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Handout #1 INTRODUCTION AND THE PREDATOR PREY MODEL Prof. Moseley

Systems of O.D.E's arise naturally in applications including mass - spring systems, 
electric circuits, and ecology models such as predator-prey models.  Since we have already seen
examples of mass-spring systems and electric circuits, we take a brief  look at a predator-prey
model.  Original work in this area was done by Alfred J. Lotka (1880-1949), a biophysicist, and
Vito Voltera (1860-1940), an applied analyst.  

Predator-Prey Model

H(t) = Prey      (Hunted) �Rabbits�  �Sunfish�  � Fish     � 
P(t) = Predator (Hunter) � Foxes � � Bass  �     � Sharks �
Ecosystem   Woods   Pond                Ocean

The nonlinear model developed by Lotka and Voltera is:  

  =    a H  )  á H P

ODEs

  =  ) c P  +  ã H P

0 0IC's H(0) = H ,  P(0) = P

The positive constants a, á, c, and ã can be based on empirical observations of the particular
species that are being modeled.  These equations are nonlinear and nonlinear equations are
generally more complicated than linear ones.  To keep the model simple and solvable by
techniques we already know, we use a "linearized" model.  Obviously it does not model “reality”
as well as the nonlinear model, but it has some interesting properties.  However, use of the results
of this model is not recommended.

Linearized Model

   =     a H  )  á  P

ODEs

   =  )  c P  +  ã H 

0 0IC's H(0) = H ,  P(0) = P

Although  the behavior exhibited by the "linearized" model may carry over to the 
nonlinear model, no such claim is made.  Investigation of the nonlinear model and how well the 
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linearized  and the nonlinear model actually models nature is left to you, if you are interested.  

The skills concerning ODE systems that you are to master are.
1)  Learn to solve an ODE system by elimination, that is, by eliminating one variable to obtain a   
         single second order scalar equation which can be solved by techniques that you already         
       know.  This requires that you compute an “equivalent” second order scalar equation.
2)   Learn to use matrix notation to rewrite a system of scalar ODEs as a "vector" equation.
3)   Learn to convert a second order scalar equation into an “equivalent” first order system which 
      you can write as either a scalar system or a “vector” equation.
4)   Learn to solve a  "vector" ODE system by using a vector (or matrix)  technique.

We do 2) immediately. 1) is in keeping with our policy of applying known techniques to new
problems.  4) is covered by homework problems.  3) makes further use of our review and
preview of linear theory.
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Handout #2 SCALAR SYSTEMS AND “VECTOR” EQUATIONS Prof. Moseley

WRITING TWO SCALAR EQUATIONS AS ONE “VECTOR’ EQUATION

The linearized scalar predator-prey system 

   =     a H  )  á  P

   =  )  c P  +  ã H 

can be written as a “vector” equation as 

More generally, we consider 

 

Letting    we get     or   

 which is a first order linear homogeneous system.

WRITING A SECOND ORDER EQUATION AS A FIRST ORDER SYSTEM.

Although this may move us further away from an application, a second order scalar ODE may be
written as a first order system. 

Example. Write z + 3z  ) 2z = g(t) with IC’s z(0) = 4 and (0) =5 as a first

order system.

Solution: Let     and    x  =  z     and   y =    so that    = =  y .
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From the equation,  =  ) 3   +  2 z  + g(t).  Since   =   we have   y  =  ) 3 y   + 2 x + g(t)

Hence our system is 

   or  in vector form  
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Handout #3 TECHNIQUE FOR SOLVING FIRST ORDER Prof. Moseley
SCALAR SYSTEMS: ELIMINATION

EXAMPLE #1.  Solve  

where   and   .

That is, solve      First order linear Nonhomogeneous System.

Writing this vector equation as two scalar equations we obtain

1 a) x (0) = 2 (1)

2 b) x (0) = 1 (2)

2We eliminate  x

STATEMENT REASON

ODE Derivative of Eq. a)

    Substitute into Eq. b)

    Algebra

2    Solve for x  in Eq. a) and substitute.

     Algebra

IC.      Given I.C.

     From Eq. a)

              = 2 - 2(1) = 0 From given IC's

Equivalent

second order IVP

Homogeneous Equation.  Auxiliary Equation:    r  + 1 = 0 Y  r = ± i2

   

Particular Solutions of Nonhomogeneous

1)

2)
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3)

S))))))))))))))))))))

         

 

Apply  IC.

2 1 22 = c  + 2á        Y c  = 0 , c  = 2 - 2á.
          } 

10 = c

1           Y x  = (2 - 2á) cos t + 2á
             

1 Case 1 á = 0 Y x  = 2 cos t

Case 2 á = 1 Y x = 2

1 Case 3 á = 3 Y x = -4 cos t + 6

2From Eq. a) (Solved for  x )
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Handout #4 DEVELOPMENT OF MODEL FOR Prof. Moseley
DRUG EFFECTIVENESS FOR SOCIAL ANXIETY 

Step 1. UNDERSTAND THE APPLICATION AREA. 

1. We accept the Liebowitz scale as a measure of social anxiety.
     Total is 0- 2(3)(24)= 144  (or Average 0-3)

Interpretation:
50-65 0.735294117- 0.955882352 Moderate social phobia
65-80 0.955882352- 1.323529412 Marked social phobia
80-95 1.323529412- 1.397058824 Severe social phobia
>95 >1.397058824 Very severe social phobia

n2. We believe that a normal person has some measure, say u >0, of social anxiety.  That is a       
     normal person will have some social anxiety.  (For computational convenience, we assume 

n     u  =1 instead of say 0.5)
3. We are looking for a treatment strategy for a temporary stress that causes one anxiety level to    
     increase.  We wish to know the “best” treatment strategy (e.g., drug dosage).

Step 2. DEVELOPMENT OF MODEL. 

We wish to develop a model that can be used to evaluate treatment strategies (e.g., drug dosage).

1Nomenclature: u = Current dosage of drug (e.g., Paxel)

2u  = Social Anxiety of Patient (or average for class)

1 1u (0) = u  = Initial dosage of drug.0

2 2u (0) = u  = Initial social anxiety.0

nu  = Normal anxiety level

0u = Initial anxiety level that we wish to bring back to normal

11 12 21 12a ,  a ,  a ,  a    model parameters, see below.
MODEL:

11 1 12 2 nScalar Form:  = ! a  u   +  a  (u  ! u )

21 1 22 2 n  = ! a  u   !  a  (u  ! u )

1 2 0   u (0) = 0 u (0) = u

Vector Form:

where
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 ,     

Analysis of model: 

11 12A.  a   and  a  are treatment strategy parameters.  

11 111. a  > 0 so that ! a  < 0 since if the dosage is high (and social anxiety is low) we would 
    like to decrease the dosage.

12 2 n2.  a  > 0 since if  u  > u , we increase the dosage.

21 22B.  a   and  a  are physiological constants for the paient (or the general population).  

21 21 211. a  > 0 so that ! a  < 0.   a   is the effectiveness of the drug; that is, the rate at which 

1 21 2    the drug can control anxiety.  If u  increases, since ! a  < 0, u  will go down.

22 222.  a  > 0 so that ! a  < 0.  We expect that even if no drug is given, the bodies on 
     defenses will cause the anxiety to go down. 

Steps 3 and 4. SOLUTION OF MODEL and INTERPRETATION OF RESULTS. 

11 1 12 2 n 11 12= ! a  u   +  a  (u  ! u ) a  > 0,    a  > 0

21 1 22 2 n 21 22= ! a  u   !  a  (u  ! u ) a  > 0,    a  > 0

1 2 0u (0) = 0 u (0) = u

11 12Dosage strategy #1 Constant dosage (a  =  a  = 0)

11 12If we assume  a  =  a  = 0, then the ODE’s are uncoupled and 
 

=   0

21 1 22 2 n 21 22= ! a  u   !  a  (u  ! u ) a  > 0,    a  > 0

1 2 0 u (0) = 0 u (0) = u

1 1 1Hence u  = constant.  However, we do not assume that since u (0) = 0, that u  is always 0. Instead
we assume that there is a jump discontinuity at t = 0 to some value u1 to be decided later.  It
remains to solve

21 1 22 2 n 21 22 = ! a  u   !  a  (u  ! u ) a  > 0,    a  > 0
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2 0u (0) = u
or 

22 2 22 n 21 1 21 22+  a  u     =  a  u ! a  u   a  > 0,    a  > 0

2 0u (0) = u

Since this problem is now first order linear, we could use an integrating factor.  However, we
note that it has constant coefficients and the right hand side is “nice”.  Hence we can (and will )
use the techniques we learned for second order ODE’s with constant coefficients and “nice” right
hand sides.

2 22 2Homogeneous: du /dt + a  u  = 0.

22 22 2c 2Auxiliary equation: r + a  = 0.  Hence r = ! a   so that u  = c  

2 22 2 22 n 21 1Particular Solution of Nonhomogeneous: du /dt + a  u  = a  u ! a  u .

Let

22 2pa ) u        = A.

2p1) du /dt = 0.
)))))))))))))

2p 22 2p 22 22 n 21 1du /dt + a  u  =  a  A = a  u ! a  u .

n 21 22 1A = u ! (a / a  ) u .

2 n 21 22 1 2u  = u ! (a / a  ) u  + c  

2We apply the initial condition to obtain c .

0 n 21 22 1 2u  = u ! (a / a  ) u  + c  

2 0 n 21 22 1c  = u  ! u  + (a / a  ) u  

2 n 21 22 1 0 n 21 22 1u  = u ! (a / a  ) u  + [u  ! u  + (a / a  ) u  ] 

Note:

2 n 21 22 1 n u  =  u ! (a / a  ) u   � u

22ô = Decay time constant = 1/a   (=  ½ using the parameters in the specific model that follows).
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2 n 1 1Suppose u  = u  at t = t .  Then t  satisfies 

n n 21 22 1 0 n 21 22 1u  = u ! (a / a  ) u  + [u  ! u  + (a / a  ) u  ] 

or

0 n 21 22 1 21 22 1[u  ! u  + (a / a  ) u  ]   = (a / a  ) u  

22 1  !a t  =   ln    

1  t    =      ln  

1  t    =   ln [ 1 +  ]

1  t    =    ln [ 1 +     ]

11 12 21 22General Dosage Strategy for a Specific Model (a  = 4,  a  = 1, a  = 1,  a  = 2)

21 12For convenience of computation, assume the physiological constants are  a  = 1,  a  = 2.  Also

n 0 11 12for computational convenience assume u  = 1 and u  = 2.  Now choose   a  = 4,  a  = 1.  Hence
our system becomes:

1 2= ! 4 u   +  (u  ! 1)

1 2= ! u   ! 2 (u  ! 1)

1 2u (0) = 0 u (0) = 2

or, using dot notation

1 2  = ! 4 u   +  u  ! 1

1 2 = ! u   ! 2 u   + 2
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1 2   u (0) = 0 u (0) = 2

2Solving the first equation for u  we obtain

2 1u   =   + 4 u   + 1

1 2 2Once we have solved for u , substitution into this equation gives u .  To obtain u (0) we use the
first equation directly:

1 2(0)   = ! 4 u (0)  +  u (0) ! 1 = ! 4 (0) + 2  ! 1 = 1

2Taking the derivative of the first equation and substituting the second equation in for u , we
obtain:

1 2= 2  = ! 4  +  u   ! 4  + ( ! u   ! 2 u   + 2)

1 2       =  ! 4   ! u   ! 2 u   + 2

1 1       =  ! 4   ! u   ! 2 (   + 4 u   + 1) + 2

1 1       =  ! 4   ! u   ! 2   ! 8 u   ! 2 + 2

1       =  ! 6   ! 9u     

or

1 + 6   +  9u   =  0   

1with the initial conditions u (0) = 0 and (0) = 1

The auxiliary equation is   r  + 6 r + 9 = 0 or ® + 3 )  = 02 2

Hence the general solution is 

1 1 2u  = c  e    + c  t e !3 t !3 t

1 2 2 = ! 3 c  e    + c   e   ! 3 c   t e !3 t !3 t !3 t

Applying the initial conditions we obtain

1 20 = c  e    + c (0) e !3 (0) !3 (0)

1 2 21 = ! 3 c  e    + c   e   ! 3 c  (0) e !3(0) !3 (0) !3 (0)

or

1      c              = 0

1 2! 3 c     + c    = 1
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1 2Hence    c    = 0   and   c    = 1 so that 

1   u  = t e!3 t

   =  e    !3 t e!3 t !3 t

2 1u   =    + 4 u   + 1 =  e    ! 3 t e    + 4 t e  + 1!3 t !3 t !3 t

      = (1 + t) e    +  1!3 t

ô = Decay time constant = 1/3  (Compare to  ½ for the constant dosage model).

2 nu  = 1 = u .
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