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Handout # 1 THE INVERSE TRANSFORM Professor Moseley

We wish to establish a subspace of T where the Laplace Transform is a one-to-one
mapping.  This means that different functions f(t) get mapped (or transformed) into different
functions F(s).  Specifically, if f  g, then {f}  {g}.  The contrapositive of this statement,
which is equivalent, is that if {f} = {g}, then f = g.  This is the standard definition of one-to-
one.  For a linear mapping between vector spaces, there is an easy test to determine if a mapping
(like the Laplace Transform) is or is not one-to-one (1-1).  

THEOREM.  If T is a linear operator from the vector space V to the vector space W and its 
null space NT is { }, then T is a one-to-one mapping; that is, if , ε V and  
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T( ) = T( ), then  = . 
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PROOF: We start by proving the following:

Lemma. If NT is { } and T( ) = , then  = .
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Proof of lemma: We begin by recalling the definition of the null space NT.

DEFINITION (Null Space).  The null space is the set of all vectors   that satisfy the linear

x

homogeneous equation T( ) = ; that is NT = { εV: T( ) = }.
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Thus if T( ) = , then by the definition of NT we have that ε NT.  However, we also assume
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that NT = { }.  Hence since εNT, we have that  = .  
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                                                            QED for lemma.

Rest of proof of theorem (For variety, this time we write the proof in paragraph form):  Now
assume that , ε V and T( ) = T( ).  Hence we have that T( )  T( ) = .  Hence since T
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is a linear operator we have that T(   ) = .  Since we also are assuming that NT = { }, we
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have by the lemma that   -  = . Hence  = . Hence T is a one-to-one mapping. 
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                                                               QED for Theorem.

Recall that C[0,) denotes the set of continuous functions on [0.).  

LERCH'S THEOREM.  If f,g  C[0,), and { f(t) }(s) = { g(t) }(s)  s> a,
 then f(t) = g(t)  t  0. 

Lerch’s theorem says that the Laplace transform is a one-to-one mapping on the vector space 
C[0,) and hence has only the zero function in its null space.  Different functions in C[0,)T 
are mapped to different functions in the space of transforms F.  Thus our table gives the unique 
transform for each of the continuous functions in the table.  Although it is not true that  is one-
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to-one on all functions in T, if we “throw out” the “null functions”, it is one-to-one.  For 
example,  is one-to-one on Tpcexp = PCa[0,)  Exp, the set of all piecewise continuous 
functions of exponential order where we have taken the average value at the points of 
discontinuity.  Since  is a one-to-one mapping on Tpcexp, its inverse mapping exists.  (Similar to 
limiting the domain of sin(x) so that we can define Sin1(x), but the sets we are mapping from 
and to are sets of functions, not sets of numbers.)  We denote the inverse Laplace Transform of a 
function F(s) by  f(t) = -1{ F(s) }.

THEOREM.  The inverse Laplace Transform is linear; that is,
 -1{ c1 F(s) + c2 G(s) } =  c1  -1{ F(s) } +  c2  -1{ G(s) }.

PROOF. Let  F(s) = { f(t) } and  G(s) = { g(t) } so that, since  is one-to-one we have
f(t) = -1{ F(s) } and  g(t) = -1{ G(s) }.  Then by the linearity of  we have 

 { c1 f(t) + c2 g(t) } =  c1  { f(t) } +  c2  { g(t) }.

Since  is one-to-one, we have

-1{ c1  { f(t) } +  c2  { g(t) } } =  c1 f(t) + c2 g(t) 

Rewriting this equation we have

-1{ c1  F(s) +  c2  G(s) } =  c1  -1{ F(s) }  + c2 -1{ G(s) }

as required.
                                                                    Q.E.D.

EXAMPLE #3.  If F(s) = , find f(t) = -1{ F(s) }.
s

s 2s 32  

Solution.  

            =        =    
s

s 2s 32  
s

s 2s 3-12   1
s

(s -1) 2  2
 
From the table we recall that 

{ eat sin(ωt) } = ,      { eat cos(ωt) } =    


(s - a) 2 2
s a

(s- a) 2 2


 

So       =   =  = + 
s

s 2s 32  
s

s 2s 3-12   1
s -1+1

(s -1) 2  2
s-1

(s -1) 2  2
1

(s -1) 2  2

       = + 
s-1

(s -1) 2  2
1
2 2

2
(s-1) 2 
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Hence    -1{  } =  -1{ + } 
s

s 2s 32  
s-1

(s -1) 2  2
1
2 2

2
(s-1) 2 

=  -1{ } +    -1{ } s -1
(s -1) 2  2

1
2

2
(s-1) 2  2

                         =  et cos(  2  t )   +     et sin(  t )2
1
2

2

EXERCISES on The Inverse Transform

Find f(t) = -1 {F(s)} (t) if 1)  F(s) = 2)  F(s) = 

3)  F(s) = 4)  F(s) = 5)  F(s) = 

6)  F(s) = 7)  F(s) = 8)  F(s) = 

9)  F(s) = 10)  F(s) = 11)  F(s) = 

12)  F(s) = 13)  F(s) = 14)  F(s) = 

15)  F(s) = 16)  F(s) = 

17)  F(s) = 18)  F(s) = 19)  F(s) = 
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Handout # 2 TECHNIQUE FOR USING LAPLACE Professor Moseley
TRANSFORMS TO SOLVE IVP'S

EXAMPLE.  Using Laplace transforms, solve  the IVP y" - y' - 2y = 0, y(0) = 1, y'(0) = 0.

Solution.  We transform the problem into the (complex) frequency domain:
For convenience let {y} = Y.

  { y" - y' - 2y } = { 0 } 
  { y" } - { y'} - 2 { y } = 0  
  { y" } - { y'} - 2 { y } = 0  

  ( s2 Y - s y(0) - y'(0) ) - ( s Y - y(0) ) - 2 Y = 0
  ( s2 Y - s (1) - (0) ) - ( s Y - (1) ) - 2 Y = 0
    s2 Y - s  - s Y + 1 - 2 Y = 0
    s2 Y  - s Y  - 2 Y = s - 1
   ( s2  - s  - 2 ) Y = s - 1

     Y  =   =    =  + s 1
s s 22


 

s 1
(s -2)(s +1)

 A
s- 2

B
s +1

where we may use partial fractions to obtain A and B.  Multiplying by (s2)(s+1) we obtain

 s - 1  = A( s + 1 ) + B( S - 2 )  =  A s + A + B s - 2 B

Equating coefficients

s1)  1 = A + B
s0) -1 = A - 2B

  2 = 3 B  B = 2/3    A = 1 - B = 1/3

Y  =  =  +  s 1
(s -2)(s +1)

 1/ 3
s - 2

2 / 3
s +1

     y(t) = 1/3 e2t + 2/3 e-t
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Handout #3 TABLE OF LAPLACE TRANSFORMS Professor Moseley
THAT NEED NOT BE MEMORIZED

f(T) = -1{F(s)}                       F(s) = {f(t)}              Domain F(s)
)))))))))))                       ))))))))))              )))))))))

tn   where n is a positive integer                             s > 0n!

sn 1

sinh (at)                                                                 s > *a *
a

s a2 2

cosh (at)                                                                 s > *a *
s

s a2 2

eatsin (bt)                                                           s > a


(s - a)2 2

eatcos(bt)                                                            s > a
s a

(s- a)2 2


 

tneat   n = positive integer                                       s > a
n!

(s a)n 1 

u(t)                                                                                        s > 01
s

u(t - c)                                                                             s > 0
e

s

-cs

ectf(t)                                                      F(s - c)

f(ct)  c > 0      
1
c

F( s
c

)

δ(t)   1

δ(t - c) e-cs
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