A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL EQUATIONS (ODE"s)

CHAPTER 9

Inverse Transform and

Solution to the Initial Value Problem

1. The Inverse Laplace Transform
2. Technique for Using the Laplace Transform to Solve IVP's
3. Table of Laplace Transforms that Need Not be Memorized

We wish to establish a subspace of \mathbf{T} where the Laplace Transform is a one-to-one mapping. This means that different functions $f(t)$ get mapped (or transformed) into different functions $F(s)$. Specifically, if $f \neq g$, then $\mathscr{L}\{f\} \neq \mathscr{L}\{g\}$. The contrapositive of this statement, which is equivalent, is that if $\mathscr{L}\{\mathrm{f}\}=\mathscr{L}\{\mathrm{g}\}$, then $\mathrm{f}=\mathrm{g}$. This is the standard definition of one-toone. For a linear mapping between vector spaces, there is an easy test to determine if a mapping (like the Laplace Transform) is or is not one-to-one (1-1).

THEOREM. If T is a linear operator from the vector space V to the vector space W and its null space N_{T} is $\{\overrightarrow{0}\}$, then T is a one-to-one mapping; that is, if $\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}} \varepsilon \mathrm{V}$ and $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$.

PROOF: We start by proving the following:
Lemma. If N_{T} is $\{\overrightarrow{0}\}$ and $T(\vec{x})=\overrightarrow{0}$, then $\vec{x}=\overrightarrow{0}$.
Proof of lemma: We begin by recalling the definition of the null space N_{T}.
DEFINITION (Null Space). The null space is the set of all vectors \vec{x} that satisfy the linear homogeneous equation $T(\vec{x})=\overrightarrow{0}$; that is $N_{T}=\{\vec{x} \varepsilon V: T(\vec{x})=\overrightarrow{0}\}$.

Thus if $T(\vec{x})=\overrightarrow{0}$, then by the definition of N_{T} we have that $\vec{x} \varepsilon N_{T}$. However, we also assume that $N_{T}=\{\overrightarrow{0}\}$. Hence since $\overrightarrow{\mathrm{x}} \varepsilon \mathrm{N}_{\mathrm{T}}$, we have that $\overrightarrow{\mathrm{x}}=\overrightarrow{0}$.

QED for lemma.
Rest of proof of theorem (For variety, this time we write the proof in paragraph form): Now assume that $\vec{x}, \vec{y} \& V$ and $T(\vec{x})=T(\vec{y})$. Hence we have that $T(\vec{x})-T(\vec{y})=\overrightarrow{0}$. Hence since T is a linear operator we have that $T(\vec{x}-\vec{y})=\overrightarrow{0}$. Since we also are assuming that $N_{T}=\{\overrightarrow{0}\}$, we have by the lemma that $\vec{x}-\vec{y}=\overrightarrow{0}$. Hence $\vec{x}=\vec{y}$. Hence T is a one-to-one mapping.

QED for Theorem.
Recall that $\mathrm{C}[0, \infty)$ denotes the set of continuous functions on $[0 . \infty)$.
LERCH'S THEOREM. If $\mathrm{f}, \mathrm{g} \in \mathrm{C}[0, \infty)$, and $\mathscr{L}\{\mathrm{f}(\mathrm{t})\}(\mathrm{s})=\mathscr{L}\{\mathrm{g}(\mathrm{t})\}(\mathrm{s}) \forall \mathrm{s}>\mathrm{a}$, then $\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t}) \forall \mathrm{t} \geq 0$.

Lerch's theorem says that the Laplace transform is a one-to-one mapping on the vector space $\mathrm{C}[0, \infty)$ and hence has only the zero function in its null space. Different functions in $\mathrm{C}[0, \infty) \cap \mathbf{T}$ are mapped to different functions in the space of transforms \mathbf{F}. Thus our table gives the unique transform for each of the continuous functions in the table. Although it is not true that \mathscr{L} is one-
to-one on all functions in T, if we "throw out" the "null functions", it is one-to-one. For example, \mathscr{L} is one-to-one on $\mathbf{T}_{\text {pcexp }}=\mathrm{PC}_{\mathrm{a}}[0, \infty) \cap \mathrm{E}_{\mathrm{xp}}$, the set of all piecewise continuous functions of exponential order where we have taken the average value at the points of discontinuity. Since \mathscr{L} is a one-to-one mapping on $\mathbf{T}_{\text {pcexp }}$, its inverse mapping exists. (Similar to limiting the domain of $\sin (x)$ so that we can define $\operatorname{Sin}^{-1}(x)$, but the sets we are mapping from and to are sets of functions, not sets of numbers.) We denote the inverse Laplace Transform of a function $F(s)$ by $f(t)=\mathscr{L}^{-1}\{F(s)\}$.

THEOREM. The inverse Laplace Transform is linear; that is, $\mathscr{L}^{-1}\left\{\mathrm{c}_{1} \mathrm{~F}(\mathrm{~s})+\mathrm{c}_{2} \mathrm{G}(\mathrm{s})\right\}=\mathrm{c}_{1} \mathscr{L}^{-1}\{\mathrm{~F}(\mathrm{~s})\}+\mathrm{c}_{2} \mathscr{L}^{-1}\{\mathrm{G}(\mathrm{s})\}$.

PROOF. Let $\mathrm{F}(\mathrm{s})=\mathscr{L}\{\mathrm{f}(\mathrm{t})\}$ and $\mathrm{G}(\mathrm{s})=\mathscr{L}\{\mathrm{g}(\mathrm{t})\}$ so that, since \mathscr{L} is one-to-one we have $f(t)=\mathscr{L}^{-1}\{F(s)\}$ and $g(t)=\mathscr{L}^{-1}\{G(s)\}$. Then by the linearity of \mathscr{L} we have

$$
\mathscr{L}\left\{\mathrm{c}_{1} \mathrm{f}(\mathrm{t})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{t})\right\}=\mathrm{c}_{1} \mathscr{L}\{\mathrm{f}(\mathrm{t})\}+\mathrm{c}_{2} \mathscr{L}\{\mathrm{~g}(\mathrm{t})\} .
$$

Since \mathscr{L} is one-to-one, we have
$\mathscr{L} \mathscr{L}^{-1}\left\{\mathrm{c}_{1} \mathscr{L}\{\mathrm{f}(\mathrm{t})\}+\mathrm{c}_{2} \mathscr{L}\{\mathrm{~g}(\mathrm{t})\}\right\}=\mathrm{c}_{1} \mathrm{f}(\mathrm{t})+\mathrm{c}_{2} \mathrm{~g}(\mathrm{t})$
Rewriting this equation we have
$\mathscr{L}^{-1}\left\{\mathrm{c}_{1} \mathrm{~F}(\mathrm{~s})+\mathrm{c}_{2} \mathrm{G}(\mathrm{s})\right\}=\mathrm{c}_{1} \mathscr{L}^{-1}\{\mathrm{~F}(\mathrm{~s})\}+\mathrm{c}_{2} \mathscr{L}^{-1}\{\mathrm{G}(\mathrm{s})\}$
as required.

Q.E.D.

EXAMPLE \#3. If $F(s)=\frac{s}{s^{2}-2 s+3}$, find $f(t)=\mathscr{L}^{-1}\{F(s)\}$.

Solution.

$$
\frac{s}{s^{2}-2 s+3}=\frac{s}{s^{2}-2 s+1+3-1}=\frac{s}{(s-1)^{2}+2}
$$

From the table we recall that

$$
\begin{aligned}
& \mathscr{L}\left\{\mathrm{e}^{\mathrm{at}} \sin (\omega \mathrm{t})\right\}= \frac{\omega}{(\mathrm{s}-\mathrm{a})^{2}+\omega^{2}}, \quad \mathscr{L}\left\{\mathrm{e}^{\mathrm{at}} \cos (\omega \mathrm{t})\right\}=\frac{\mathrm{s}-\mathrm{a}}{(\mathrm{~s}-\mathrm{a})^{2}+\omega^{2}} \\
& \text { So } \quad \begin{aligned}
\frac{\mathrm{s}}{\mathrm{~s}^{2}-2 \mathrm{~s}+3} & =\frac{\mathrm{s}}{\mathrm{~s}^{2}-2 \mathrm{~s}+1+3-1}=\frac{\mathrm{s}-1+1}{(\mathrm{~s}-1)^{2}+2}=\frac{\mathrm{s}-1}{(\mathrm{~s}-1)^{2}+2}+\frac{1}{(\mathrm{~s}-1)^{2}+2} \\
& =\frac{\mathrm{s}-1}{(\mathrm{~s}-1)^{2}+2}+\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{(\mathrm{~s}-1)^{2}+2}
\end{aligned}
\end{aligned}
$$

Hence $\mathscr{L}^{-1}\left\{\frac{\mathrm{~s}}{\mathrm{~s}^{2}-2 \mathrm{~s}+3}\right\}=\mathscr{L}^{-1}\left\{\frac{\mathrm{~s}-1}{(\mathrm{~s}-1)^{2}+2}+\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{(\mathrm{~s}-1)^{2}+2}\right\}$

$$
\begin{aligned}
& =\mathscr{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+2}\right\}+\frac{1}{\sqrt{2}} \mathscr{L}^{-1}\left\{\frac{\sqrt{2}}{(s-1)^{2}+2}\right\} \\
& =e^{t} \cos (\sqrt{2} \sqrt{2} t)+\frac{1}{\sqrt{2}} e^{t} \sin (\sqrt{2} t)
\end{aligned}
$$

EXERCISES on The Inverse Transform
Find $f(t)=\mathscr{L}^{-1}\{F(s)\}(t)$ if

1) $\mathrm{F}(\mathrm{s})=\frac{5}{\mathrm{~s}+3}$
2) $F(s)=\frac{3}{s^{2}+25}$
3) $F(s)=\frac{s-4}{s^{2}-4}$
4) $F(s)=\frac{3}{s}$
5) $\mathrm{F}(\mathrm{s})=\frac{5}{\mathrm{~s}^{2}}$
6) $F(s)=\frac{s+1}{s^{2}+1}$
7) $F(s)=\frac{9}{s^{2}+3 s}$
8) $F(s)=\frac{4}{s^{2}+3 s+2}$
9) $F(s)=\frac{3}{(s+2)^{2}+4}$
10) $F(s)=\frac{3 s+4}{s^{2}+6 s+10}$
11) $F(s)=\frac{4 s+7}{2 s^{2}-12 s+22}$
12) $F(s)=\frac{-2}{s+16}$
13) $\mathrm{F}(\mathrm{s})=\frac{3}{\mathrm{~s}-7}+\frac{1}{\mathrm{~s}^{2}}$
14) $\mathrm{F}(\mathrm{s})=\frac{1}{(\mathrm{~s}-3)^{2}}-\frac{2}{\mathrm{~s}^{2}}+\frac{1}{\mathrm{~s}}$
15) $\mathrm{F}(\mathrm{s})=\frac{4 \mathrm{~s}}{\mathrm{~s}^{2}+5}-\frac{2}{\mathrm{~s}^{2}}+\frac{1}{\mathrm{~s}}$
16) $F(s)=\frac{7}{s^{2}+5}-\frac{2}{s^{2}}+\frac{1}{s}$
17) $F(s)=\frac{4 s+7}{s^{2}+5}-\frac{2}{s^{2}}+\frac{1}{s}$
18) $F(s)=\frac{4 s}{s^{2}-14}$
19) $F(s)=\frac{-1}{s\left(s^{2}+8\right)}$

EXAMPLE. Using Laplace transforms, solve the IVP $y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=1, y^{\prime}(0)=0$.
Solution. We transform the problem into the (complex) frequency domain: For convenience let $\mathcal{L}\{y\}=Y$.

$$
\begin{aligned}
& \mathscr{L}\left\{\mathrm{y}^{\prime \prime}-\mathrm{y}^{\prime}-2 \mathrm{y}\right\}=\mathscr{L}\{0\} \\
& \mathscr{L}\left\{\mathrm{y}^{\prime \prime}\right\}-\mathscr{L}\left\{\mathrm{y}^{\prime}\right\}-2 \mathscr{L}\{\mathrm{y}\}=0 \\
& \mathscr{L}\left\{\mathrm{y}^{\prime \prime}\right\}-\mathscr{L}\left\{\mathrm{y}^{\prime}\right\}-2 \mathscr{L}\{\mathrm{y}\}=0 \\
& \\
& \left(\mathrm{~s}^{2} \mathrm{Y}-\mathrm{s} y(0)-\mathrm{y}^{\prime}(0)\right)-(\mathrm{s} \mathrm{Y}-\mathrm{y}(0))-2 \mathrm{Y}=0 \\
& \left(\mathrm{~s}^{2} \mathrm{Y}-\mathrm{s}(1)-(0)\right)-(\mathrm{s} \mathrm{Y}-(1))-2 \mathrm{Y}=0 \\
& \mathrm{~s}^{2} \mathrm{Y}-\mathrm{s}-\mathrm{s} Y+1-2 \mathrm{Y}=0 \\
& \mathrm{~s}^{2} \mathrm{Y}-\mathrm{s} \mathrm{Y}-2 \mathrm{Y}=\mathrm{s}-1 \\
& \left(\mathrm{~s}^{2}-\mathrm{s}-2\right) \mathrm{Y}=\mathrm{s}-1
\end{aligned}
$$

$$
Y=\frac{s-1}{s^{2}-s-2}=\frac{s-1}{(s-2)(s+1)}=\frac{A}{s-2}+\frac{B}{s+1}
$$

where we may use partial fractions to obtain A and B. Multiplying by ($s-2$)($s+1$) we obtain

$$
s-1=A(s+1)+B(S-2)=A s+A+B s-2 B
$$

Equating coefficients
s) $1=A+B$
$\left.s^{0}\right)-1=A-2 B$
$\Rightarrow 2=3 B \Rightarrow B=2 / 3 \Rightarrow A=1-B=1 / 3$
$\mathrm{Y}=\frac{\mathrm{s}-1}{(\mathrm{~s}-2)(\mathrm{s}+1)}=\frac{1 / 3}{\mathrm{~s}-2}+\frac{2 / 3}{\mathrm{~s}+1}$
$\Rightarrow \quad y(t)=1 / 3 \mathrm{e}^{2 \mathrm{t}}+2 / 3 \mathrm{e}^{-\mathrm{t}}$

$f(\mathrm{~T})=\mathscr{L}^{-1}\{\mathrm{~F}(\mathrm{~s})\}$	$\mathrm{F}(\mathrm{s})=\mathcal{L}\{\mathrm{f}(\mathrm{t})\}$	Domain $\mathrm{F}(\mathrm{s})$
t^{n} where n is a positive integer	$\frac{n!}{s^{n+1}}$	s > 0
$\sinh (\mathrm{at})$	$\frac{\mathrm{a}}{\mathrm{s}^{2}-\mathrm{a}^{2}}$	$\mathrm{s}>*{ }^{*}$
cosh (at)	$\frac{\mathrm{s}}{\mathrm{s}^{2}-\mathrm{a}^{2}}$	$\mathrm{s}>*{ }^{*}$
$\mathrm{e}^{\text {attin }}$ (bt)	$\frac{\omega}{(s-a)^{2}+\omega^{2}}$	s > a
$\mathrm{e}^{\text {at }} \cos (\mathrm{bt})$	$\frac{s-a}{(s-a)^{2}+\omega^{2}}$	$\mathrm{s}>\mathrm{a}$
$\mathrm{t}^{\mathrm{n}} \mathrm{e}^{\text {at }} \mathrm{n}=$ positive integer	$\frac{n!}{(s-a)^{n+1}}$	s > a
$\mathrm{u}(\mathrm{t})$	$\frac{1}{\mathrm{~s}}$	s > 0
$\mathrm{u}(\mathrm{t}-\mathrm{c})$	$\frac{\mathrm{e}^{-c s}}{\mathrm{~s}}$	s > 0
$e^{c t} \mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s}-\mathrm{c}$)	
$\mathrm{f}(\mathrm{ct}) \mathrm{c}>0$	$\frac{1}{\mathrm{c}} \mathrm{~F}\left(\frac{\mathrm{~s}}{\mathrm{c}}\right)$	
$\delta(\mathrm{t})$	1	
$\delta(\mathrm{t}-\mathrm{c})$	$\mathrm{e}^{-c s}$	

