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Handout No. 1 REVIEW OF LINEAR THEORY Professor Moseley
AND MOTIVATION FOR USING POWER SERIES

Recall that for the remainder of the course that we will not attempt to cover all of the
material in the text on a particular topic.  Rather you will get only  a taste of the topic so that you
will have a good start when you see it again in another course.

REVIEW OF LINEAR THEORY FOR ANALYTIC FUNCTIONS.  Recall the general second
order linear differential operator L defined by

L[y] = yO + p(x)y + q(x)y (1)

where p, q 0 A(I) and I = (a,b) is the interval of validity.  We have considered the homogeneous
equation L[y] =0:

    ( L[y] = )     y" + p(x) y' + q(x) y = 0      � x 0 I      (2)

and the nonhomogeneous equation L[y] = g 0 A(I):

    ( L[y] = )     y" + p(x) y' + q(x) y = g(x)   � x 0 I.             (3)

THEOREM #1.  Let S = { y1, y2 } be a set of linearly independent solutions to the homogeneous
equation (2).  Now assume that we can find a (i.e one) particular solution yp(x) to the
nonhomogeneous equation (2). Then y(x) =  yp(x) + yc(x) where yc(x) is the general solution of
the associated homogeneous equation (also called the complementary equation) (2).  That is, the
general solution of (3) is given by:

y(x) =  yp(x) +  c1 y1(x) + c2 y2(x). (4)

This theorem reduces the problem of finding the general solution of the nonhomogeneous
equation (3) to finding the three functions  yp(x), y1(x), and y2(x).  If the homogeneous equation
has constant coefficients, we have developed a technique to for finding  y1 and y2.  For a large
number of forcing functions g(x) in A(I), we can find yp by using either the method of
undetermined coefficients or variation of parameters.  However, if this is not the case, we do not
have a technique for solution (unless for example we have an equation in which y is missing or x
is missing).  We wish a technique for the case of variable coefficients, that is when p and q are
not constants.

MOTIVATION FOR USING POWER SERIES.  We wish to develop a more general technique
which works for the case when the solutions of (2) and (3) are analytic functions.  Recall that a
function f 0 C4 (I) = {f:I6 R: f(n) is continuous � n 0 N}  is analytic on I = (a,b) if for all x0 0 I,
there exists an open interval containing x0 where f(x) equals its Taylor series.  We first review
power series and how a function (i.e. a real valued function of a real variable) can be defined by a
power series.  We then review  how a function in C4(I) defines a power series at a point x0 and
hence  how to compute Taylor series of an analytic function.
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Handout No. 2 FUNCTIONS DEFINED BY POWER SERIES  Professor Moseley

Let f(x) be a real (or complex) valued function of a real (or complex) variable.  Recall
how to find a power series expansion (or representation) of this function by finding its Taylor
Series (or its Maclaurin series if the series is about zero).  On the other hand, if we are given a
power series with coefficients an, n = 0, 1, 2, 3, ... , then this power series defines an analytic
function

  y = f(x)   =     =   a0 + a1 x + a2 x
2 + a3 x

3 + ... + an x
n + ...

on its (open) interval (or circle) of convergence.  We may think of the sequence  as the

name of the function f since, given a value of x, we can compute a value for y  = f(x), provided
we can "sum the series".  Practically, this may mean that we use a computer to obtain 

y  =  fA(x) = , where the remainder RN =  is small.

The (open) domain of the function is the (open) interval of convergence of the power series. 
We review the following skills which you mastered in a previous course:

1. How to determine the interval of convergence of a power series using the Ratio test.
2. How to compute the (coefficients in the) power series for a given function (i.e. how do we
    compute the Taylor  or Maclaurin series for a given function). 

    A third skill which you may have previously mastered:

3. How to change the index when using sigma notation.

will be covered when we learn how to use power series to solve a second order linear differential
equation with (constant or) variable coefficients.
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Handout # 3 THE INTERVAL OF CONVERGENCE Professor Moseley
OF A POWER SERIES

Consider the power series

  y =    =    a0 + a1 x + a2 x
2 + a3 x

3 + ... + an x
n + .... (1)

Let

Rn  =df     =    *x* (2)

and

L  =df   Rn = (  lim    ) *x*. (3)  

THEOREM (Ratio Test). Then the power series converges if L < 1.  It diverges if L > 1.  If
L = 1, the test is inconclusive.

Thus the power series converges on the open interval where L < 1, diverges outside the
closed interval where L # 1, and we must use some other test for the endpoints.  However, since
we wish to solve ODE's, we wish the domain (i.e. the interval of validity) of our solutions to be
open intervals.  Hence we are not particularly interested in the end points and will not review the
tests needed to check for convergence at the endpoints (e.g., alternating series test).  Finding the
open interval L < 1 where the series converges (i.e. the open interval of convergence) is
sufficient.

EXAMPLE #1.  Find the open interval of convergence for the power series:

  y = , where an = (-1)n+1 xn/2n ; that is, for the power series  y =   

Solution.  Let Rn   =  = =  *x*.

Note that although Rn is usually a function of n, for this example, it is not.  This makes 

computing the limit easy.

Let L  =   Rn = (    ) *x* =    *x*=   *x*
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Hence L < 1 Y     *x*< 1  Y  *x* < 2  Y x 0 I = (-2, 2).  

The radius of convergence, usually denoted by D, is half of the length of the interval I.  The
reason that it is referred to as the radius of convergence is that a power series can be considered
as a complex valued function of a complex variable.  In this context, the Ratio Test applies to the
series:

  f(z) =  . (4)

in which case L < 1 implies convergence within a circle of radius D about the origin, L > 1
implies divergence outside this circle, and the test is inconclusive on the circle where L = 1.
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Handout # 4 TAYLOR AND MCLAURIN SERIES  Professor Moseley

Recall from calculus

THEOREM (Taylor Series).  For any function f(x) that is analytic at the point x0, we have

f(x) =

       = f(x0) + [fN(x0)] ( x - x0 ) + ( x - x0 )
2 + AAA+ (x - x0 )

n +  @ @ @  .

inside some interval (circle if x is replaced by the complex variable z) centered at x0.

EXAMPLE #1.  Find the Maclaurin series for f(x) = ex

Solution. Find the Maclaurin series means find the Taylor series for x0 = 0.

f(x) = ex                   f(0) = e0 = 1
f'(x) = ex                  f'(0) = e0 = 1
f"(x) = ex                  f"(0) = e0 = 1
     @    @
     @    @
     @    @
f(n)(x) = ex                 f(n)(0) = e0 = 1

Hence

  f(x)  =   =  f(0) + [fN(0)]  x +  x2 + AAA+  xn +  @ @ @  

           = 1  +   x    +    x2   +    x3   +  @ @ @  +   xn   +  @ @ @  .

           = 

EXAMPLE #2.  Find the Maclaurin series for f(x) = sin(x)

Solution. Find the Maclaurin series means find the Taylor series for x0 = 0.
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n k f(n)(x) f(n)(0)
0 0 f(x) = sin(x) f(0) = sin(0) = 0
1 0 f'(x) = cos(x) f'(0) = cos(0) = 1
2 0 f"(x) = -sin(x) f"(0) = -sin(0) = 0
3 0 f"'(x) = -cos(x) f"'(0) = -cos(0) = -1
4 1 f(4)(x) = sin(x) f(4)(0) = sin(0) = 0
@  @      @    @
@  @      @    @
@  @      @    @

We substitute into Taylor’s formula and look for a pattern:

  f(x)  = =  f(0) + [fN(0)]  x +  x2 + AAA+  xn +  @ @ @  

           = 0  +   x   +   0  !   x3   +  0  +   x5  + 0  !   x7   @ @ @  .

We see that if we let k = 0,1,2,3,4, @@@ , we obtain

   f(x)   =  x    !   x3    +   x5   !   x7   @ @ @  .+ x2m+1 + AAA .

Hence,       sin(x) =  x2 m+1

Alternately, since we have four cases for the formula for the nth derivative of sin(x), we break up
the formula for the Maclaurin series into four separate series (absolute convergence for each 
x 0 R can be shown ).

f(x) = 

      = + + +
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We may now substitute in the values for the four cases:

f(x) = + + +

       =  !

= ( x  +  x5 +   @ @ @ + x4k+1 x + AAA) !(  x3 +  x7 +  @ @ @+ x4k+1 + AAA).

Taking a term from one series and then the other, these two series may then be combined as

  f(x) =  x  !   x3  +   x5   !  x7   @ @ @  .+ x2m+1 + AAA .

and hence we again get     sin(x) =  x2 m+1

Thus there is not necessarily a unique way to write the series.  You need to check your answer to
see if it is just the answer in the back of the book in a different form.
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Handout # 5 POWER SERIES SOLUTION Professor Moseley
OF SECOND ORDER LINEAR ODE's

HOW TO USE POWER SERIES TO SOLVE SECOND ORDER ODE's WITH VARIABLE
COEFFICIENTS.

Recall the general second order linear differential operator 

                   L[y] = yO + p(x)y + q(x)y (1)

where p,q 0 C(I), I = (a,b).  We consider the homogeneous equation:

                    L[y] =  y" + p(x) y' + q(x) y = 0                        � x 0 I                                          (2)

and the nonhomogeneous equation:

                   L[y] =  y" + p(x) y' + q(x) y = g(x)                       � x 0 I.                                      (3)

THEOREM #1.  Let S = { y1, y2 } be a set of linearly independent solutions to the homogeneous
equation (2).  Now assume that we can find a (i.e one) particular solution yp(x) to the
nonhomogeneous equation (3). Then y(x) =  yp(x) + yc(x) where yc(x) is the general solution of
the associated homogeneous equation (also called the complementary equation) (2).  Thus:

 y(x) =  yp(x) +  c1 y1(x) + c2 y2(x).

Theorem #1 reduces the problem of finding the general solution of the nonhomogeneous
equation (3) to the finding of the three functions  yp(x), y1(x), and y2(x).    We wish to see how we
can use the concept of representing a function by a power series to find (power series)
representations of these three functions.  On the other hand, the solution to an initial value
problem is typically unique.  If explicit initial conditions are given, then we wish to find (a power
series representation of ) this function.  Thus we assume that the solutions of (2) or (3) are
analytic n y so that they can be written in the form:

  y = a0 + a1 x + a2 x
2 + a3 x

3 + ... + an x
n + ...     =     

PROCEDURE.  We know the function y if we know the coefficients an, n = 1, 2, 3, ... .  Hence
we substitute the power series into the ODE and attempt to solve for the coefficients an, n = 1, 2,
3,... .   However, we first make two comments.
COMMENT #1. Since there are an infinite number of coefficients to solve for we expect to have
to solve for them recursively.
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COMMENT #2. Since the general solution of the homogeneous equation contains two arbitrary
constants, we expect that there will be two constants we can not solve for.  Since the usual IVP
requires that to solve for these constants we usually have  y(0) = a0 and y'(0) = a1.  Hence we
might expect to have to solve for the rest of the coefficients in terms of these two.

EXAMPLE. Using power series, solve y" + y = 0

Solution.  This ODE is easily solved by previous techniques to obtain:

y = c1 sin(x) + c2 cos(x)

Knowing the answer before we start should help you to understand the method.  We then
consider an example that you cannot solve by previous methods.  Let

1)    y   =                    =    a0  +  a1 x  +  a2 x
2  +  a3 x

3 + AAA + an x
n + AAA

       y'    =         =    a1  +  a2 2 x + a3 3 x2 +  AAA + an n xn-1  +  AAA

1)   y" =   =  a2 2(1) + a3 3(2) x  +  AAA +  an n(n-1) xn-2  + AAA

_________________________________________________________________

y" + y = + = a2 2(1) + a1 + (a3 3(2)+ a2 2) x + AAA  = 0

Hence 

x0    a2 2(1) + a0  = 0     Y   a2 = ! (½) a0 
x1    a3 3(2)+ a2 x = 0    Y   a3 = ! (1/[(3)(2)]) a1  
   @.
   @.
   @.

and in general  +   = 0.

Note that we have obtained  a2 in terms of a0 and a3 in terms of a1.  We could write out more
terms and then solve for a4, a5, a6, ... , but it is more expedient to work with the general case.  To
do this we must review ("learn") how to work with sigma notation, specifically how to change
the index of summation so that all the summations can be put together (i.e. they are all written as
(coefficient) times xn..  In the first series we let k = n-2 (so that n = k+2):
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S =   =     

                     = a2 2(1) + a3 3(2) x + @ @ @ + ak+2 (k+2)(k+1) xk + @ @ @.

After the change of index is complete, we may use any index we choose and can go back to
 using n:

S =  

This is completely analogous to changing the variable used in a definite integral.  Consider:

I =    =     =      

   u = x2 Y du = 2x dx

Note that although the u in the second integral is related to the x in the first integral, the x used in 
the last integral is not the same as the x used in the first integral.  Returning to our power series,
we obtain:

 +  = 0.

or

 = 0.

so that    an+2 (n+2)(n+1) + an = 0      for n = 0, 1, 2, 3, .... .  Hence we obtain the recursion
formula:

 an+2 = - an / [(n+2)(n+1)]       for n = 0, 1, 2, 3, ...
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n=0 Y (as before)   a2 2(1) + a0  = 0    Y   a2 = !(½) a0 
n=1 Y (as before)   a3 3(2) + a1  = 0    Y   a3 = !(1/[(3)(2)]) a1 
n=2 Y               a4 4(3) + a2  = 0    Y   a4 = ! (1/[(4)(3)]) a2 =(1/[(4)(3)2)]) a0 
n=3 Y               a5 5(4) + a1  = 0    Y   a5 = !(1/[(5)(4)]) a3  = (1/(5!)) a1 
  @
  @
  @
arbitrary n Y 

an+2 = 

Thus:

an = 

which may be proved by mathematical induction.  For this example, we were able to use the
recursion formula to obtain a general formula for an in terms of  a0 and a1.  Since we know the
solution of this problem in terms of elementary functions, we can continue.  For many problems,
the recursion formula is as far as we can go.  However, if you are given initial conditions 
y(0) = y0 = a0 and y'(0) = v0 =a1, you can use the recursion formula (and a computer) to compute
as many values an as you wish.  For this example, we have

  y   =    = a0 + a1 x + a2 x
2 + a3 x

3 + AAA + an x
n + AAA  

       = +  

=  a0 !  a0 x
2 + AAA+ (!1)k a0 x

2k  AAA 

+ a1 x !  a1 x
3 + AAA + (!1)k a1 x

2k+1  AAA

     =  a0 (1 !  x2 + AAA+ (!1)k x2k  AAA)  + a1 (x !  x3 + AAA + (!1)k x2k+1  AAA)

We recognize both of these series.  The second we computed as the Maclaurin series for sin(x).  

The first is cos(x).  Hence we obtain:       y  = a0 cos(x) + a1 sin(x)

Letting y1 = cos(x) and y2 = sin(x) we obtain y in the standard form:    y = a0 y1   +   a1 y2.
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