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Laplace Transforms-1          COMPUTATION OF THE LAPLACE
Handout # 1 TRANSFORM USING THE DEFINITION Professor Moseley

Read the introduction and Section 6.1 of Chapter 6 of text (Elem. Diff. Eqs. and BVPs by Boyce
and Diprima, seventh ed.).  Pay particular attention to Examples 1-6 pages 294-297.

REVIEW OF IMPROPER INTEGRALS.  The Laplace transform is defined as an improper
integral.  Hence we begin with a brief review of improper integrals.

DEFINITION #1.  =  provided the limit exists.f(t)dt
t c

t





 lim f(t)dt
A

t c

t=A





EXAMPLE #1.  Compute    1
t

 dt
t

t






1

Solution.   =    =     =   1
t

 dt
t

t






1

lim 1
t

dt
A

t

t=A





1

lim   (ln t)
 
t A
t 1

A



lim  (ln A -  ln 1)
A

             =    =    (Increases without bound and hence the limit does not exist)lim  (ln A)
A

EXAMPLE #2.  Compute        where p > 1. 
1
t

 dtp
t

t






1

Solution.    =    =    =  
1
t

 dtp
t

t






1

lim 1
t

dt
A p

t

t=A





1

lim  t  dt
A

-p

t

t=A





1

lim   (t / (1 - p))
 
t A
t 1

A

1-p





=  = = lim  (  A
1 p

1
1 p

)
A

1-p 1-p

 



lim  (  A

1 p
1

p -1
)

A

1-p

 
  1

p -1

Recall that these improper integrals, together with the integral test, imply the divergence of the

 harmonic series   and the convergence of the p series     if p > 1.
1
nn 1



 1
 n p

n 1





DEFINITION #2 (Laplace Transform).  Let I = [0,) and f:I R.  Then the Laplace Transform of 
f(t) is the function F(s)

{f(t)} = F(s) =   (1)
t

-st

t 0

f(t) e  dt





provided the improper integral exist.  (Sufficient conditions for the Laplace Transform to exist are
given below.)

Since s is arbitrary, the Laplace transform maps a given function f(t) in the 
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function space we will denote by T (time domain) to the function F(s) in the function space of all 
Laplace transforms which we denote by F (complex frequency domain).

EXAMPLE#1  Compute {f(t)} = F(s) where f(t) = 0 for all t in [0,). 

{f(t)} = F(s) =    =  =  =   = 0. f(t) e  dt-st

t

t






0

 0 e  dt-st

t

t






0

lim dt
A

t

t=A



 0

0

lim
A

0

EXAMPLE#2  Compute {f(t)} = F(s) where f(t) = eat for all t in [0,).

Solution. We wish to compute {f(t)} = F(s) = {eat}.

{eat} = F(s) =  =  =  = e  e  dtat -st

t

t






0

  e  dtat-st

t

t






0

  e  dt(a-s)t

t

t






0

lim  e  dt
A

(a s)t

t 0

t=A








   = =     if  a - s < 0     ( s > a)
= lim e / (a s)

 
t A
t 0

      A

(a s)t



  


lim e  
a - s

e  
a - sA

(a s)A (a s)0



 












1
s a

     We begin a table of Laplace Transforms similar to having a table of antiderivatives.

            PARTIAL TABLE OF LAPLACE TRANSFORMS

Time Domain        (Complex) Frequency Domain
   f(t)                     F(s)
    0        0             s > 0
   eat                       1/(s-a)      s > a

SUFFICIENT CONDITIONS FOR THE IMPROPER INTEGRAL TO EXIST.  To insure that 

the improper integral    exists, we must first insure that the proper integralf(t) e  dt-st

t

t






0

 exists for all positive real numbers A.  A good start is to recall that continuousf(t) e  dt-st

t

t






0

A

functions are integrable:

THEOREM.  Let f be a real valued function of a real variable whose domain includes the closed 
interval I = [α,β].  Suppose that f is continuous on I.  Then the Riemann Integrals
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       and     (4)f(t) dt
t

t










f(t) e  dt-st

t

t










both exist.  (Since products of continuous functions are continuous, if f is continuous on  [α,β], 
then so is f(t) e-st for all values of s.)

However, we would like to consider a larger class of functions where the Riemann integral 
exists.

DEFINITION #3.  A function f is said to be piecewise continuous on a closed finite interval 
I = [α,β] if the interval can be partitioned by a finite number of points 

                α = t0 < t1 < t2 < ... < tn = β,
so that:
1. F is continuous on each of the open subintervals  In = ( ti-1, ti ) i = 1, 2, ...,n.
2. f approaches a finite limit as the end points of each subinterval are approached from within     
the subinterval; that is the limits:  , ,  i = 1, 2, ..., n,     all exist. lim f(t)

t t i 1 

lim f(t)
t t i 

EXAMPLE. Let f:IR where I=[0,5] be defined as follows:

f(t)

t          0 t 1
(t 1)   1 t 2
1           2 t 3
t 3      3 t 4
1          4 t 5

2

1



 
  

 
  

 
















        *                2 *        * 
*  \        1 *      /   \))    )))       *     /          *       
*)))))))) ))))))))))))                    1       2      3      4      5

CLASS EXERCISE    True or False

______ 1. f is continuous on (1,3]. ______ 2. f is continuous on [0,3].

______ 3. f is continuous on [3,5]. ______ 4. f is piecewise continuous on [2,5].

______ 5. f is piecewise continuous on [1,3]. ______ 6. f is piecewise continuous on [0,3].

THEOREM #2. Sums and products of piecewise continuous functions are piecewise continuous.
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Also scalar multiples of piecewise continuous functions are also piecewise continuous functions.  

THEOREM #3. The set of piecewise continuous function on the closed interval  = [α,β],I
denoted by PC( ) = PC[α,β], is a subspace of the vector space F( ) of all real valued functionsI I
on the closed interval .I

In mathematical (and physical) problems the value of a piecewise continuous function at
the points of discontinuity usually does not matter and we usually do not wish to distinguish
between two piecewise continuous functions that differ only at their points of discontinuity.  One
way to eliminate the distinction between two piecewise continuous functions that differ only at
their points of discontinuity is to use the concept of an equivalence class.  (Look up the
definition of an equivalence relation in a modern algebra text.)  All piecewise continuous
functions that differ only at their points of discontinuity are said to be in the same equivalence
class and we perform Laplace transformations on equivalence classes of functions.  An easier way
conceptually is to simply specify a unique function in each equivalence class which we place in a
new set we call PCa[α,β] (a is for average).  Let fPC[α,β].  If f is discontinuous at α,  then 
redefine f(α) as f(α) = .  Similarly, if f is discontinuous at β, redefine f(β) as lim  f(t)

t 

f(β) = .  At any other point of discontinuity let f(x) = [f(x) + f(x+)]/2 where lim  f(t)
t 

f(t) = and f(x+) = .  Since the new f only differs from the old f at the points oflim  f(h)
h t

lim  f(t)
h t 

discontinuity, they are in the same equivalence class.  (There is at most one continuos function in
each equivalence class.)  Let PCa[α,β] be the set of all such functions (a stands for average 
value).  We see that we have exactly one function from each equivalence class.  Also, if we add 
such functions together, we get such a function.  Such functions are also closed under scalar 
multiplication.  Hence they form a subspace of PC[α,β], but each having  unique values at the 
points of discontinuity.

THEOREM #4.  Let f be a real valued function of a real variable whose domain includes the
closed interval [α,β].  Suppose that f is piecewise continuous on I.  Then the Riemann Integrals

 and  both exist.  Also, if fPCa[α,β], then = 0 for all x[α,β] f(t) dt
t

t










f(t) e  dt-st

t

t










f(t) dt
t

t








x

implies that f(t) = 0 for all t[α,β]; that is, the zero function is the only function in PCa[α,β] with
this property.  (Such functions are called null functions and we wish the zero function to be the
only null function in our function spaces.)

DEFINITION #4.  If the domain of a function is [0,), and f PC[0,A]   A > 0, then we say f is
piecewise continuous on [0,).  If for all A>0, f PCa[0,A], then f PCa[0,).

THEOREM #5. The set of piecewise continuous functions on I = [0,), denoted by PC[0,) is a
subspace of the set of all real valued functions on I.  PCa[0,) is a subspace of PC[0,).
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To insure that the Laplace transform exists, we not only need for the proper integral on
[0,A] to exist for all A, we need for the function f(t) e-st  to grow sufficiently slowly so that the
improper integral exists.

DEFINITION #5.  A function f:[0,)R is said to be of exponential order if there exist
constants K, a, and M such that

            *f(t)*  Keat          t  M.

THEOREM #6. Sums and products of functions of exponential order, are of exponential order.
Note also that scalar multiples of functions of exponential order are of exponential order.  In fact,

THEOREM #7. The set of functions of exponential order, denoted by Exp, is a subspace of the set
(I,R) of all real valued functions on I = [0,).

THEOREM #8. Suppose that
1) f is piecewise continuous on [0,); that is, f is piecewise continuous on the interval 
     [0,A]   A > 0  and
2) f is of exponential order so that there exist K, a, and M such that *f(t)*  Keat   t  M, 

then the Laplace transform {f(t)} = F(s) =  exists with domain (a,). i.e. for  s > a.f(t) e  dt-st

t

t






0

THEOREM #9. PC[0,)  Exp is a subspace of T.  So is Tpcexp = PCa[0,)  Exp.

EXAMPLE #3  Compute {f(t)} = F(s) where f(t) = 1 for t  0.

Solution. We wish to compute {f(t)} = F(s) = {1}.

{eat} =     = = =  f(t) e  dt-st

t

t






0

lim  e  dt
A

st

t 0

t=A








lim e / ( s)
  
t A
t = 0

A

st



  
lim e

s
e

sA

sA s(0)



 















=   =      if  - s < 0     ( s > 0)lim e
s

1
sA

sA


















1
s

     We continue our table of Laplace Transforms.
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            PARTIAL TABLE OF LAPLACE TRANSFORMS

Time Domain        (Complex) Frequency Domain
  f(t)                     F(s)
   0       0              s > 0
   eat                       1/(s-a)      s > a
    1                        1/s            s > 0

Note that the new entry is just a special case of the old entry, eat, with a = 0.

EXAMPLE #4  Compute {f(t)} = F(s) where f(t) = sin(at)  for t  0.

Solution. We wish to compute {f(t)} = F(s) = {sin(at)}.

{sin(at)} =      =  [sin (at)]  e dt-st

t

t






0

lim  [sin (at)] e  dt
A

st

t 0

t=A








We first compute the antiderivative (or look it up in a table)

Computation of the Antiderivative  Use integration by parts.  Let

I =  sin(at) e-st dt  =     dt  =   +   dt 
e sin at

s

st


e a at

s

st


cos e sin at

s

st


e a at

s

st cos

 u = sin(at)    dv = e-st

du = a cos(at)   v = e-st/(s)

But

 cos(at) e-st dt  =      dt   =      dt 
e cos at

s

st


- e a at

s

st


sin e cos at

s

st


e a at

s

st sin

 u = cos(at )    dv = e-st

du = -a sin(at)   v = e-st/(-s)

Hence

I  =     +   cos(at) e-st dt    =    +  [       dt ] 
e sin at

s

st


a
s

e sin at
s

st



a
s

e cos at
s

st


e a at

s

st sin

   =    +  [       I  ]  =           I   
e sin at

s

st



a
s

e cos at
s

st


a
s

e sin at
s

st


e cos at

s

st

2

 a
s

2

2

Hence

I +   I   =      so that   I   =     ,
a
s

2

2

e sin at
s

st e cos at
s

st

2

 s + a
s

2 2

2

e sin at
s

st e cos at
s

st

2



(s2 +  a2) I  =   s e-st  sin(at)  a e-st  cos(at) and hence I  = .
-  s e sin at -  a e cos at

s a

st st

2 2

 


Back to computing the Laplace Transform
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F(s) = {sin(at)} =   lim
-  s e sin at -  a e cos at

s a

t A

t 0
A

st st

2 2

 







       =  lim -  s e sin aA -  a e cos aA
s a

-  s e sin a(0) -  a e cos a(0)
s aA

sA sA

2 2

s(0) s(0)

2 2

   















       =  =        s > 0.lim -  s e cos aA -  a e cos aA
s a

 a 
s aA

sA sA

2 2 2 2

 















 a 
s a2 2

     We continue our table of Laplace Transforms.

            PARTIAL TABLE OF LAPLACE TRANSFORMS

Time Domain        (Complex) Frequency Domain
  f(t)                     F(s)
  0       0          s > 0 
   eat                       1/(s-a)      s > a
    1                        1/s           s > 0

 sin(at)                      s > 0
a

s a2 2

EXERCISES on Computation of the Laplace Transform Using the Definition

EXERCISE#1. Provide a more rigorous statement of Theorem #2 for functions defined on the
closed interval I = [α,β].

EXERCISE #2. Provide a more rigorous statement of Theorem #6 by including specifics.
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Laplace Transforms-1  PARTIAL TABLE OF ANTIDERIVATIVES
Handout # 2     (INDEFINITE) INTEGRALS Professor Moseley

 1.

 2.

 3.

 4.

 5.

 6.

 7.

 8.

 9.

10.
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Laplace Transforms-1      PROPERTIES OF LAPLACE TRANSFORMS:
Handout #3 LINEARITY                                           Professor Moseley

Read the introduction and Section 6.1 of Chapter 6 of text (Elem. Diff. Eqs. and BVPs by Boyce
and Diprima, seventh ed.) again.  Pay particular attention to Examples 1-6 pages 294-297.  Pay
special attention to the paragraph after Example 6, in particular Equation (5).

The set T = { f:[0,)R * f  has a Laplace transform } is a subspace of the function space
([0,),R) vector space and hence is a vector space in it’s own right.  We have seen that the set 
Tpcexp = PC[0,)  Exp = { f  T : f is piecewise continuous on [0,) and of exponential order } is
a subspace of T and hence a vector space in it’s own right. 

THEOREM #1. The Laplace transform  

{f(t)}  =     = F(s) (1)f(t) e  dt-st

t

t






1

is a linear operator acting on the vector space T

Proof: To verify that  is a linear operator from T to F, we first state the definition of a linear 
operator.

Definition.  An operator T:V  W (which maps the vector space V to the vector space W) is said
to be linear if   ,  V  and    scalars  α,β  we have

x y

T(α  + β ) = α T( ) + β T( ). (2)
x y x y

Applying (2) to  we see that to show that it is a linear operator, we wish to verify the identity:

{c1 f1(t) + c2f2(t)} = c1 {f1(t)} + c2 {f2(t)}        c1, c2  R,  f1, f2  T (3)

We use the standard format for proving identities.  Let c1,c2  R and f1,f2 T

STATEMENT. REASON.

{c1f1(t)+c2f2(t)}= Def’n. of Laplace Trans.[c f (x) c f (x)]e dx1 1 2 2
-st

t 0

t








         =       Def’n. of Improper Integrallim [c f (x) c f (x)]e dx
A 1 1 2 2

-st

t 0

t A








     =  Property of Riemann Integrallim c [f (x)]e dx c [f (x)]e dx
A 1 1

-st

t 0

t A

2 2
-st

t 0

t A










 









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   =   Property of Limitslim c [f (x)]e dx lim c [f (x)]e dx
A 1 1

-st

t 0

t A

A 2 2
-st

t 0

t A











 

 = Def’n. of Improper Integralc [f (x)]e dx c [f (x)]e dx1 1
-st

t 0

t

2 2
-st

t 0

t









 

  = c1 { f1(t) }+ c2 {f2(t)} Def’n.of Laplace transform

                                                                                                 QED.

Thus if f(t) is a linear combination of functions: f(t) = c1 f1(t) + c2 f2(t), then its Laplace transform 
F(s) is a linear combination of transforms:

     F(s) = c1 F1(s) + c2 F2(s) where  {f(t)} = F(s), {f1(t)} = F1(s), and {f2(t)} = F2(s).

We can use linearity to compute the transform of linear combinations of functions in our table. 

EXAMPLE #1  Compute {f(t)} = F(s) where f(t) = 3 e3t + 5 sin(10t)  for t  0.

Solution. We wish to compute {f(t)} = F(s) = { 3 e3t + 5 sin(10t)}.

{ 3 e3t + 5 sin(10t) } = 3 { e3t }+ 5 {sin(10t) }  = 3   +   5 .1
s 3

10
s 1002 

When dealing with Laplace transforms, it is usually not necessary or desirable to find a common 

denominator.  However, simple arithmetic is expected:  F(s)  =    + .3
s 3

50
s 1002 

EXERCISES on Properties of Laplace Transforms: Linearity

EXERCISES. Using the table computed so far, find  F(s) = {f(t)}(s) if
a)  f(t) = 4 e-3t + 5
b)  f(t) = 4 e-3t + 5 e4t + 3.5
c)  f(t) = 28 e8t + 9 e7t + 3 sin(3t)
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Laplace Transforms-1      OTHER PROPERTIES OF
Handout No. 4 THE LAPLACE TRANSFORM  Professor Moseley

Read Section 6.2 - 6.3 of Chapter 6 of text (Elem. Diff. Eqs. and BVPs by Boyce and Diprima,
seventh ed.).  Pay particular attention to Theorem 6.2.1 on page 300, the Corollary on page 300,
Theorem 6.3.1 on page 311, and Theorem 6.3.2 on page 313.

THEOREM #1  Suppose f  Tpcexp; that is, f is piecewise continuous on [0,A]  A>0, and of
exponential order so that  T,M and σ such that  *f(t)*< Meσt  t>T.  Then each of the following
properties holds:

1 )  { t f(t) } =    { f(t) }(s),      s > σ,d
ds

2)  { eat f(r) } =  { f(t) }(s-a),      s > σ,      Shifting property,

3)  {   } =  { f(t) }(s),      s > σ,f(r)dr
r 0

r t






1
s

If in addition, f is continuous and f' piecewise continuous on [0,),then
4)  { f'(t) } = s  { f(t) } - f(0),      s > σ.
More generally, if f, f', ... , f(n-1), are continuous on [0,) and of exponential order, and f(n) is 
piecewise continuous on [0,), then 
5)  { f(n)(t) } = sn  { f(t) }  )  sn-1 f(0)        )  s f(n-2)(0)  )  f(n-1)(0),      s > σ.
Specifically
6)  { f"(t) } = s2  { f(t) } - s f(0) - f'(0),      s > σ.

Proof. These are all identities and can be verified using the standard format.  We prove 
only 1).  2) through 6) are left as exercises.  For 1) we start with the right hand side (RHS)

   STATEMENT.                                                                        REASON.

    { f(t) }(s) =          s > σ Definition of the Laplace Transform               d
ds

d
ds

f(t)e dtst

t 0

t








=          s > σ   Definition of an Improper Integral
d
ds

lim f(t)e dt
A

st

t 0

t A











=          s > σ Property of limits and derivatives fromlim d
ds

f(t)e dt
A

st

t 0

t A










advanced analysis: The limit and derivative 
can be switched under certain conditions.

=      s > σ    Property of derivatives and integrals from advanced lim
s

f(t)e dt
A

st

t 0

t A













          analysis.  Derivatives and integrals can be switched 
          under certain conditions.  Derivatives becomes
           partials.
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=      s > σ      Property of partial derivativelim (-t)f(t)e dt
A

st

t 0

t A











=        s > σ      Properties of integrals and limitslim t f(t)e dt
A

st

t 0

t A











=         s > σ           Definition of improper integralt f(t)e dtst

t 0

t







             =    { t f(t) }       Definition of Laplace Transform

Q.E.D.

EXAMPLE #1  Compute {f(t)} = F(s) where f(t) = t   for t  0.

Solution. We wish to compute {f(t)} = F(s) = { t }.

    STATEMENT.       REASON.
{ t } =   { t (1) } Algebra

=   (  { 1 } ) Part 1) of theorem above
d
ds

=    ( ) ) From the TABLE  { 1 } =  d
ds

1
s

1
s

=   s -1 Algebra
d
ds

=   (1 ) s-2 Calculus

 =    Algebra
1
s2

 
Similarly we can compute

     t2                               s > 0
2
s3

    t3       =              s > 0(3)(2)
s4

3!
s4

And by mathematical induction we can prove that 

       tn         s > 0
n!

sn+1

     We continue the development of our table of Laplace Transforms.
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            PARTIAL TABLE OF LAPLACE TRANSFORMS

Time Domain        (Complex) Frequency Domain
  f(t)                     F(s)
  0       0           s > 0 
   eat                       1/(s-a)      s > a
   1                        1/s             s > 0

 sin(at)                      s > 0a
s a2 2

     t                                   s > 0
1
s2

     t2                                   s > 0
2
s3

     t3        =              s > 0(3)(2)
s4

3!
s4

      tn                  s > 0
n!

sn+1

Now by using the linearity of the Laplace Transform, we can compute the transform for any 
polynomial.

EXAMPLE #2  Compute {f(t)} = F(s) where f(t) = 3 + 5 t + 7 t2  for  t  0.

Solution. We wish to compute {f(t)} = F(s) = { 3 + 5 t + 7 t2 }.

    STATEMENT.                                                                              REASON.
{  3 + 5 t + 7 t2 } = 3 { 1 } + 5 { t } + 7 { t2 } Linearity of Laplace Transform 

 = 3   + 5      +  7     Table of known Laplace1
s

1
s2

2
s3

Transforms 

 =    +     +     Algebra3
s

5
s2

14
s3

We can use Theorem #1 to obtain other transform pairs: 

EXAMPLE #3  Compute {f(t)} = F(s) where f(t) = t sin(at)  for t  0.

Solution. We wish to compute {f(t)} = F(s) = { t sin(at) }.
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   STATEMENT.                                                                        REASON.

{ t sin(at) } =    (  { sin(at) } ) Part 1) of theorem aboved
ds

                =   From the TABLE   { sin(at) } =d
ds

a
s a2 2







a
s a2 2

   =   Algebra  d
ds

a s a2 2 1




              =    a ( 1) ( s2 + a2 )-2 (2s) Calculus

   =   Algebra
 

2as

s a2 2
2

EXAMPLE #4  Compute {f(t)} = F(s) where f(t) = eat sin(ωt)   for t  0.

Solution. We wish to compute {f(t)} = F(s) = { eat sin(ωt) }.

   STATEMENT.                                                                        REASON.
{ eat sin(ωt) } =  { sin(ωt) }( s - a ) Part 2) of theorem above

 =   From the TABLE  {sin(ωt) } =  


(s - a) 2 2

s2 2

EXAMPLE #5  Compute {f(t)} = F(s) where f(t) = cos(ωt)   for t  0.

Solution. We wish to compute {f(t)} = F(s) = { cos(ωt) }.  We will use property 

4):  { f'(t) } = s { f(t) } - f(0) with f(t) =   so that f(t) =  = cos(ωt). sin( )


t d
dt

sin( t)


Hence   { cos(ωt) } = s  {  }    =    {  }=  sin( t)


sin( )


( )0 s


sin( t)


s



s2 2

 = s
s2 2 

     We continue the development of our table of Laplace Transforms.
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            PARTIAL TABLE OF LAPLACE TRANSFORMS

Time Domain        (Complex) Frequency Domain
  f(t)                     F(s)
  0       0          s > 0 
   eat                       1/(s-a)      s > a
   1                        1/s           s > 0

 sin(at)                      s > 0a
s a2 2

     t                              s > 0
1
s2

     t2                               s > 0
2
s3

     t3               s > 0
3!
s4

       tn            s > 0
n!

sn+1

t sin(at)                     s > 0
 

2as

s a2 2
2

eat sin(ωt)           s > a


(s - a) 2 2

cos(ωt)             s
s2 2 
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Laplace transforms          TABLE OF LAPLACE TRANSFORMS
Handout No. 5   TO BE MEMORIZED  Professor Moseley

     Although it is not reasonable to memorize all Laplace Transform pairs, it is reasonable to
memorize the most common ones.  Below is  a list of the Laplace Transform pairs you must
memorize.

f(t) F(S) = {f(t)}(s) Domain of F(s)

1 1))s s > o

t 1
))s2 s > o

t2 2))s3 s > o

tn      n n!
))sn+1 s > o

eat 1))sa s > a

sin(ωt) ω
))))s2 + ω2 s > o

cos(ωt) s))))s2 + ω2 s > o

eat sin(ωt) ω
))))(s  a)2 + ω2 s > a

eat cos(ωt) s-a)))))(s  a)2 + ω2 s > a
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EXERCISES on Other Properties of the  Laplace Transform

EXERCISE #1   Using a Table and Your Knowledge find  F(s) = {f(t)}(s) if

1)  f(t) = 3t2 + 4t+5

2)  f(t) = (t+2)2

3)  f(t) = sin  }Hint:  Use trig identities

4)  f(t) = sin2(3t)

5)  f(t) = 2te3t 

6)  f(t) = t2e-2t

7)  f(t) = e-2t cos  3t
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