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Handout No. 1 REVIEW OF SECOND ORDER LINEAR Prof. Moseley
DIFFERENTIAL OPERATORS

Recall that we defined the general second order linear differential operator L by

                                           L[y] = yO + p(x)y + q(x)y (1)

where p,q 0 C(I), I = (a,b) in the Classical II context where L:C (I)6C(I) and p,q 0 A(I) in the2

Classical I context where L:A(I)6A(I). We also considered the Classical I context where 
L:H(C)6H(C) and p,q 0 H(C).  Since we can treat these collections of functions as a vector
space, we can view L as mapping one vector space into another. 

Also recall the definition of a linear operator from one vector space to another.

DEFINITION (Linear Operator). An operator L:V 6 W from a vector space V to another vector
space W is said to be linear if for all vectors  and  in V and all scalars á and â, we have  

L( á  + â  ) =  á L( ) + â L( ).

THEOREM.  For all three contexts, L given by (1) is a linear operator with dimN(L) = 2.  Hence

1 1 2 2 1 2the general solution of L[y] is y(x) = c  y (x) + c  y (x) where B = { y ,  y } is a basis of N(L).

EXERCISES on Review of Second Order Linear Differential Operator

EXERCISE #1.
(a)  Compute L[ö] = yO + y if  (a)  ö(x) = sin x,  (b)  ö(x) = cos x,  (c)  ö(x) = e .x

(b)  Compute L[ö] = yO - y if   (a)  ö(x) = sin x,  (b)  ö(x) = e ,       (c)  ö(x) = e .x -x

Ch. 1 Pg. 2



Handout #2       INITIAL VALUE PROBLEMS Professor Moseley
AND BOUNDARY VALUE PROBLEMS

The Initial Value Problem (IVP) for the general second order linear o.d.e. is:

0where we have chosen Initial Condition's (IC) specifying the values of y and yN at x = x .  As an
example, consider throwing a ball up.  In order to uniquely determine the motion of the ball, one
must also specify the initial position and the initial velocity.  That is, it can be used to model the
position (and velocity) of a point mass so that we might use t as our independent variable instead
of x.

On0 the other hand (OTOH), the Boundary Value Problem (BVP) for the general second
order o.d.e. is:

0where we have chosen Boundary Conditions (BC's) specifying the values of y at x = x  and at 

1x =x .  If we throw a ball up, we might wish to specify the initial position and the position at
some later time.  For example, If we throw the ball up at time t = 0, (so that y(0) = 0 ), we may

1wish to specify the time at which it comes down ( y(t ) = 0 ).  Alternately, we use the boundary
value problem to model steady state conditions for heat flow in a rod where we specify the
temperature at both ends of the rod.

Although for elementary problems, the solution technique for both (linear) problems is
essentially the same (first obtain the "general solution"  for the ODE and they apply the IC's or
BC's to obtain the arbitrary constants), the theory of IVP's and the theory of BVP's are quite
different.  Most theorems involving linear IVP's usually conclude that there exist a unique
solution.  Whereas theorems for linear BVP's typically reflect the general linear theory and state
that there exist no solution, one solution, or an infinite number of solutions.

Ch. 1 Pg. 3



Handout # 3 INTRODUCTION TO THE THEORY OF Prof. Moseley
BOUNDARY VALUE PROBLEMS

Existence and uniqueness theorems for the initial value problem (IVP) 

           ODE    y" + p(x)y' + q(x)y = 0
IVP

0 0 0 1           IC's   y(x ) = y ,  y'(x ) = y

typically state that if the functions p and q are sufficiently "nice" on an open interval I = (a,b) that

0 0contains x  (i.e. a < x  < b), then the initial value problem IVP has a unique solution  on the open
interval I.  Thus the set where we look for solutions is the set C (I).  For example,2

0THEOREM. If p, q 0 C(I), where x  0 I = (a,b) (i.e. the functions p and q are continuous on the

0 0open interval I = (a,b) which contains the point x , a < x  < b), then the initial value problem IVP
has a unique solution in the set C (I).2

Although the problems look similar and the technique for solution is similar (i.e. first find the
general solution of the ode and then apply the initial conditions or boundary conditions, BC's, to
obtain the two arbitrary constants), theorems on the existence and uniqueness of solutions to the
boundary value problem (BVP)

           ODE    y" + p(x)y' + q(x)y = 0
BVP

0 0 1 1           BC's   y(x ) = y ,  y(x ) = y

are theoretically quite different.  The fundamental theorem is similar to the fundamental theorem

for the solution of . Since we have boundary conditions, the set where we look for

solutions is also different.  Let I = (a,b), = [a,b], and C( ) = {y: 6R such that f is

continuous}.  We now extend the definition of C (I) to be C (I) = {y: 6R such that its restriction2 2

to I is in C (I)}.  Now let V = C (I) 1 C( ) = {y: 6R such that y0C( ) and y restricted to I is in2 2

C (I) } so that L now maps V to W = C(I).  Thus the derivative of y need not exist at the end2

points.  

0 1THEOREM. Suppose that p(x) = 0 and q(x) is continuous on I = [x ,x ].  There are three
possibilities:
1. The BVP has no solution in V.
2. The BVP has exactly one solution in V.
3. The BVP has an infinite number of solutions in V.
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     Unlike the IVP, the "niceness" of p and q are not sufficient for the existence and uniqueness
of the solution to the BVP.  We give an example of each possibility.

EXAMPLE 1. 

           ODE    y"  + y = 0
BVP
           BC's   y(0) = 0,  y(ð/2) = 0.

Solution. It is obvious that y = 0 is a solution so existence is not a problem.  This is because the
ODE and the BC's are homogeneous; hence the problem is homogeneous.  The only question is:

1 2Are we in Case 2 or Case 3?  The general solution to the ODE is y = C  sin(x) + C  cos(x). 
Applying the BC's we obtain:

1 2 1 2 2    0 = C  sin(0) + C  cos(0) = C (0) + C (1) = C ,

1 2 1 2 1    0 = C  sin(ð/2) + C  cos(ð/2) = C (1) + C (0) = C .
Hence the only solution is y = 0 and we are in Case 2.

EXAMPLE 2. 

           ODE    y"  + y = 0
BVP
           BC's   y(0) = 0,  y(ð) = 0.

Solution. Note that Example 1 and Example 2 look very similar.  Again, it is obvious that y = 0 is
a solution so existence is not a problem.  This problem also homogeneous since the ODE and the
BC's are homogeneous.  Again the only question is: Are we in Case 2 or Case 3?  The general

1 2solution to the ODE is again y = C  sin(x) + C  cos(x).  However, applying the BC's we obtain:

1 2 1 2 2    0 = C  sin(0) + C  cos(0) = C (0) + C (1) = C ,

1 2 1 2 2    0 = C  sin(ð) + C  cos(ð) = C (0) + C (1) = C .

2 1 1Hence only C  is zero so that the solution is y = C  sin(x).  Since C  is arbitrary, this time we are
in Case 3.

EXAMPLE 3. 

           ODE    y"  + y = 0
BVP
           BC's   y(0) = 0,  y(ð) = 1.

Solution. Note that this example looks very similar to Example 1 and Example 2.  This time it is
obvious that y = 0 is not a solution since y = 0 will not satisfy the second BC.  Existence is not

Ch. 1 Pg. 5



assured since the problem is not homogeneous.  As before, the general solution to the ODE is

1 2again y = C  sin(x) + C  cos(x).  However, applying the BC's this time we obtain:

1 2 1 2 2    0 = C  sin(0) + C  cos(0) = C (0) + C (1) = C ,

1 2 1 2 2    1 = C  sin(ð) + C  cos(ð) = C (0) + C (1) = C .

2Since C  can not be zero and one at the same time, there is no solution and this time we are in
Case 1.

EXERCISES on Introduction to the Theory of Boundary Value Problems 

EXERCISE #1.   y"  + y = 0,   y(0) = 0,  y(ð/2) = 0.

EXERCISE #2.   y"  + y = 0,   y(0) = 0,  y(ð) = 0.

EXERCISE #3.   y"  + y = 0,   y(0) = 0,  y(ð) = 1.
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