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Handout #1 MATRIX EIGENVALUE PROBLEMS Prof. Moseley

     For a given square matrix, the nonzero vectors x and scalars λ such that Ax   = λx   are
special.  For example
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The proportionality constant λ is called an eigenvalue of A and x is an eigenvector of A
associated with the eigenvalue λ.  Since we can write (1) as the homogeneous equation.

(A - λI)x = (2)

the eigenvalues are exactly the solutions of the polynomial equation

det (A - λI) = 0 . (3)

which makes the matrix AλI singular.  Recall that (2) has only the trivial solution x = 0  if  det(A
- λ)  0 so that AλI is nonsingular.  If det(A - λ1I) = 0, then there are an infinite number of
solutions to (2) and that they form a subspace of Rn (called the eigenspace associated with λ1). 
By definition, an eigenvector for a given eigenvalue is any nontrivial solution in its eigenspace. 
Unfortunately, since this conflicts with the formal definition of an eigenvector, for a given
eigenvalue  λ = λ1 , a basis of this subspace are often referred to as the eigenvectors associated
with λ1.  However, like the concept of linear independence, once you understand it, the bad
semantics are not a problem.

Solving the eigenvalue problem Ax = λx means finding all eigenvalues and basis sets for
their associated eigenspaces.  Unfortunately (especially among engineers), this is called finding the
eigenvectors. Interestingly, an eigenvalue problem is different from solving Ax = .  If the entries


b

in A and  are in a field K, then, since only a finite number of field operations are needed for the

b

solution process (Gauss elimination), all solutions will be in Kn.  However, the solution of Ax =
λx requires the roots 0f (3) which, even if the entries in A are integers, may be unreal.  Hence to
solve an eigenvalue problem we must be able to obtain the roots of an nth degree polynomial. 
Hence we really must use the field C.  Eigenvectors in R3 may have a fgeometric interpretation
(e.g., in the design of rotors for motors).  However, we are interested in solving  Ax = λx in Rn to
be able to use it as part of the solution process for solving a system of linear homogeneous
ODE’s.

EXAMPLE #1.  Solve the eigenvalue problem Ax = λx if A = .1 1
1 3

 
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Step 1.  Find the eigenvalues of A.
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Hence

        

p(λ) = 0  (λ - 2)2 = 0  λ = 2,2 (repeated real root).  We say that the eigenvalue  λ = 2  has
algebraic multiplicity two.  (If p(λ) = (λ - λ1)n1  (λ - λi)ni   (λ - λk)nk, then the algebraic
multiplicity of λi is ni.)

Step 2.  Find the eigenvectors (i.e., find a basis set for the eigenspace associated with each
eigenvalue).

We first solve (A - 2I) x =   where .

0

To solve (A - 2I) x =  we use Gauss Elimination to reduce A - 2I.  It need not be augmented by

0

the RHS since the problem is homogeneous.  The RHS is  and any elementary row operation

0

will leave it zero.

 x1x2 = 0     x1 = x2R R
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Hence is the general solution of (A - 2I)x = .  Thus there are an

0

infinite number of solutions, all scalar multiples of the vector .  However, all solutions are

scalar multiples of the vector   x = (we could have chosen as well).  The

dimension of the eigenspace is one.  In general, the dimension of the eigenspace is called the
geometric multiplicity of the eigenvalue.

THEOREM.  The algebraic multiplicity of an eigenvalue is always bigger than or equal to the
geometric multiplicity.  

The “nice” case is when they are equal.  Unfortunately, that is not the case in this example.
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 We record the information in a Table.

     TABLE
Associated

e-values   e-vectors 

λ1 = λ2 = 2

(or λ1 = 0, 0)

(This indicates that the (Unfortunately, since there is only one vector in the
basis  

 algebraic multiplicity is  set for the eigenspace so that the geometric multiplicity is 
 two)  only one.)

EXAMPLE #2.  Solve the eigenvalue problem Ax = λx if A = .
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p(λ) = 0  λ2+1 = 0  λ = ±i. 

Step 2.  Find the eigenvectors (i.e., find a basis set for the eigenspace associated with each
eigenvalue).

We first solve (A - iI) x =   where AiI = .

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To solve (A - iI) x =   we use Gauss Elimination to reduce A - iI.  It need not be augmented by

0

the RHS since the problem is homogeneous.  The RHS is  and any elementary row operation

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will leave it zero.
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infinite number of solutions, all scalar multiples of the vector .  
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If A has all real entries, then p(λ) = det (A - λI) has all real coefficients so that 
unreal roots of (A - λI)x =  come in complex conjugate pairs.  Furthermore, since A is real, if 


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λ = µ+iν is an eigenvalue with eigenvector , then  is an eigenvalue for 
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λ = µiν.  Hence   is an eigenvector associated with i.  We record the information in a
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Handout #2 HERMITIAN MATRICES Prof. Moseley

DEFINITION #1.  A square matrix Cn×n is called Hermitian (or self-adjoint) if  A = A* whereA
nxn

(i.e. the transpose of the complex conjugate of  A).

THEOREM #1.  If ACn×n is Hermitian (self-adjoint), then
1. All eigenvalues are real.
2. There exist a full set of  n  linearly independent eigenvectors for  A  which form a

basis for Cn (if  A  is real, the eigenvectors can be chosen to be real and hence form
a basis for Rn).

3. If  x  and  y  are eigenvectors for different eigenvalues, then they are orthogonal
(perpendicular), so that (x, y) x y = 0T    


4. If a given eigenvalue  λ  has more than one linearly independent eigenvector

associated with it (we say  λ  has geometric multiplicity m) then they can be chosen
to be orthogonal.

COROLLARY #1.  If Rn×n Cn×n = Rn×n+iRn×n  is real and symmetric, it is Hermitian (self-A
mxn

adjoint) and its eigenvalues are real.  Also, it has a full set of eigenvectors which may be chosen to
be orthogonal.

In an appropriate setting, the real matrices associated with linear circuits and systems of
linear springs are symmetric and hence have real eigenvalues.  They could also be positive or
negative definite indicating exponential decay.  Nonreal eigenvalues may indicate pure oscillations
or damped oscillations.
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Handout #3 BASIS OF EIGENVECTORS Prof. Moseley

Let T:RnRn be defined by T( ) = A . A matrix is nice if it has a full set of  n  linearlyx x

independent eigenvectors that form a basis of  Rn.  Recall that B = where 1 nˆ ˆe ,...,e

 is a basis of Rn.   If Rn, then x1, x2, ..., xn are the coordinates
th

T
i

i slot
ê [0,...,0,1,0,...,0]

 
 1 2 nx [x ,x ,..., x ]



of  with respect to this basis.  If are a  a full set of  n  linearly independentx 1 2 nx ,x ,...,x  

eigenvectors that form a basis of  Rn, then the coordinates of   with respect to this basis can bex

obtained from the set of linear algebraic equations

.1 1 n nc x c x x   
 

Recall that if A is Hermitian (self-adjoint) then it has a full set of eigenvectors that are orthogonal. 
The coordinates of an orthogonal basis are particularly easy to obtain.  Let B =  be an1 n{ x , , x }  



orthogonal basis. so that any vector can be written asx

. . (1)1 1 n nx c x c x     
 

We obtain the coordinate cj  by taking the dot product of  (1) with .jx

=.  =j j 1 1 n n(x , x) (x ,c x c x )     
 

(1 j 1 n j nc (x ,x ) c (x x )   
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( 1 j jc ( x , x ) 

Hence .  We might call these the Fourier Series coefficients for this basis.j
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