eigen values as we do when n is positive.  Before throwing out the negative values of n we must 

first examine the eigen functions.  Recall that since  sin( ) = 0, there is no requirement that 

1 1C  = 0.  Hence the general solution of the "problem" EVP is y = C  sin(  x ) or 

1y = C  sin( nð x ).  Note that if n is negative, then using a trig identity, the minus sign can be

1taken out and incorporated into the arbitrary constant C .  Hence the set of eigen functions is just

nthe set of all scalar multiplies of  y  = sin( nð x ) no matter whether n is positive or negative. 
Hence we obtain the table explicitly (you should list them this way when solving problems):

                     TABLE
Associated

  Eigen Values                        Eigen Functions

1 1ë  = ð                            y  = sin(ðx) 2

2 2ë  = 4ð                           y  = sin(2ðx) 2

2 3ë  = 9ð                           y  = sin(3ðx) 2

.                                      .

.                                      .

.                                      .  

në = n ð                            y  = sin(nðx) 2 2

.                                        .

.                                        .

.                                        .

or more compactly

                    TABLE
Associated

  Eigen Values                        Eigen Functions

në = n ð ,  n = 1, 2, 3, ...     y  = sin(nðx) n = 1, 2, 3, ...2 2

Note that there are an infinite number of eigen values each with a one dimensional eigen space. 
The listed functions are the basis functions for the eigen spaces.  The hope is that the entire
collection will be a basis for the entire space; that is that we have a full set of eigen functions. 
This will be explained more fully later.
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Handout #3 BASIS OF EIGENVECTORS Prof. Moseley
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