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 Handout # 1 SOME FUNDAMENTAL PROPERTIES OF FUNCTIONSProfessor Moseley

     Like the concept of a set, the concept of a function can be considered to be a primitive notion
(actually, instead of the concept of a set).  To develop an intuitive understanding of the concept,
we do not worry about the subtleties of logic and set theory but simply give a working definition. 
Later we give the definition of (the graph of) a function as a set.

Recall the informal definition of a function as a rule of correspondence.

DEFINITION #1.  A function is a rule of correspondence which assigns to each element in a
first set (called the domain of the function) exactly one element in a second set (called the co-
domain of the function).

To define a function, we must first define the two sets A (the domain) and B (the co-domain)
before giving the rule of correspondence.  Thus these two sets are part of this definition of a
function.  To distinguish the graphs of functions from other curves, we say that a function is well
defined provided one has clearly specified exactly one element in the co-domain for each element
of the domain (x  + y  = 1 does not define a function since a vertical line crosses its graph in two2 2

places).  Often we denote the function or rule by f.  If  x  is any element in the domain then  y =
f(x)  indicates the element in the co-domain that the rule associates with x.  We use the notations 

f: A 6 B  and   to indicate that  A  is the domain and  B  is the co-domain of the

ffunction f.  We also denote the domain of  f  by  D   or by  D(f).  The graph of f:A6B is the set 
G = { (x,f(x)) 0 AxB: x 0 A }.  (AxB = {(x,y): x 0 A and y 0 B} is the Cartesian product of A
and B.)  To provide more rigor, some texts define a function to be its graph.  This provides a
definition of a function as a set.  However, to develop our intuition for properties of functions,
we will continue to use the definition of a function as a rule of correspondence from one set to
another.
     Although we can consider functions from any set to any other set, we are particularly
interested in functions from the real numbers  R  to the real numbers  R.  Many, but not all
functions are defined by algebraic formulas.  Examples are polynomials (e.g. f(x) = mx + b  and 
f(x) = ax  + bx + c)  and  rational functions (f(x) = p(x)/q(x) where p and q are polynomials. 2

Familiar examples of functions not defined by algebraic formulas are the trigonometric functions 
(e.g. f(x) = sin x  and  f(x) = cos x).  It is expected that you should have some familiarity with
these functions, particularly when the rule of correspondence is defined by an algebraic formula.
In fact, consideration of familiar examples should help motivate interest in understanding
fundamental concepts for functions.  

DEFINITION #2.  Let  f: X 6 Y.  Then the range of  f  is the set 

fR  = {y 0 Y: � x 0 X  s.t. f(x) = y}.  

Informally, the domain of a function can be described as the set of things that get mapped and the
range as the set of things that get mapped into.  That is, the range is the set of things in the co-
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domain for which there exist an element in the domain that gets mapped into those things.  If A f
X where f:X 6 Y, then by definition, the image of A is the set  

ff(A) = { y 0 Y : � x 0 X s.t. f(x) = y }. Hence the range R  is the image of the domain. 
      An algebraic formula or algebraic expression always defines a clear rule of correspondence
between the domain R (or a subset of R) and the co-domain R of a real valued function of a real
variable using the binary operations of addition and multiplication (and subtraction and division,
but we define these as the inverse operations of addition and multiplication rather than as
fundamental operations).  The algorithm for evaluation of the formula (or expression) is clearly
specified using parentheses (), brackets [], and braces {} as well as standard conventions to
establish the order in which the operations are to be carried out.

  More generally we consider a polynomials of degree n, p:R 6 R defined by 

0 1 2 3 n 0 np(x) = a  + a  x + a  x  + a  x  +...+ a  x   where a ,...,a  are constants. These constants may be2 3 n

n f 0 nzero except that we require a �0.  D  = R, but R(f) depends on the constants a ,...,a �0.
Sometimes the domain of a real valued function of a real variable is not the entire set of real 

numbers  R (e.g.  f(x) =  or  f(x) = 1/x).  Rational functions are quotients of polynomials, 
f(x) = p(x) / q(x) where p and q are polynomials.  The domain as well as the range of a rational
function depends on the constants in the polynomials,  D(f) = {x0R: q(x)�0}.  We may write

 to indicate that the domain of  f  is a subset of  R.  However, in an informal

discussion, we may sometimes indulge in an abuse of notation (i.e. something that is technically
incorrect but we do it anyway) and write  f:R 6 R  even when the domain of  f  is not the entire
set of real numbers (e.g. f(x) = 1/x).  Often the domain of a function is well known or the context
makes it clear and it is not given explicitly.  However, when writing proofs, it is essential that the
domain (and co-domain) be given explicitly and correctly.

All functions are not defined by algebraic formulas.  There are functions where the rule of
correspondence is not so simple.  Recall the trigonometric functions sine, cosine and tangent.
Although we can evaluate these function exactly for some values of x (e.g. ð/6, ð/4,...) using our
knowledge of trigonometry, more often we find approximate values of these functions using a
table or a calculator.

Once a function has been defined (including the domain and co-domain as well as
specifying the rule of correspondence), we can consider properties.  A function is one-to-one (1-
1) if every element in the domain gets mapped to a different element in the co-domain.  A
function is onto if every element in the co-domain has an element in the domain which maps into
it.  The formal definition of one-to-one is the contrapositive of the above informal definition. 
(The contrapositive of a statement is equivalent to the statement, but is stated with negations.) 
The formal definition of onto is stated in terms of the range.

DEFINITION #3.  Let  f: X 6 Y.  The function  f is said to be one-to-one  (injective) if 

1 2 1 2 1 2f(x ) = f(x ) implies x  = x .  (This is the contrapositive of the statement, if x  � x , then  

1 2f(x ) � f(x ).  That is, distinct values of  x  in X get mapped to distinct values of  y  in  Y.  Recall
that the negation of a negative is the positive.)  The function  f  is said to be onto (surjective) if 
R(f) = Y.  (That is, f is onto if the range is the entire co-domain.)  If f is both 1-1 and onto, then it
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is said to be bijective or to form a one-to-one correspondence between the domain and the co-
domain.  (If f is 1-1, then it always forms a 1-1 correspondence between its domain and its

Xrange.)  The identity function (denoted by I) from a set  X  to  itself is the function  i :X 6 X 

Xdefined by  i (x) = x  � x 0 X.

     We  consider these concepts using the examples of functions previously considered.  We first
ask you to use your intuition to determine whether given functions are one-to-one and onto. 
Later, we ask for precise arguments (i.e. proofs) to validate your intuition.

EXERCISES on Review of Introductory Function Concepts

EXERCISE #1.  Let  f(x) = 3.  Find f(2), f(4), and f(x+1).  Give the domain of f.

f fEXERCISE #2.  Let  f(x) = 3x + 5.  Find f(2), f(4), and f(x +1).  Find D  and R .  2

p pEXERCISE #3.  Let  p(x) = x  + 3x - 6.  Find p(2), p(4), and p(x +1).  Find D  and R  by first2 3

sketching the graph of this function (i.e. the graph of the curve y = x  + 3x - 6) and answering the2

following questions: Which way does the parabola open?  Where is its vertex?  What is the set
that gets mapped by p(x)?  For what values of y is there an x such that y=p(x)?  Foe what values
of y are there two values of x which get mapped in that value of y?  For what value of y is there
exactly one value of x which gets mapped into that value of y?  For what value of y is there no
values of x which gets mapped into that value of y?  

f fEXERCISE #4.  Let  f(x) = 1/x .  Find f(2), f(4), and f(x +1).  Find D  and R .  Hint: 2 3

First sketch the graph of this function (i.e. the graph of the curve y = 1/x  ).2

EXERCISE #5.  Give the domains and ranges of sin(x), cos(x), and tan(x).  Evaluate each of
these functions for x = ð/6, ð/4, ð/3, ð/2, 1, 2, 0.52, and 0.12345.  Give exact values if possible. 
Otherwise, give approximate values.

EXERCISE #6.  Let  f(x) = 1, p(x) = 3x + 2, g(x) = 1/x, and h(x) = sin(x) with their "natural"
domains.  Determine if the following are true or false.  To help you decide, first sketch the graphs
of the functions.  Then find their domains and their ranges.  

____ 1. f is one-to-one. ____ 2. f is onto. ____ 3. p is one-to-one.

____ 4. p is onto. ____ 5. g is one-to-one. ____ 6. g is onto.

____ 7. h is one-to-one ____ 8. h is onto.
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Handout #2 VERIFYING ELEMENTARY PROPERTIES OF FUNCTIONS  Prof. Moseley

     We now wish to review the techniques needed to provide clear precise arguments to prove
that functions are one-to-one and onto if this is the case, and to prove that they are not, if this is
the case.  We do this by considering examples first and then more general cases (usually in the
exercises).  We begin by reviewing the definitions of one-to-one and onto.

DEFINITION #1.  Let  f: X 6 Y.  The function  f is said to be one-to-one  (injective) if 

1 2 1 2 1 2f(x ) = f(x ) implies x  = x .  (This is the contrapositive of the statement, if x  � x , then  

1 2f(x ) � f(x ).  That is, distinct values of  x  in X get mapped to distinct values of  y  in  Y.  Recall
that the negation of a negative is the positive.)  The function  f  is said to be onto (surjective) if 
R(f) = Y.  (That is, f is onto if the range is the entire co-domain.)  If f is both 1-1 and onto, then it
is said to be bijective or to form a one-to-one correspondence between the domain and the co-
domain.  (If f is 1-1, then it always forms a 1-1 correspondence between its domain and its

Xrange.)  The identity function (denoted by I) from a set  X  to  itself is the function  i :X 6 X 

Xdefined by  i (x) = x  � x 0 X.

EXAMPLE #1.  Let f be the constant function 3; that is, let f:R 6 R be defined by f(x) = 3.  This

f ffunction maps everything into one number, 3, and is "obviously" not 1-1 or onto.  D  = R and R
= {3}.  To indicate the kind of logic used to prove that something is not true, we provide proofs
of these "obvious" facts.  We begin by giving a clear and complete  statement of what we are
proving (including an explicit statement of the domain and co-domain of the function).  Although
most texts reserve the word theorem for important facts that are proved, in this section, we will
use this word for any fact that is proved.

THEOREM #1.  The function f:R 6 R defined by f(x) = 3 is not one-to-one (i.e. f is not
injective).

Proof.  We prove that  f:R 6 R defined by f(x) = 3  is not one-to-one (injective) by finding a
counter example to the statement that f is one-to-one.  That is, we find two different real numbers

1 2 f 1 2 1 2 1 2 f 1 2x  and x  in D  such that f(x ) = f(x ).  Let x  = 1 and x  = 2.  Then x , x  0 D  = R and x  � x . 

1 2 1 2 1Furthermore, f(x ) = 3 and f(x ) = 3 by the definition of f.  Hence f(x ) = f(x ).  We have found x ,

2 f 1 2 1 2x  0 D  such that f(x ) = f(x ) but x  � x .  Since the existence of such a pair contradicts the
definition of one-to-one, we have that f is not one-to-one.
                                                                QED (the proof is complete)

1 2Since everything gets mapped into 3, it may at first appear that giving specific numbers x  and x

1 2 1 2such that x  � x  and f(x ) = f(x ) does not add a lot toward showing that f is not 1-1.  However,

1 2we emphasize that the specific case of considering x  = 1 and x  = 2 provides a specific counter

1 2 1 2example to the statement f(x ) = f(x ) implies x  = x .  Hence it shows that this statement is not
true and hence that f is not 1-1.  It also may appear that our proof is repetitive.  It is and
mathematicians love to be terse.  However, initially, it is better to err on the side of being too
wordy and repetitive, than to err on the side of not saying enough and being unclear.  Clarity is
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much more important than brevity.  On the other hand (OTOH), to much repetition can lead to
confusion and hence decrease clarity.  This, like an English composition, calls for judgement on
the part of the writer.  Explain clearly and completely and, to the extent possible, in your own
words.  As a rule of thumb, you should end your proof by summarizing what you have proved,
with the last clause being the conclusion of the proof.  This is sometimes implied, but usually you
should put it in explicitly.
     We now prove that f(x) = 3 is not onto.  Note that whether this is true or not depends on the
assumed co-domain of f.  Again we begin by giving a clear and complete statement of what it is
we plan to prove.

THEOREM #2.  The function f:R 6 R defined by f(x) = 3 is not onto.

PROOF.  First recall the definition of what it means for a function to be onto (surjective).  

ff:R 6 R is onto if R  = R.  From set theory, to show that these two sets are equal, we need to

f fshow that R  f R and R  g R.  However, by definition, the range is always a subset of the co-

f fdomain.  Hence to show that f is onto it would remain to show that  R  g R or R f R .  We could
do this by assuming that y 0 R (i.e. y is an arbitrary number in the co-domain R) and showing

f f fthat y 0 R .  But y 0 R  means that there exist x 0 D  = R s. t. f(x) = y.  Summarizing, to show that 

f fR  = R, we wish to show that  � y 0 R � (there exists) an x 0 D  = R s.t. 
f(x) = y.  However, what we wish to show is that f is not onto.  

1 1     All we have to do to show that f is not onto is to find a y  0 R (the co-domain) s.t. y  is not in

f 1the range which we know to be R  = {3}.  Thus we wish to find y  � 3 and show that there exist

f 1 1no x 0 D  = R s.t. f(x) = y .  Let y  = 4 0 R (the co-domain).  We subscript y to emphasize that we
have picked a specific y 0 R. To show that there is no number x 0 R s.t. 

1f(x) = y  = 4, we assume that such an x exists and reach a contradiction.  This shows that the
statement of existence is false and hence that no such x exists.  Suppose that there is an 

f 1 fx 0 D  = R s.t. f(x) = y  = 4.  But by the definition of f we have f(x) = 3 � x 0 D  = R.  Since f(x)

1= 3 � 4 = y , we have reached a contradiction and the assumption of the existence of such an x
must be false.  Hence no such x exits and f is not onto.
                                                                QED (the proof is complete)

Again, it may appear that our proof is repetitive.  It is, and mathematicians love to be terse. 
Again, it is initially better to err on the side of being too wordy and repetitive, than to err on the
side of not saying enough and being unclear.  Again, clarity is much more important than brevity. 
Again we also note that to much repetition can lead to confusion and hence decrease clarity. 
Again, we note that, like any English composition, this calls for judgement on the part of the
writer.  Again, you are encouraged to explain clearly and completely and, to the extent possible,
in your own words.  Again, as a rule of thumb, you should end your proof by summarizing what
you have proved, with the last clause being the conclusion of the proof.  Although this is
sometimes implied, you should initially put it in explicitly.
     Again we note that the standard format for showing two sets are equal does not appear to be
appropriate here since we are showing that two sets are not equal.  (Recall that the standard
STATEMENT/REASON format can always be used to show sets are equal.)  As with any
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English theme, the form in which the logic flows most easily depends on the problem and on
personal style.  Again we note that the range is always a subset of the co-domain.  Hence to show
that a function is not onto, we need only to show that there is an element in the co-domain for
which there is no element in the domain that maps into that element in the co-domain.  

Next we consider the linear functions  f:R 6 R defined by f(x) = m x + b where m�0 and
b are constants.  A sketch of any line y = mx + b where m � 0 "shows" (but does not prove) that
these functions are 1-1 and onto.  Proofs that functions are indeed 1-1 and onto take a different
path then those proving that they are not.  Follow the logic carefully to be sure you can reproduce
it in the future.  As always, we provide a clear and complete statement of what we plan to prove. 
We begin with a specific function and leave the generalization to the exercises. 

THEOREM #3.  The function f:R 6 R defined by f(x) = 3x + 2 is one-to-one.  

fPROOF.  We first note that by definition  D  = R, and that this is the natural domain of f; that is,
we can substitute any real number into the algebraic formula 3x + 2 and compute the value of f at
this value of x.  To show that f is 1-1, we proceed directly using the definition (we refer to this as
the DUD method).  Hence we review what it means for a function to be 1-1.  f is 1-1 if the

1 2 1 2 f 1 2assumption f(x ) = f(x ) where x  and x  are any two elements in D  implies that  x  = x .  Hence

1 2 f 1 2we choose two arbitrary elements x  and x  in D  = R and assume f(x ) = f(x ).  To show f is 1-1,

1 2it remains to show that this implies that we must have x  = x .  To arrive at the logical

1 2implication of the statement f(x ) = f(x ), we use the STATEMENT/REASON format along with
assumed algebraic properties of R.  (We will investigate these properties in more detail later.)

1 2 f 1 2     Summarizing, to prove that f is 1-1, let x , x  0 D  = R and assume f(x ) = f(x ).  If we can

1 2show that x  = x , then f is 1-1.  
STATEMENT                                                REASON

1 2f(x ) = f(x ) Assumed (i.e. by hypothesis)

1 23(x ) + 2 = 3(x ) + 2 Definition of the function f

1 2(3(x ) + 2) + (-2) = (3(x ) + 2)  + (-2) Property of equality (Equals added to equals 
are equal) and a property of real numbers 
(existence of the additive inverse of 2 which we 
denote by -2)

1 23(x ) + ( 2 + (-2) ) = 3(x ) + (2 + (-2) ) Associativity of addition of real numbers 

1 23(x ) + ( 0 ) = 3(x ) + ( 0 ) Definition of additive inverse of a real number 

1 23(x ) = 3(x ) Definition of the additive identity (i.e. 0 )for the

1 23  (3(x )) = 3  (3(x )) Property of equality (Equals multiplied by equals -1 -1

are equal) and a property of real numbers (existence
of the multiplicative inverse of 3 which we denote
by 3 ).-1

1 2(3  3) x  = (3  3) x Associativity of multiplication of real numbers.-1 -1

1 2(1) x  = (1) x Definition of the multiplicative inverse of a real       
number 

1 2 x  = x Definition of multiplicative identity for real number 
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1 2 1 2Summarizing, since we have proved that the assumption f(x ) = f(x ) where x  and x  are any two

f 1 2elements in D  implies that x  = x , we see that by the definition of what it means for a function to
be 1-1, that f is indeed one-to-one.

Q.E.D. (the proof is complete)

     We now prove that a linear function is onto (if it is not parallel to the x axis).  We also
continue to analyze of the algebraic properties of R.  We begin with a specific function and leave
the general case to the exercises.

THEOREM #4.  The function f:R 6 R defined by f(x) = 3x + 2 is onto.  

fPROOF.  We first note that by definition  D  = R, and that this is the natural domain of f; that is,
we can substitute any real number into the algebraic formula 3x + 2 and compute the value of f at
this value of x.  To show that f is onto, we proceed directly using the definition (i.e. we use the

fDUD method).  Hence we review what it means for a function to be onto.  f is onto if R  = R. 
From set theory, to show that these two sets are equal (a picture of the graph is not sufficient), we

f fneed to show that R  f R and R  g R.  However, by definition, the range is always a subset of the

f fco-domain which in this problem is R.  Hence it remains to show that  R  g R or R f R .  We do
this by assuming that y 0 R (i.e. y is an arbitrary number in the co-domain R) and showing that y

f f f0 R .  But y 0 R  means that there exist x 0 D  = R s.t. f(x) = y.  Summarizing, we have shown

f fthat  R  = R if we can show that  � y 0 R � (there exists) an x 0 D  = R s.t. f(x) = y.  (The easiest
way to do this is to find and exhibit the element (number) x that gets mapped into y and to prove
that this x indeed gets mapped into y.  The equation  
y = 3x + 2 is easily solved for x in terms of y:  x = (y - 2)/3 = (y+(-2))(3 ).  We think of 3  as the-1 -1

multiplicative inverse of 3, rather than as 1/3 and y-2 = y+(-2) as adding the additive inverse of 2
to y, rather than as subtracting 2 from y.)  Let x = (y+(-2))(3 ) where 3  denotes the-1 -1

multiplicative inverse of 3 and -2 denotes the additive inverse of b.  This is possible (i.e. 3  and --1

2 exist) all elements of R have multiplicative inverses except 0 and all elements in R have
additive inverses.  Now using the algebraic properties of real numbers, we prove that f(x) is
indeed y.  We use a STATEMENT/REASON format and justify each and every step in the
computation using known properties of real numbers.

1 1 f     Summarizing, we can prove that f is onto if we can show that � y  0 R � an x  0 D  = R s.t.

1 1f(x ) = y .  (We subscript y and x to emphasize that we are picking a particular, but unspecified y

1 1 1and we will define a particular x in terms of the y picked.)  Let y  0 R.  Now define x  = (y +(-

1 12))(3 ).  It remains to show that f(x ) = y .  We use the STATEMENT/REASON format.-1

    STATEMENT                                        REASON

1 1 1   f(x ) = ( 3( (y +(-2))3  ) ) + 2 Definition of valuation of the function f at the point x .-1

1        = 3( (3 )(y  + (-2)) ) + 2 Multiplication of real numbers is commutative.-1

1        = ( (3)(3 ) )(y  + (-2) ) + 2 Multiplication of real numbers is associative.-1

1        = ( (1)(y  + (-2)) + 2 Definition of the multiplicative inverse of 3 as 3 .-1
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1        = ( (y  + (-2)) + 2 Definition of 1 as the multiplicative identity.

1        =  y  + ((-2) + 2) Addition of real numbers is associative.

1        =  y  + (0) Definition of -2 as the additive inverse of 2.

1        =  y Definition of 0 as the additive identity element.

fSummarizing, since we have proved that  R  = R, we see that by the definition of what it means
for a function to be onto, that f is indeed onto.

Q.E.D. (the proof is complete)

EXERCISES on Verifying Elementary Properties for Functions

EXERCISE #1.  Prove Theorems #5 and #6.  Begin by giving a clear and complete statement of
what it is you are going to prove (i.e. copy down the theorem).  Mimic the proof given above. 
For the first "theorem" replace 3 by 5.  For the second, use your judgement.  Hint: What is the
correct domain of f(x) = 1/x ?  What is the co-domain?  As you write each proof, think about the2

logic that drives the proof.

THEOREM #5.  The function f:R 6 R defined by f(x) = 5 is not one-to-one.

THEOREM #6.  The function f:R 6 R defined by f(x) = 1/x  is not one-to-one.2

     We wish to generalize to say that all constant functions are not 1-1.  As the statements we
prove become more general, the term theorem becomes more appropriate.

EXERCISE #2.  Prove Theorem #7.  Begin by giving a clear and complete statement of what it is
you are going to prove (i.e. by copying down the theorem).  Next mimic the proof given above
(i.e. replace 3 by c).  However, the generalization to an arbitrary constant function requires some
rethinking and some rewriting.  Don't be afraid to rewrite a proof after you have a first draft. 
(You often do this with English themes.)  The difficulty with generalizing to an arbitrary constant
function is that to provide a specific counter example to the statement that f is 1-1 may appear to
require that we know specifically what c is.  However, some thought should convince you that
this is not the case.  Now write the proof of this theorem in your own words.

THEOREM #7.  The function f:R 6 R defined by f(x) = c where c is an arbitrary constant is not
one-to-one. 

EXERCISE #3.  Prove Theorems #8 and #9.  Begin by giving a clear and complete statement of
what it is you are going to prove (i.e. copy down the theorem).  Mimic the proofs given above. 
For the first "theorem" replace 3 by 5.  For the second, use your judgement.  Hint: What is the
correct domain of f(x) = 1/x ?  What is the co-domain?  As you write the proof, think about the2

logic that drives the proof.
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THEOREM #8.  The function f:R 6 R defined by f(x) = 5 is not onto.

THEOREM #9.  The function f:R 6 R defined by f(x) = 1/x  is not onto.2

     We wish to generalize to all constant functions.  Again, as the statements we prove become
more general, the term theorem becomes more appropriate.

EXERCISE #4.  Prove Theorem #10.  Begin by giving a clear and complete statement of what it
is you are going to prove (i.e. by copying down the theorem).  Next mimic the proof given above
(i.e. replace 3 by c).  However, the generalization to an arbitrary constant function requires some
rethinking and some rewriting.  Don't be afraid to rewrite a proof after you have a first draft. 
(You often do this with English themes.)  The difficulty with generalizing to an arbitrary constant
function is that to provide a specific counter example to the statement that f is onto seems to
require that we know specifically what c is.  This probably didn't appear to be as necessary in
your previous proof that f(x) = c is not 1-1 as it does in the current proof that f is not onto.  Some
thought should convince you that we need not know specifically what c is, if we can be assured
that there are other numbers in R other than c.  This comes from our knowledge of R (the set of
real numbers is very large and certainly contains numbers other than c, no matter what c is). 
Hence, by our assumed knowledge of R, we can assume that no matter what c is, that we can

1 1pick y  � c.  We subscript the y we pick to emphasize that we have picked a specific y 0 R  (y  is
a specific, but unknown, number, since c is specific but unknown).  All we know and all we need

1 1to know is that y  � c.  As before, to show that there is no number x s.t. f(x) = y , we assume that

f 1such an x exists and reach a contradiction.  Suppose that there is an x 0 D  = R s.t. f(x) = y .  But

1by the definition  of f we have f(x) = c � y .  Now write the proof of this theorem in your own
words.

THEOREM #10.  The function f:R 6 R defined by f(x) = c where c is an arbitrary constant is not
onto. 

EXERCISE #5.  Prove Theorem #11.  Begin by explaining why we may assume 

fD  = R.  Then proceed directly using the definition (i.e. using DUD).  In this exercise, you need

1not write reasons for each step in the computation of f(x ).  However, you should try to justify
each step in your head.

THEOREM #11.  The linear function f:R 6 R defined by f(x) = 5 x + 4 is onto.  

EXERCISE #6.  Prove that the linear function f(x) = m x + b where m�0 and b are constants is
onto.  Begin by writing (as a theorem) a clear and complete statement of what it is that you are

fgoing to prove.  Then begin the proof by explaining why we may assume D  = R.  Then proceed
directly using the definition (i.e. using DUD).  To show that  R(f) = R (a picture of the graph is
not sufficient), you must show that for any element (number) y 0 R, � (there exist) an element x

f0 D  = R, such that y = f(x).  (The easiest way to do this is to find and exhibit the element
(number) x that gets mapped into y and to prove that this x indeed gets mapped into y.  The
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difficulty is that x and y are arbitrary.  However, the equation  y = mx + b is easily solved for x in
terms of y, x = (y - b)/m = (y+(-b))m , provided m�0, as we have assumed.  We think of m  as-1 -1

the multiplicative inverse of m, rather than as 1/m and y-b = y+(-b) as adding the additive inverse

1of b to y, rather than as subtracting b from y.)  Let y  be an arbitrary, but fixed, element in R

f 1 1(which we will show to be R ).  Now let x  = (y +(-b))m  where m  denotes the multiplicative-1 -1

inverse of m and -b denotes the additive inverse of b.  This is possible (i.e. m  and -b exist) since-1

we have assumed that m�0 and all other elements in R have multiplicative inverses and all
elements in R have additive inverses. Now rewrite the entire proof in your own words.  In this

1exercise, give the best reason that you can for each step in the computation of f(x ) using the
STATEMENT/REASON format.

EXERCISE #7.  Determine if the function f:R 6 R defined by f(x) = 1/x  is 1-1 and onto and
explain why or why not.  First find D(f).  Is it all of R?  If not, replace f:R 6 R with  f:D(f) 6 R,
where D(f) = ?  f is 1-1 if all of the elements in D(f) get mapped to different numbers.  This can

1 2 1 2be proved by letting x , x  0 D(f) and showing that f(x ) = f(x ) implies 

1 2x = x .  That f is not 1-1 can be proved by finding and displaying two elements (numbers) 

1 2 f 1 2x , x  0 D  that get mapped into the same element (number), that is, such that f(x ) = f(x ).  This

1 2can be proved by evaluating f(x ) and  f(x ) using the format previously described.  To determine
if f is onto, first find R(f).  The function f is onto if R(f) = R.  Since we are dealing with a real
valued function of a real variable, we always have R(f) f R.  Hence to show that f is onto it is

foften only necessary to show that R f R .  That is, given an arbitrary y 0 R, we show (usually by

fcomputing it first and then verifying that it maps where we say that it does) that � x 0 D  s.t. 

ff(x) = y.  To show that f is not onto, first find and display a y 0 R such that y is not in R .  Then

f fshow that y is not in R  by assuming that it is, that is, by assuming that � x 0 D  such that y = f(x)
and then reaching a contradiction (e.g. 1=0).  This shows that the assumption that there exists x
such that y = f(x) was bad and hence no such x exists.
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Handout #3                               LINEAR OPERATORS                             Prof. Moseley

A function or map T from one vector space  V  to another vector space W is often call an
operator.  If we wish to think geometrically rather than algebraically we might call A a
transformation.

DEFINITION.  An operator T:V 6 W is said to be linear if  � ,  0 V  and  �  scalars  á,â  we 

have
                            T(á  + â ) = áT( )+âT( ). (1)

THEOREM.  An operator  T  is linear if and only if the following two properties hold:
i)  ,  å V | T( + ) = T( )+ T( ) (2)

           ii)  á  a scalar and   åV | T(á ) = áT( ). (3)

EXAMPLE #1  Let the operator  A:R vR  be defined by matrix multiplication by the matrix  A; n m

that is, let
          T( ) � (4) 

ij where å R    and    =   [ a  ]  0 Rn mxn

EXAMPLE #2  Let the operator  D:C (a,b) v C(a,b) be defined by1

          D(f) �  (5)

where  f å C (a,b) = {f:(a,b) 6 R:   exists and is continuous} and 1

C(a,b) ={f:(ab) 6 R:f is continuous}.
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Handout #4       ONE-TO-ONE LINEAR OPERATORS               Prof. Moseley

     To solve linear ODEs with constant coefficients using Laplace Transforms, we need  the fact
that the Laplace transform establishes a one-to-one correspondence between a subspace of the
time domain T (which is a function space and hence a vector space) and the frequency domain F
(another function space and hence another vector space).  The following theorem, which you will
be expected to be able to prove, shows that a linear operator is one-to-one if its null space
contains only the zero vector.

THEOREM. If T is a linear operator from the vector space V to the vector space W and its null

Tspace N  is { }, then T is a one-to-one mapping; that is, if , å V and  T( ) = T( ), then

 = . 

PROOF: We start by proving the following:

TLemma. If N  is { } and T( ) = , then  = .

TProof of lemma: We begin by recalling the definition of the null space N .

DEFINITION (Null Space).  The null space is the set of all vectors   that satisfy the linear

Thomogeneous equation T( ) = ; that is N  = { åV: T( ) = }.

TWe now finish the proof of the Lemma.  Thus if T( ) = , then by the definition of N  we have

T T Tthat å N .  However, we have also assumed that N  = { }.  Hence since we have that åN

T Tand N  = { } (i.e., the only vector in N  is the zero vector, we have that  = .  
                                                            Q.E.D. for lemma.

Having finished the proof of the lemma, we now use it to complete the proof of the theorem:
To show that T is one-to-one, we assume that , å V and T( ) = T( ) and show that   = . 

Since this is an identity, we use the STATEMENT/REASON FORMAT.  (However, we do not 
start with one side and go to the other.)

STATEMENT REASON
T( ) = T( ) Given.  (Hypothesis.)

T( ) ! T( ) = . Vector algebra in W

T(  ! ) = . T is a linear operator

   -  = . The above Lemma

  = . Vector algebra in V

Since we assumed T( ) = T( ) and showed that  = , we have that  T is a one-to-one

mapping                                                                                      QED for the theorem.
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