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Handout  #1 VECTOR VALUED FUNCTIONS OF ONE VARIABLE (TIME) Prof. Moseley

Physical quantities such as velocity and force are considered to be “vectors” since they
have magnitude and direction in three dimensional physical space.  Hence it is standard to model
them as elements in R .  However, they often vary with time (and space).  This leads to3

consideration of time varying vector-valued functions of the form 

       0 R (I) = ö(I,R )={ :I6R }. (1)3 3 3

where I =(a,b).  (We use the transpose notation to save space.)  
More generally, if we consider a system with n state variables (e.g., several particles,

concentrations of several chemicals in a chemical reactor, or several species in an eco-system),
we must consider “vector”-valued functions of time in the form (here the word “vector” refers to
the fact that we are considering column vectors or “n-tuples” of functions rather than that they
are elements in an abstract  vector space):

     0 R (I) = ö(I,R )={ :I6R } (2)n n n

where I =(a,b) as well as matrix-valued functions of time the form:

     0  R (I) = ö(I,R )={A:I6R }. (3)m× n mxn mxn

since our system or model may also vary with time.

Even more generally, recall the example of  time varying vectors.  Suppose V is a real
vector space (which we think of as a state space).  Now let V(I) = {x(t):I6V}=F (I,V) where I =

(a,b)fR.  That is, V is the set of all ”vector valued” functions on the open interval I.  (Thus we
allow the state of our system to vary with time.)  To make V(I) into a vector space, we must
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equip it with a set of scalars, vector addition, and scalar multiplication.  The set of scalars for
V(I) is the same as the scalars for V (i.e.,R).  Vector addition and scalar multiplication are simply
function addition and scalar multiplication of a function.  To avoid introducing to much notation,
the engineering convention of using the same symbol for the function and the dependent variable

will be used (i.e., instead of y=f(x), we  use y=y(x) ).  Hence instead of  , for a function

in V(I), we use  = (t).  The context will explain whether  is a vector in V or a function in
V(I).

1) If  , 0V(I), then we define +  pointwise as , ( + )(t) = (t) + (t).

2) If 0V(I) and á is a scalar, then we define (á )(t) 0V(I) pointwise as (á )(t) = á (t).
The proof that V(I) is a vector space is left to the exercises.  We use the notation V(t) instead of
V(I), when, for a math model, the interval of validity is unknown and hence part of the problem. 
Since V is a real vector space, so is V(t).  V(t) can then be embedded in a complex vector space
as described above.  

To define limits and hence derivatives in an abstract time varying vector space, we need
more structure.  Suppose V is an inner product space.  Then it will have an induced norm
which induces a metric and hence a topology.  Since the real numbers are a field with absolute

0value, the definition of the limit of a "vector" valued function of t, , as t approaches t ,

, can be defined  Then the derivative as  the limit of the difference quotient can be

defined,   .  For R  we have an inner product.  Also, there are several ways ton

define a norm on  R  and R .  Rather than carry out this long process,  for R  and R  it isn m×n n m×n

much simpler to just define the derivative componentwise.  For time varying vectors in R  thisn

leads to the subspaces

1 n iA (R (I)) = A (I,R )={ = [x ,...,x ] :I6R *x  is analytic}fC(R (I)) = C(I,R )n n T n n n

1 n i      ={ = [x ,...,x ] :I6R *x is continuous}fR (I) = ö(I,R )={ :I6R }T n n n 3

We leave it to future study to show that the usual inner product on R  and any norm on R  willn m×n

in fact result in componentwise differentiation. 

DEFINITION #1.  If   and A are as given in (2) and (3), then  and 

.

That is, for “vectors” and matrices we compute derivatives (and integrals)
componentwise.  We state one theorem on the properties of derivatives of vector and matrix
valued functions.
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THEOREM #1.  Let A,B 0  R (I), ,  0 R (I), and c 0 R.  Assuming all derivatives exist,m× n n

, ,

 , ,

 and .
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Handout #2 LINEAR INDEPENDENCE OF VECTOR Prof. Moseley
VALUED FUNCTIONS OF ONE VARIABLE (TIME)

It is important that you understand the definition of linear independence in an abstract
vector space.

DEFINITION #1.  Let V be a vector space.  A finite set of vectors  f V is

1 2 klinearly independent (R.i.) if the only set of scalars c , c , ..., c  which satisfy the (homogeneous)
vector equation

                              (1)

1 2 nis   c  = c  = @@@ = c  = 0; that is, (1) has only the trivial solution.  If there is a set of scalars not all
zero satisfying (1) then S is linearly dependent (R.d.).

DEFINITION #2.  Let  ,..., 0ö(I,R ) where I = (a,b).  Now let J = (c,d) f (a,b) and for n

i = 1,...,k, denote the restriction of  to J by the same symbol.  Then we say that  

S = { ,..., } f ö(J,R ) fö(I,R ) is linearly independent on J if S is linearly independent asn n

a subset of ö(J,R ).  Otherwise S is linearly dependent on J.n

Applying Definitions #1 and 2 to a set of k functions in the function space 

1 nC (I,R ) ={ = [x ,...,x ] :I6R * exists and is continuous} we obtain:1 n T n

THEOREM #1.  The set  S = { ,..., } f C (I,R )  where I = (a,b)  is linearly independent on1 n

I if (and only if) the only solution to the equation

1 kc  (t) + @@@+ c  (t) = 0            � t 0 I (1)

1 2 kis the trivial solution c  = c  =  @@@ = c  =0 (i.e., S is a linearly independent set in the vector space

1 2 n C (I,R ) ).    If there exists c  , c  ,@@@,c  0 R, not all zero, such that (1) holds, (i.e, there exists a1 n

nontrivial solution) then S is linearly dependent on I (i.e., S is a linearly dependent set in the
vector space  C (I,R ) which is a subspace of ö(I,R ) ).  1 n n

Often people abuse the definition and say the functions in S are linearly independent or
linearly dependent on I rather than the set S is linearly independent or dependent.  Since it is in
general use, this abuse is permissible, but not encouraged as it can be confusing.  Note that Eq.

1 2(1) is really an infinite number of equations in the two unknowns c  and c , one for each value of
x in the interval I.  Four theorems are useful.

THEOREM #2.    If a finite set  S fC (I,R ) where  I = (a,b) contains the zero function, then S is1 n

Ch. 1 Pg. 5



linearly dependent on I.

THEOREM #3. If f is not the zero function, then S = { }fC (I,R ) is linearly independent.1 n

THEOREM #4.  Let S = { , } f C (I,R ) where I= (a,b).  If either  or  is the zero “vector”1 n

in C (I,R ) (i.e., is zero on I), then S is linearly dependent on I.1 n

THEOREM #5.  Let S = { , }fC (I,R )  where I= (a,b) and suppose neither  or } g is the1 n

zero function.  Then S is linearly dependent if and only if one function is a scalar multiple of the
other (on I).

PROCEDURE.  To show that    S = { ,..., }  is linearly independent it is standard to assume

1 2 3 k(1) and try to show  c  = c  = c  = ... = c  = 0.  If this can not be done, to show that S is linearly
dependent, it is mandatory that a nontrivial solution to (1) be exhibited.

EXAMPLE #1.  Determine (using DUD) if   S  =  {  [ e  , sin t , 3 t  ]  ,   [ e  , sin t , 3 t  ] } ist 2 T 3t 2 T   

linearly independent.  ( We prefer column vectors, but use the transpose notation to save space.)

Proof.  (This is not a yes-no question).  We assume

                 �  t 0 R. (2)

and try to solve.  Note that, in this context, the zero vector is the zero function for all three
components defined by 

                     � t 0 R. (3)

The one “vector equation”  (2) can be written as the three scalar equations

1 2c    e         +     c   e       =   0t 3t

1 2c   sin t     +     c   sin t   =   0                  .    �  t 0 R (4)

1 2c     t        +     c   3 t      =   02 2

Since these equations must hold � t 0 R, it is really an infinite number of algebraic equations

1 2(there are an infinite number of values of t) in the two unknowns c  and c .  Intuitively, unless we

1 2are very lucky, the two unknowns, c  and c , can not satisfy an infinite number of equations .  To
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show this, we simply select two equations (i.e. values of  t)  that are
"independent".  Choosing t = 0 and t = 1 (so as to make the algebra easy) we obtain.
   

1 2      c    e           +     c   e           =   00 3(0)

1 2      c   sin 0      +     c   sin 0        =   0 (5)

1 2      c     (0)        +     c   3 (0)      =   02 2

  

1 2      c    e            +     c   e       =   01 3(1)

1 2      c   sin (1)     +     c   sin (1)   =   0 (6)

1 2      c     (1)        +     c   3 (1)      =   02 2

or if we simplify
   

1 2        c          +       c           =   0
         0         +       0           =   0 (7)
         0         +       0           =   0
 

1 2      c    e         +     c   e           =   03

1 2      c   sin (1)  +     c   sin (1)   =   0 (8)

1 2      c               +     c   3           =   0

Note that the second and third equation in the first set yield 0 = 0.  This is obviously true, but is 

1 2not helpful in showing c  = c  = 0.  Also, we can divide by e in the first equation in the second set 
and by sin(1) � 0 in the second equation in the second set.  Ignoring 0=0 we obtain:

1 2     c        +      c           =   0 

1 2     c        +      c   e       =   0 (9)2

1 2     c        +      c            =   0

1 2     c        +      c   3       =   0

Hence for S to be linearly independent, we need only show that these equations

1 2imply c  = c  = 0.  We could use Gauss elimination, but for relatively simple equations

2 1examination may be faster.  Note that the first and third are the same and yield c  = ) c .

1 1 1 1Substituting into the last equation we obtain c  + 3 ( ) c  ) = 0.  Hence ) 2 c  = 0.  Thus c  = 0

2 1and hence c  = ! c  = 0.  Since we have proved that the only solution to the "vector” equation (2)

1 2is the trivial solution c  = c  = 0, the set S is linearly independent.
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