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Handout #1 FUNDAMENTAL THEORY OF SYSTEMS OF ODE’S Prof. Moseley

The general form for a first order linear system of ODE’s is given by

. (1)

We choose  t  as the independent variable so that we can use x’s as the components of
the “vector-valued” function:

(2)

ij i(We use the transpose notation to save space.)  We make the usual assumption that p (t) and g (t)
are continuous � t 0 I = (a,b).  This system can be rewritten using (the much more compact)
matrix notation as: 

(3)

where P is the n×n square matrix-valued function

(4)

and g(t) is the “vector-valued” forcing function

(5)

The usual form for a nonhomogeneous equation requires that we rewrite this as 

Ch. 5 Pg. 2



. (6)

which we then rewrite as 

(7)

where
 �t0I=(a,b). (8)

ijRecall that R  is the set of all real valued n×n matrices.  Now let R (I) = {P=( p (t) ):I6R  )n×n n×n n×n

and be the set of time varying matrices on the open interval I=(a,b) and 

ij ijC(R (I)) = {P=( p (t) ):I6R  :p 0C(I) for all i and j} denotes the set of all elements in m×n m×n

R (I) where all entries are continuous on I.  Similarly,m×n

ij ijA(R (I)) = {P=( p (t) ):I6R  :p 0A(I) for all i and j} denotes the set of all elements in R (I) n×n n×n n×n

i iwhere all entries are analytic on I, C(R (I)) = { = [ x (t) ]:I6R  :x 0C(I) }, n n

i iC (R (I)) = {x = [ x (t) ]:I6R  :x N(t) exists for all i and is in C(I) }, and1 n n

i iA(R (I)) = { = [ x (t) ]: I6R  :x (t) 0 A(I) } .  Now assume  P(t)0C(R (I))  and g(t) 0 C(R (I)). n n n×n n

Then L is an operator that maps “vector-valued” functions in C (R (I)) to “vector-valued” 1 n

functions in C(R (I)).  To solve (6) means to find all   that map to .  Since algebraically, wen

can treat a collection of “vector-valued” functions (with the appropriate definitions of vector
addition and scalar multiplication) as a vector space, we can view on this operator as mapping
one vector space into another.  In this case we are mapping C (R (I); that is, the set of “vector-1 n

valued” functions which have a derivatives that is continuous on the interval of validity I = (a,b)
into the space C (R (I)) of continuous “vector-valued” function on I.  If P(t)0A(R (I)), then L1 n n×n

maps A(R (I)) to A(R (I)).n n

We now review and apply the linear theory previously developed and applied to second
order linear ODE’s and higher order linear ODE’s to first order linear systems of ODE’s, that is
to the operator L given in (8) above.  We begin by reviewing the definition of a linear operator. 
A function or mapping T from one vector space V to another vector space W is often called an
operator.  We write T:V6 W.  If we wish to think geometrically rather than algebraically we
might call T a transformation.

DEFINITION #1.  An operator T:V 6 W  is said to be linear if  � x-y 0V and � scalars  á,â   we
have

(9)

Recall that we can divide our check that T is a linear operator into two steps by using the
following theorem.

THEOREM #1.  An operator  T is linear if and only if the following two properties hold:
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  i) (10)

 ii) á  a scalar and (11)

THEOREM #2.  Assume that P(t)0C (R (I)) where I = (a,b).  Then L defined by (8) is a linear1 n×n

operator from C (R (I)) to C(R (I)) and the null space of L is a subset of C (R (I)).  If1 n n 1 n

P(t)0A(R (I)), then L defined by (8) is a linear operator from A(R (I)) to A(R (I)) and n×n n n

N(L)f A(R (I)).  In either case, dim N(L) = n.  Hence the solution of the homogeneous equation n

     � x 0 I = (a,b) = interval of validity (12)

has the form 

(13)

i,where is a basis for N(L) and c  i = 1, ÿ , n are arbitrary constants.

Since we know that the dimension of the null space N(L) is  n, if we have a set of  n
solutions to the homogeneous equation (1), to show that it is a basis of the null space N(L), it is
sufficient to show that it is a linearly independent set.  As applied to C (R (I)), C(R (I)), and1 n n

A(R (I)), the definition of linear independence is as follows:n

1 2 3 nDEFINITION #2.  The set S = {x , x , x , ... , x }fC (R (I)) is said to be linearly independent  1 n

1 2 3 non I = (a,b)  if the only solution to � c ,c ,c , ÿ, c  0 R such that 

1 2 nc   + c  + @@@ + c   =  0 �t0R (14)

1 2 nis the trivial solution, c  = c  = @@@ c  = 0.  Otherwise S is linearly dependent on the interval I.

The following theorem is in some sense just a restatement of the definition.

1 2 3 nTHEOREM #3.  The set S = {x , x , x , ... , x }fC (R (I)) is linearly independent  1 n

on I = (a,b)  if and only if one “vector”-valued function can be written as a linear combination of
the other “vector”-valued functions.

PROCEDURE.  To show that is linear independent it is standard to

1 2 3 nassume (8) and try to show c  = c  = c  = ÿ = c  = 0.
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DEFINITION #3.  If where I = (a,b) and i = 1, ÿ , n,

then     

(15)

is called the Wronski determinant or the Wronskian of at the point t.

THEOREM #4.  The null space N(L) of the operator defined by L in (1) above has dimension n. 
Hence the solution of the homogeneous equation

� x 0 I = (a,b) = interval of validity (16)

has the form

(17)

iwhere is a basis for N(L) and c , i = 1, ÿ , n are arbitrary constants.  Given a set of n

solutions to L[y] = 0, to show that they are linearly independent solutions, it is sufficient to
compute the Wronskian.

(18)

where i = 1, ÿ ,n  and show that it is not equal to zero on the interval of

validity.

THEOREM #5.  The nonhomogeneous equation
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    � t 0 I = (a,b) = interval of validity (19)

has at least one solution if the function g is contained in the range space of  L, R(L).  If this is
the case then the general solution of (19) is of the form

(20)

hwhere is a particular (i.e. any specific) solution to (19) and y  is the general (e.g. a formula

for all) solutions of (16).  Since N(L) is finite dimensional with dimension  n  we have 

(21)

where is a basis of the null space N(L).

EXERCISES on Fundamental Theory of Systems of ODE’S

EXERCISE #1

(a) Compute if the operator L is defined by where

(b) Compute  L[ö]  if the operator  L  is defined by  L[x] = xO - P(t)x   where

EXERCISE #2.  Directly using the Definition (DUD) or by using Theorem 1, prove that the
following operators L[y] which map the vector space C (R (I)) (the set of “vector-valued”1 n

function which have a derivative that is continuous on the interval of validity I) into the space
C(R (I))  of continuous “vector-valued” functions on I are linear.n

(a)  where 
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(b)  where 

EXERCISE #3.  Determine (and prove your answer directly using the definition (DUD),  if the
following sets are R.i. or R.d in C (R (I);1 n

   (a) S = { [ e , sin t, 3t ] [e , sin t, 3t ] }     (b) S = { [3e , 3 sin t, 6t ]  [e , sin t , 3t ] }t 2 T 3t 2 T t 2 T t 2 T

Hint: Since (14) must hold  � t 0 R, as your first try, pick several (distinct) values of  t  to show

1 2 3 n(if possible) that  c  = c  = c  =ÿ = c  = 0.  If (14) must hold  � t 0R then it must hold for any

1 2 3 nparticular value of t.  If this is not possible find  c ,c ,c , ÿ , c   not all zero such that  (14) holds 

� t 0 R.  Exhibiting (8) with these values provide conclusive evidence that  is

linearly dependent.

1 nEXERCISE #4.  Compute the Wronskian W(x , ÿ , x ;t) of the following:

(a) [e , sin t, 3t ] ,[e , sin t, 3t ] ,[e ,e , sin t]t 2 T 3t 2 T t -t

(b) [ sin t, cos t, t], [e , e , 0], [sin t, 0, 0]at bt
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Handout #2 MATRIX TECHNIQUE FOR SOLVING SYSTEMS Prof. Moseley
WITH CONSTANT COEFFICIENTS

Recall the homogeneous equation:

(1)

where L is a linear operator of the form

(2)

We consider the special case where P is a constant matrix.  For convenience of notation, we
consider:

(3)

where

Note that since the coefficient matrix is constant, it is continuous for all t 0 R and the interval of
validity is the entire real line.  Also L maps A(R (I) back to A(R (I).  Applying a previousn n

theorem we obtain:

THEOREM.  Let be a set of solutions to the homogeneous equation (3).  Then

the following are equivalent (i.e. they happen at the same time).

a. The set S is linearly independent.  (This is sufficient for S to be a basis of the null
space N(L) of the linear operator L[y] since the dimension of N(L) is n.)

b.

c. All solutions of (3) can be written in the form
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(4)

iwhere c ,i=1,ÿ,n are arbitrary constants.  That is, since S is a basis of N(L) it is a spanning set for
N(L) and hence every “vector-valued” function in N(L) can be written as a linear combination of
the “vector-valued” functions in S.

We note that by this theorem we have reduced the problem of finding the general solution
of the homogeneous equation (3) to the finding of  n  linearly independent functions

We now develop a technique for solving first order linear homogeneous systems

with constant coefficients (I.E., P(t) = A is a constant matrix) by finding the “vector-valued”

functions

We “guess” that there may be solutions to (3) of the form

(5)

where  r  is a constant and is a constant vector, both to be determined later. 

We attempt to determine r and by substituting  x  into the ODE and obtaining a condition on 

r  and in order that (3) have a solution of the form (5).  Using our standard technique for 

substituting into a linear equation we obtain:

                                                  

         

We need to first check that indeed computing the derivative yields

PROOF.
STATEMENT REASON

definition of notation

          = definition of
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= defin ition of 

= definition of scalar mult ’n

= definition of derivative of a matrix.

= Theorems from calculus

 = definition of scalar multiplication

definition  of 

Next we show that 

(6)

PROOF.
STATEMENT REASON

 Definition of 

Definition of scalar multiplication.

Ch. 5 Pg. 10



 Definition of A

Def’n of matrix mult

Scalar arithmetic.
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Scalar arithmetic.

Definition of matrix multiplication.

Definition of A and

Hence (6) becomes 

(7)

Since e  � 0, (it appears in each component of the vector equation on both sides of the equation), rt

we obtain the eigen value problem:

Eigen Value Problem (8)
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Hence we have changed the “calculus” problem of solving a first order system of ODE’s with
constant coefficients to an eigen value problem for a matrix.  (Hence no anti derivatives need be
computed.)  Recall that to solve the eigen value problem for a matrix, we must find the zeros (i.e.
the eigen values) of the n  degree polynomial p(r) = det (A - rI).  Thus we obtain the auxiliaryth

equation:

p(r)  =  det (A - rI)  =  0     Auxiliary Equation (9)

In accordance with the fundamental theorem of algebra, (9) has “n solutions” i.e. the left hand
side (LHS) can be factored into

1 2 n(r -r )(r - r ) ÿ (r - r ) = 0. (10)

Hence your factoring skills for higher degree polynomial equations are a must.  Two or
more of the factors in Equation (8) may be the same.  This makes the semantics of the standard
verbiage sometimes confusing, but once you understand what is meant, there should be no
problem.  As in second order equations, we speak of the special case of “repeated roots”.)
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Handout #3 DISTINCT ROOTS Prof. Moseley

We illustrate the procedure with an example.

EXAMPLE. Solve where 

SOLUTION.  Letting we obtain the eigen value problem 

Step 1.  Solve the eigen value problem. 

Step 1a.  Find the eigen values. 

p(r) = det (A - rI) 

      

1 2p(r) = 0  Y r  = 2, r  = -3

Step 1b.  Find the associated eigen vector.  (Let

r = 2    Y Solve Y reduce A - 2I 

2 1R  - (-4)R  

Hence the infinite family of solutions (the vector in the null space of A - 2I) is given by:

r = -3 Y Solve reduce A + 3I =

2 1R  - (1)R

Hence the infinite family of solutions (the vector in the null space of A - 2I) is given by:
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TABLE

Eigen Values Associated Eigen Vectors
(Basis of the null space)

1r  = 2

2r  = -3

Step 2.  Write the solution to the system of ODEs.

 Let

Hence, in vector form we have the solution as

 

or in scalar form as
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