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 Handout #1 LINEAR THEORY FOR HIGHER ORDER ODE's Prof. Moseley

We first consider the general  nth order linear differential operator from the vector
space Cn(I) to the vector space C(I) where I = (a,b):

           L[ y ] = y ( n ) + pn-1 (x) y ( n-1 ) + pn-2 (x) y ( n-2 ) + ... +  p1 (x)y' + p0 (x) y. (1)

where pi (x) 0 C(I) for all i and I = (a,b) is the interval of validity.  If p,q 0 A(I), we take L to map 
A(I) to A(I) and if p,q 0 H(C), we take L to map H(C) to H(C).  Recall that an operator is like a
function except that it maps a function to another function, instead of a number to another
number.  Algebraically, we treat collections of functions as vector spaces provided the Laws of
Vector Algebra are satisfied.  Hence if  pi (x) 0 C(I) for all i, we view L as mapping the vector
space Cn(I), the set of functions which have n derivatives and whose nth derivative is continuous
on the interval I = (a,b), to the vector space C(I) of continuous functions on I;  if  pi (x)0A(I) for
all i, we view L as mapping the vector space A(I) to the vector space A(I); and if  pi (x)0H(C) for
all i, we view L as mapping the vector space H(C) to the vector space H(C).

We also consider the linear homogeneous equation L[y] = 0:

        y ( n ) + pn-1 (x) y ( n-1 ) + pn-2 (x) y ( n-2 ) + ... +  p1 (x)y' + p0 (x) y = 0       � x 0 I = (a,b) (2)

and the linear nonhomogeneous equation L[y] = g:

       y ( n ) + pn-1 (x) y ( n-1 ) + pn-2 (x) y ( n-2 ) + ... +  p1 (x)y' + p0 (x) y = g(x)       � x 0 I = (a,b) (3)

We review the linear theory and apply it  to the nth order linear operator L given in (1).  
We begin our review with the definition of a linear operator.  To distinguish it from functions
that map numbers to numbers, a “function” or mapping T from one vector space  V  to another
vector space W is often call an operator.  Similar to writing f:R6 R, we write T:V 6 W.  If we
wish to think geometrically rather than algebraically we might call T a transformation or a
transform.

DEFINITION #1.  An operator T:V 6 W is said to be linear if for all , 0V  and for all 

scalars  ",$  we have

T(" + $ ) = "T( )+$T( ). (4)

THEOREM #1.  The operator defined by L in (1) is linear and its null space has dimension n. 
Hence the general solution of the homogeneous equation (2) has the form 

y(x) = c1 y1(x) +@@@ + cn yn(x) =  (5)

where B = {y1,@@@,yn}  is a basis for the null space NL  and  ci, i=1,...,n  are arbitrary constants.
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Since we know that the dimension of the null space NL is n, if we have a set of n solutions
to the homogeneous equation (1), to show that it is a basis of the null space NL, it is sufficient to
show that it is a linearly independent set.

It is important that you learn the definition of linear independence in an abstract vector
space.

DEFINITION #1.  Let V be a vector space.  A finite set of vectors  f V is

linearly independent (R.i.) if the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous)
vector equation

                              (1)

is   c1 = c2 = @@@ = cn = 0; that is, (1) has only the trivial solution.  If there is a set of scalars not all
zero satisfying (1) then S is linearly dependent (R.d.).

DEFINITION #2.  Let  f1,...,fk0ö(I,R) where I = (a,b).  Now let J = (c,d) f (a,b) and for 
i = 1,...,k, denote the restriction of fi to J by the same symbol.  Then we say that  
S = {f1,...,fk} f ö(J,R) fö(I,R) is linearly independent on J if S is linearly independent as a
subset of ö(J,R).  Otherwise S is linearly dependent on J.

Applying Definitions #1 and 2 to a set of k functions in the function space Cn(I) we obtain:

THEOREM #1.  The set  S = {f1,...,fk}fCn(I) where I = (a,b)  is linearly independent on I if (and
only if) the only solution to the equation

c1 f1(x) + @@@+ ck fk(x) = 0            � x 0 I (1)

is the trivial solution c1 = c2 =  @@@ = ck =0 (i.e., S is a linearly independent set in the vector space
 Cn(I) ).    If there exists c1 , c2 ,@@@,cn 0 R, not all zero, such that (1) holds, (i.e, there exists a
nontrivial solution) then S is linearly dependent on I (i.e., S is a linearly dependent set in the
vector space Cn(I) which is a subspace of ö(I,R)).  

Often people abuse the definition and say the functions in S are linearly independent or
linearly dependent on I rather than the set S is linearly independent or dependent.  Since it is in
general use, this abuse is permissible, but not encouraged as it can be confusing.  Note that Eq.
(1) is really an infinite number of equations in the two unknowns c1 and c2, one for each value of
x in the interval I.  Four theorems are useful.

THEOREM #2.    If a finite set  S fCn(I) where  I = (a,b) contains the zero function, then S is
linearly dependent on I.

THEOREM #3. If f is not the zero function, then S = {f}fCn(I) is linearly independent.
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THEOREM #4.  Let S = {f,g} f Cn(I) where I= (a,b).  If either f or g is the zero function in Cn(I) 
(i.e., is zero on I), then S is linearly dependent on I.

THEOREM #5.  Let S = {f,g}fCn(I)  where I= (a,b) and suppose neither f or g is the zero
function.  Then S is linearly dependent if and only if one function is a scalar multiple of the other
(on I).

PROCEDURE.  To show that  S =  {f1,f2,f3,...fn}  is linearly independent it is standard to assume
(6) and try to show  c1 = c2 = c3 = ... = cn = 0.  If this can not be done, to show that S is linearly
dependent, it is mandatory that a nontrivial solution to (6) be exhibited.

DEFINITION #3.  If y1,...,yn 0 C1(I), where I = (a,b), then

W(y1,...,y2;x) =df  W(x)  =df    (7)

is called the Wronski determinant or the Wronskian of y1,..., yn at the point x.

THEOREM #4.  The null space NL of the operator defined by L in (1) above has 
dimension n.  Hence the solution of the homogeneous equation

L[y] = 0  � x 0 I = (a,b) = interval of validity (8)
has the form 

 y(x) = c1 y1(x) +@@@ + cn yn(x)  =  (9)

where  {y1,@@@,yn}  is a basis for  NL  and  ci, i=1,...,n  are arbitrary constants.  Given a set of n
solutions to L[y] = 0, to show that they are linearly independent solutions, it is sufficient to
compute the Wronskian
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W(y1,...,y2,x)  =df   W(x)   =df  (10)

and show that it is not equal to zero on the interval of validity.

THEOREM #5.  The nonhomogeneous equation 

L[y] = g(x)   � x 0 I = (a,b) = interval of validity (11)

has at least one solution if the function g is contained in the range space of  L, R(L).  If this is the
case then the general solution of (11) is of the form

y(x) = yp(x) + yh(x) (12)

where  yp is a particular (i.e. any specific) solution to (11) and yh  is the general (e.g. a formula for
all) solutions of (8).  Since N(L) is finite dimensional with dimension n we have

y(x) = yp(x) +  .                         (13)

where B ={y1, y2, ... , yn} is a basis of the null space N(L).

EXERCISES on Introduction and Theory for Higher Order ODE’s 
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EXERCISE #1  Compute L[N]   if  the operator L is defined by  L[y] = y(4) + y' + 3y and
(a)  N(x) = sin x,  (b)  N(x) = cos x,  (c)  N(x) = ex.

EXERCISE #2  Compute L[N] if the operator L is defined by L[y] = y"' - y" + 2y  and 
(a)  N(x) = sin x,  (b)  N(x) = ex,  (c)  N(x) = e-x.

EXERCISE #3.  Directly using the Definition (DUD) or by using Theorem 1, prove that the
following operators L[y] which maps the vector space Cn(I) (the set of function which have n
derivatives and whose nth derivative is continuous on the interval of validity I) into the space C(I)
of continuous functions on I is linear.
(a)  L[y] = y(4) + y' + 3y,  (b)  L[y] = y"' - y" + 2y   

EXERCISE #4.  Determine (and prove your answer directly using the definition (DUD), or by
using Theorem A or Theorem B) if the following sets are R.i. or R.d. in C2(R).
(1) {ex,e2x,3ex,2ex}  (2)  {sin x, cos x,1 - sin2x, cos2x} (3) {3ex,2e2x,sin x, cos x}
(4)  {1 - sin2x, cos2x,sin 2x, sin x cos x}    Hint:  Since (8) must hold  � x 0 R, as your first try,
pick several (distinct) values of x to show (if possible) that c1 = c2 = c3 = ... = cn = 0. Hint: If (8)
can only hold � x 0 R  if  c1 = c2 = c3 = ... = cn = 0, use Theorem B to show that the set is R.i.  If
this is not possible  find  c1,c2,c3,...,cn  not all zero s.t. (8) holds  � x 0 R.  Exhibiting (8) with
these values provide conclusive evidence that{f1,f2,f3,...fn}  is  R.d.

EXERCISE #5.  Compute the Wronskian W(y1,...,yn;x) of the following:  
(a)  y1 = ex, y2 = e-x, y3 = sin x  y4 = cos x,  (b)  y1 = sin x  y2 = cos x,  y3 = 1,  y4 = x,
(c)  y1 = eax, y2 = ebx, y3 = sin wx y4 = cos wx



Ch. 5 Pg. 7

Handout #2 TECHNIQUE FOR SOLVING HOMOGENEOUS Prof. Moseley
EQUATIONS WITH CONSTANT COEFFICIENTS

Recall the homogeneous equation:

L[y] = 0. (1)

where L is a linear operator of the form

                   L[y] = y(n) + pn-1(x) y(n-1) + pn-2(x) y(n-2) + ... +  p1(x)' + p0(x) y.                                   (2)

We consider the special case when the functions  pi(x), i = 1,2,...,n, are constants.  For notational
convenience, we consider:

an y
(n) + an-1 y

(n-1) + an-2 y
(n-2) + ... + a1y' + a0 y = 0      an � 0        � x 0 R. (3)

Since the coefficient functions are constant, they are continuous for all x 0 R and the interval of
validity is the entire real line.  By the linear theory we obtain:

THEOREM.  Let S =  {y1,@@@,yn} be a set of solutions to the homogeneous equation (3).  Then the
following are equivalent (i.e. they happen at the same time).  

a. The set S is linearly independent.  (This is sufficient for S to be a basis of the null space N(L)  
    of the linear operator L[y] since the  dimension of  N(L) is n.)

b. W(y1,...,y2;x) � 0       � x 0 R.  

c. All solutions of (3) can be written in the form 

     n
 y(x) = c1 y1(x) +@@@ + cn yn(x) =   E ci yi(x)  (4)

   i=1

where  ci, i=1,...,n  are arbitrary constants.  That is, since S is a   basis of NL it is a spanning set
for NL and hence every function ("vector") in NL can be written as a linear combination of the
functions ("vectors") in S.

The theorem reduces the problem of finding the general solution of the homogeneous
equation (3) to finding the  n  linearly independent functions y1,...,y2 .  We can extend the
technique for solving second order linear homogeneous equations with constant coefficients to
finding the functions  y1,...,y2 for the case of Nth order linear homogeneous equations with
constant coefficients.  We "guess" that there may be solutions to (3) of the form 

                        y(x) = erx                                                                                                   (5)
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where r is a constant to be determined later.  We attempt to determine r by substituting y into the
ODE and obtaining a condition on r in order that (3) have a solution of the form (5).  Using our
standard technique for substituting into a linear equation we obtain:

a0)              y  =    erx        
a1)              y' =  r erx        
   .
   .
   .
an-1)              y

(n-1) = rn-1 erx        
an)                y

(n)  = rn   erx        
)))))))))))))))))))))))))))))))))))))))))))))

 an y
(n) + an-1 y

(n-1)' + ... + a1 y' + a0 y = (an r
n + an-1 r

n-1 + ... + a0 ) e
rx = 0.

Hence we obtain the Characteristic or Auxiliary equation:

                      an r
n + an-1 r

n-1 + ... + a1r  + a0  = 0.           an � 0            Auxiliary equation (6)

Hence we have changed the "calculus" problem of solving an nth order linear differential equation
with constant coefficients to a high school algebra problem of solving a nth degree polynomial
equation.  (Hence no antiderivatives need be computed.)  In accordance with the fundamental
theorem of algebra, (6) has "n solutions" i.e. the left hand side (LHS) can be factored into

an (r - r1)(r - r2) ... (r - rn)  = 0.      an � 0 (7)

     Hence your factoring skills for higher degree polynomial equations are a must.  Two or more
of the factors in Equation (7) may be the same.  This makes the semantics of the standard
verbiage sometimes confusing, but once you understand what is meant, there should be no
problem.  As in second order equations, we speak of the special case of "repeated roots".)

EXAMPLE #1.  Solve (i.e. find the general solution of) yiv - y = 0 subject to the initial conditions 
     y(0) = 1,  y'(0) = 0,  y"(0) = 3,  y"'(0) = 0.  

Solution. Let   y(x) =  erx. Hence substituting into the ODE we obtain:

!1) y  =    erx        
y' =  r erx        
y" = r2 erx        
y'" = r3 erx  

   1)     yiv = r4 erx        
    )))))))))))))))))))))
      yiv - y  =  ( r4 - 1 ) erx  =  0.
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Hence we obtain:          r4 - 1 = 0.               Auxiliary equation   

This factors so we obtain:      ( r2 + 1 ) ( r2 - 1 ) =  ( r2 + 1 ) ( r - 1 )( r + 1 )  = 0

so that  ( r2 + 1 ) = 0 or ( r - 1 ) = 0 or ( r + 1 ) = 0.

Hence  r2 = ! 1     or   r = 1   or   r = !1

We let  r1,2 = ± i  and  r3 = 1  and  r4 = !1.  Hence we let 

   y1 = sin(x),       y2 = cos(x),         y3 = ex,      and        y4 = e!x

so that the general solution to the ODE   yiv - y = 0  is 

     y(x) = c1 y1(x) + c2 y2(x) + c3 y3(x) + c4 y4(x)  = c1 sin(x) + c2 cos(x) + c3 e
x  + c4 e

-x. 

We now apply the initial conditions to obtain  c1, c2,c3 and c4.  First we compute

     y(x) =   c1 sin(x) + c2 cos(x) + c3 e
x  + c4 e

-x. 
     y'(x) =   c1 cos(x) - c2 sin(x) + c3 e

x  - c4 e
-x. 

     y"(x) = - c1 sin(x) - c2 cos(x) + c3 e
x  + c4 e

-x. 
     y"'(x)= - c1 cos(x) + c2 sin(x) + c3 e

x  - c4 e
-x. 

Applying the initial conditions:        y(0) = 1,  y'(0) = 0,  y"(0) = 3,  y"'(0) = 0  

we get the 4 linear algebraic equations:

      1  =   c1 (0) + c2 (1)) + c3 e
0  + c4 e

0.                    c2     + c3    + c4  = 1   
      0  =   c1 (1) - c2 (0)  + c3 e

0  - c4 e
0.  c1           + c3    !c4  = 0 

      3  = - c1 (0) - c2 (1)  + c3 e
0  + c4 e

0. or        - c2   + c3    + c4  = 2 
      0  = - c1 (1) + c2 (0)  + c3 e

0  - c4 e
0. ! c1          + c3     !c4  = 0

We could use Gauss elimination (matrix reduction) to solve this system.  However, for these
(textbook)  problems an ad hoc procedure is often faster.  Adding the equations we get  4 c3 = 4
so that  c3 = 1.  Now adding the second and fourth equations we get 2 ! 2 c4 = 0.  Hence c4 = 1. 
From the first equation we get c2 = !1 and from the second equation we get c1 = 0.  Hence

     y(x) =  ! cos(x) + ex  +  e-x. 

EXAMPLE #2.  Solve  y"' + 4 y" + 5 y' + 2 y = 0.

Solution  Let   y(x) =  erx. Hence substituting into the ODE we obtain the auxiliary equation:
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       r3 + 4 r3 + 5 r2 + 4 r + 2 = 0.       Auxiliary equation   

To factor the polynomial:      p(r) =  r3 + 4 r3 + 5 r2 + 4 r + 2  

we recall the RATIONAL ROOT THEOREM:

THEOREM #2 (Rational Root).  Consider the polynomial:

p(r) =  an r
n + an-1 r

n-1 + ... + a1r  + a0 (8)

where ai 0Z for i = 1, 2, ..., n.  Then if the equation p(r) = 0 has any rational roots, (if the
polynomial p(r)has any zeros) they are of the form:  r = ± k/m    where k is a factor of a0 and m is
a factor of an.  If an = 1 as is often the case, then the possible zeros of p are simply plus or minus
the factors of the constant a0 in the polynomial.

In the example, the possible rational zeros of p(r) = r3 + 4 r3 + 5 r2 + 4 r + 2 are therefore r = ± 1
and ± 2.  However, note that all of the coefficients of p are positive.  Hence there can be no
positive zeros.  Hence we try r = - 1.

p(-1) = (-1)3 + 4 (-1)2 + 5 (-1) + 2 = -1 + 4 - 5 + 2 = 0

Hence r = !1 is a zero of p and r + 1 is a factor.  We wish to divide r + 1 into p(r).  You can use
synthetic division if you wish, but the propensity for error indicates that long division is better.

            r2  + 3 r + 2
        ___________________
r + 1 )  r3 + 4 r2  + 5 r  + 2
        -       -
        r r3  r  r2

        ___________
               3 r2  + 5 r
             -         -
            r 3 r2  r 3 r
           ______________
                        2 r + 2
                     -        -
                     r 2 r r 2
                    ___________
                                  0
 
Hence  p(r) =  r3 + 4 r2  + 5 r  + 2  = ( r + 1 )( r2  + 3 r + 2 ).
But now the last term is a quadratic and can be factored.
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  p(r) =  r3 + 4 r2  + 5 r  + 2  = ( r + 1 )( r2  + 3 r + 2 )
                                           = ( r + 1 )( r + 2 )( r + 1 )

Hence the zeros of p are r1 = r2 = !1 and r2 = !2.  Hence the three linearly independent solutions
of  
   y"' + 4 y" + 5 y' + 2 y = 0   are   y1 = e-x,   y2 = x e-x,   and   y3 = e-2x.

Note that to find a second solution associated with the zero r = !1, we multiplied the first
solution y1 = e-x by x.  We learned that this works for second order equations by using reduction
of order.  It works in a similar manner for repeated roots which have algebraic multiplicity
greater than two.  Hence the general solution of  y"' + 4 y" + 5 y' + 2 y = 0 is:

     y(x) = c1 y1(x) + c2 y2(x) + c3 y3(x)
     y(x) = c1 e

-x   + c2 x e-x  + c3 e
-2x. 

If  initial conditions are given, these can be used to obtain  c1, c2, and c3.

EXAMPLE #3.  Solve y(n) ! y = 0 in H(C).  Also find a solution in A(R).

Solution: Let   y(x) =  erx.  Hence substituting into the ODE we obtain the auxiliary equation:

       rn !1 = 0.       Auxiliary equation   

To factor the polynomial:      p(r) =  rn !1     we recall DE MOIVRE’S THEOREM: for finding
the nth roots of unity.  But first we note that since the coefficients are all real, the unreal roots
come in complex conjugate pairs.

THEOREM #3 (DE MOIVRE)  Let 2 = .  The nth roots of unity are , ,..., ,1 or

rk = cos(k2) + i sin(k2) = :k + i <k for k = 1, 2, ..., n.  

Hence the general solution of  y(n) ! y = 0 in H(C) may be written as

y = c1 + @@@ + cn-1 +cn e
x  = c1 + @@@ + cn-1  +cn e

x  

  = c1 cos(<1x) +c1 i sin(<1x) @@@ +cn-1 cos(<n-1x) +cn-1 i sin(<n-1x) + cn e
x  

  = c1 cos(<1x)+ @@@ +cn-1 cos(<n-1x) + i (c1 sin(<1x) @@@ +cn-1 sin(<n-1x) ) + cn e
x  

 
where c1, ..., cn0C.

If n = 2p+1 is odd then 2 =  and we may take the roots to be rk = cos(k2) + i sin(k2) for 
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k = 0, ±1, ±2, ...,±p or r0 = 1, rk = cos(k2) ± i sin(k2) = :k±<k for k = 0, 1, 2, ..., p.  Hence the
solution of y(n) ! y = 0 in A(R) is

   y = c0 e
x  + c1c cos(<kx) + c1s sin(<kx) +...+ cpc  cos(<px) + cps sin(<px)

where c0,c1c, c1s, ..., cpc, cps0R.

If  n = 2p is even then 2 =  =   and we may take the roots to be rk = cos(k2) + i sin(k2) for k

= 0, ±1, ±2, ...,±(p!1), p or r0 = ±1, rk = cos(k2) ± i sin(k2) = :k ± i<k for k = 0, 1, 2, ..., p!1. 
Hence the solution of y(n) ! y = 0 in A(R) is

y=c0e
x+c1c cos(<1x)+c1s sin(<1x)+...+c(p-1)c cos(<(p-1)x)+c(p-1)s sin(<(p-1)x)+cp e

-x

where c0,c1c, c1s, ..., c(p-1)c, c(p-1)s, cp0R.
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Handout # 3 TECHNIQUE FOR SOLVING NONHOM. EQS.: Professor Moseley
METHOD OF UNDETERMINED COEFFICIENTS

     Recall the homogeneous equation  L[y] = 0  where L is a linear operator of the form

                L[y] = y(n) + pn-1(x) y(n-1) + pn-2(x) y(n-2) + ... + p1 (x)' + p0 (x) y (1)

and the theorem:

THEOREM #1.  The nonhomogeneous equation 

L[y] = g(x)   � x 0 I = (a,b) = interval of validity  (2)

has at least one solution if the function g is contained in the range space of  L, R(L).  If this is the
case then the general solution of (1) is of the form

y(x) = yp(x) + yc(x)  (3)

where  yp is a particular (i.e. any specific) solution to (3) and yc  is the general (e.g. a formula for
all) solutions of (1).  Since NL is finite dimensional with dimension n we have

y(x) = yp(x) +  .  (4)

There are two standard methods for obtaining the particular solution yp:

1.  The METHOD OF UNDETERMINED COEFFICIENTS (Also called the method of
     judicious guessing).
2.  The METHOD OF VARIATION OF PARAMETERS.        

To use the Method of Undetermined Coefficients we must have:
1.  The Homogeneous equation must have constant coefficients.
2.  The Right Hand Side (RHS) (i.e. the forcing function g(x) ) must be "nice.

As with second order equations, we explore the method of undetermined coefficients using
examples and the RULES OF THUMB previously developed.

RULE OF THUMB #1. Choose yp of the same form as the Right Hand Side (RHS).  
(To find a finite dimensional subspace W1 containing g(x) so that L maps W1 back to W1, we
must have that all scalar multiples of g are in W1.) 

RULE OF THUMB #2. Choose yp as a linear combination of RHS and all derivatives of RHS.   
(Given that scalar multiples of g are to be in W1, to find a finite dimensional subspace W1

containing g(x) so that L maps W1 back to W1, we must have that at least two derivatives of g are
in W1.  To simplify, we require all derivatives of g to be in W1.) 
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FUNCTIONS THAT L MAPS BACK INTO A FINITE DIMENSIONAL SUBSPACE: 

Now consider the more general case of 

 an y
(n) +  an!1 y

(n!1) + @@@ +a1 yN + a0 y  = g(x)  (5)
where

1)  g(x) = a e " x.   (a � 0 )
2)  g(x) = a sin(Tx) + b cos(Tx). (a or b may be zero, but not both)
3)  g(x) = Pn(x) = an x

n + an-1 x
n-1 + ... + a1 x + a0. (an � 0, but others may be)

Similar to A e" x  and A sin(x) + B cos(x), since the derivative of a polynomial of degree less than 
n is a polynomial of degree less than n, L maps any polynomial of degree n into the subspace 
spanned by the polynomials of degree n.

RULE OF THUMB #3.  For the cases listed above,  yp  is assumed to be of the same form; that 
is,

1)  yp(x) = A e"x.   
2)  yp(x) = A sin(Tx) + B cos(Tx).

3)  yp(x) =   = An x
n + An-1 x

n-1 + ... + A1 x + A0.      

RULE OF THUMB #4. For products of the above functions, assume corresponding products for
yp eliminating duplicate coefficients.  For example, if g(x) = Pn(x) e"x,   then 

yp(x) =   e"x   = An x
n e"x + An-1 x

n-1 e"x + ... + A1 x e"x + A0 e
"x and if  g(x) = Pn(x) sin(x),

then yp(x) = An x
n sin(x) + An-1 x

n-1 sin(x) + ...+ A1 x sin(x)+ A0 sin(x)
                                                    + Bn x

n cos(x) + Bn-1 x
n-1 cos(x) + ... + B1 x cos(x)+ A0 cos(x).

     Our last Rule of Thumb is the trickiest.  It requires that you compare the FIRST GUESS
obtained by applying Rules of Thumb #'s 1,2 3, and 4 with the solution to the homogeneous
(complementary) equation.  This may require a second guess, a third guess and maybe more.  But
it may not.  Give no more guesses than necessary to obtain the correct solution.

RULE OF THUMB #5. If any of the terms in the first guess at yp (as determined by Rules of
Thumb #'s 1,2,3, and 4)  is a solution to the homogeneous equation, then multiply the first guess
at yp by x to obtain a second (judicious) guess for yp.  If any of the terms in this second guess at yp

is a solution to the homogeneous equation, then multiply the second guess at yp by x to obtain a
third (judicious) guess for yp.  Continue this process until no term in the judicious guess matches
a term in the homogeneous solution.

For a second order equation, you will never had to multiply by anything except x or x2, (i.e.
twice) to obtain the appropriate (i.e. most efficient) judicious guess.  For an nth order equation,
you will never have to multiply by more than xn.  
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We also extend the use of superposition.   Recall that we developed a divide and conquer
strategy in case g(x) is complicated.  Consider the equations:

    y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = 0 � x 0 I,  (6)

    y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = g1(x) � x 0 I,  (7)

    y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = g2(x) � x 0 I,  (8)

  y(n) + pn-1(x) y(n-1) + ... + p1(x) y' + p0(x) y = g1(x) + g2(x) � x 0 I,  (9)

where pi(x) 0 C(I) for all i, and I = (a,b) is the interval of validity.

THEOREM.  (Superposition Principle for Nonhomogeneous Equations)  Suppose 

 (i) yc is the general solution to the homogeneous equation (6),  
(ii) yp1 is a particular solution to the nonhomogeneous equation (7),
(iii) yp2 is a particular solution to the nonhomogeneous equation(8).  

Then   yp = yp1 + yp2 is a particular solution to the nonhomogeneous equation (9) and
y = yp yc = yc + yp1 + yp2 is the general solution to (9).

EXAMPLE #1. Solve y"' + 3 y" + 3 y' + y = x2 + cos(x) + e-x  

Solution: 
Homogeneous Equation: y"' + 3 y" + 3 y' + y =  = 0
Auxiliary Equation: r3 + 3 r2 + 3 r + 1 = 0 

By the rational root theorem we see that the possible rational roots are  r = ± 1.  Since the
coefficients are all positive, there are no positive zeros.  Hence r = -1 is the only possible rational
root.  We check that it is indeed a root.  Let 

p(r) =  r3 + 3 r2 + 3 r + 1 

Then p(-1) = (-1)3 + 3 (-1)2 + 3 (-1) + 1 = -1 + 3 - 3 + 1 = 0 so that r = -1 is a zero of p.  We could
divide to obtain the factors of p.  However, we recall Pascal's triangle:
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                 1                   (x + y)0 = 1
             1       1               (x + y)1 = x + y
          1      2       1           (x + y)2 = x2 + 2 xy + y2

      1      3       3      1        (x + y)3 = x3 + 3 x2y + 3 xy2 + y3

   1      4      6       4     1     (x + y)4 = x4 + 4 x3y + 6 x2y2 + 4 xy3 + y4

1     5      10      10     5     1  (x + y)5 = x5 + 5 x4y + 10 x3y2 + 10 x3y2 + 5 xy4 + y5

@      @        @         @       @      @ 
@      @        @         @       @      @ 
@      @        @         @       @      @ 

Hence we see that  (x + 1)3 = x3 + 3 x2 + 3 x + 1 so that p(r) =  (r + 1)3 
Hence r1 = r2 = r3 = -1.  Hence three linearly independent solutions are:

y1 = e-x,   y2 = x e-x, and y3 = x2 e-x.

and the general solution of the homogeneous equation is:

     yc(x) = c1 y1(x) + c2 y2(x) + c3 y3(x)
     yc(x) = c1 e

-x   + c2 x e-x  + c3 x
2 e-x. 

Particular Solution to Nonhomogeneous #1:   y"' + 3 y" + 3 y' + y = x2 

         1)     yp1  = A x2 + B x + C         1st guess (Only guess needed)
         3)     y'p1 = 2 A x + B 
         3)     y"p1 = 2 A  
         1)     y"'p1 = 0  
))))))))))))))))))))))))))))))))))))))))))))))))))))
y"'p1 + 3 y"p1 + 3 y'p1 + yp1  = ( A ) x2  + (6A + B) x  +  (6A + 3B + C)  =  x2

x2)       A                  = 1       A = 1
x1)       6A + B         = 0       B = ! 6A = ! 6
x0)       6A +3B + C = 0       C = ! 6A ! 3 B = ! 6  ! 3( ! 6)  = 12

     yp1 =  x2 ! 6x + 12

Particular Solution to Nonhomogeneous #2:   y"' + 3 y" + 3 y' + y =  cos(x)

        yp2  =   A sin(x)  +  B cos(x)         1st guess (Only guess needed)

1)  yp2   =      A sin(x)  +  B cos(x)
3)  yNp2  =      A cos(x) !  B sin(x)
3)  yOp2 =  !  A sin(x)  ! B  cos(x)
1)  y�p2 = !  A cos(x)  + B sin(x)
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
y�p2+3yOp2+3yNp2+yp2 = ( B ! 3A ! 3B + A ) sin(x) + ( !A ! 3B + 3A +B ) cos(x)  =  cos(x)
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  sin(x) ) !2A   ! 2B = 0  Y          A = !B
  cos(x) )    2A   !2B = 1   Y       ! 4B = 1   YB= !1/4 Y A=  1/4   

    yp2 = ( 1/4) sin(x) + (! 1/4) cos(x)

Particular Solution of Nonhomogeneous #3:   y"' + 3 y" + 3 y' + y = e-x

        yp3  =   A e-x                             1st guess
        yp3  =   A x e-x                           2nd guess
        yp3  =   A x2 e-x                           3rd guess
        yp3  =   A x3 e-x                           4th guess

1)      yp3  =   A x3 e-x                       
3)       y'p3 =  - A x3 e-x + 3 A x2 e-x

          y"p3 =    A x3 e-x - 3 A x2 e-x - A 3 x2 e-x + 6 A x e-x

3)       y"p3 =    A x3 e-x - 6 A x2 e-x + 6 A x e-x

          y"'p3 = - A x3 e-x + 3 A x2 e-x + 6 A x2 e-x - 12 A x e-x   - 6 A x e-x + 6 A e-x

1)       y"'p3 = - A x3 e-x + 9 A x2 e-x - 18 A x e-x + 6 A e-x

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
y"'+3y"+3 y'+y = [(-1+3-3+1)Ax3+(9-18+9)Ax2+(-18+18)A x+(6)A] e-x = e-x

Y 6 A = 1 Y A = 1/6 Y  yp3  = (1/6) x3 e-x 

yp = yp1 + yp2 + yp3  =  x2 ! 6x + 12  + (1/4) sin(x) ! (1/4) cos(x) + (1/6) x3 e-x

y = yc + yp = yc + yp1 + yp2+ yp3 

  =  c1 e
-x   + c2 x e-x  + c3 x

2 e-x + x2 ! 6x + 12  + (1/4) sin(x) ! (1/4) cos(x) + (1/6) x3 e-x 

EXERCISES on Introduction and Theory for Higher Order ODE’s 

EXERCISE #1..  Given that

yh = c1 + c2 sin(2x) + c3 cos(2x)

is the general solution of

 y� + 4 yN = 0, 
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use the method discussed in class to determine the proper (most efficient) form of the judicious
guess for the particular solution yp of the following ode's.  Do not give a second or third guess if
these are not needed.

1.  y� + 4 yN = ex    First guess:   yp = ________________________

        Second guess (if needed):   yp = ________________________

        Third guess  (if needed):   yp = ________________________

2.  y� + 4 yN = 3x    First guess:   yp = ________________________

        Second guess (if needed):   yp = ________________________

        Third guess   (if needed):  yp = ________________________

3.  y� + 4 yN = 5 sin (2x) First guess:   yp = ________________________

        Second guess (if needed):   yp = ________________________

        Third guess  (if needed):   yp = ________________________

4.  y� + 4 yN = 3 x sin(2x) First guess:  yp = ________________________

         Second guess (if needed):  yp = ________________________

         Third guess  (if needed):  yp = ________________________

EXERCISE #2.  Solve.  Be sure to give the correct "first guess" for the form of yp and then give
the second or third guess only if these are necessary.

 1. y� + 4yN = 3 sin x 
 2. y� - yO - 6y = 2 e-2x,   y(0) = 0,  yN(0) = 6, yO(0) = 0
 3. y� - 3yO + 2yN = 6e3x

 4. y� + yO = 3x2,       y(0) = 4,   yN(0) = 0,   yO(0) = 0
 5. y� - 2yO + yN = -4ex

 6. y� - 4yO + 4yN = 6xe2x,  y(0) = 0,   yN(0) = 3,  yO(0) = 0
 7. y� - 7yO + 10yN = 100x,   y(0) = 0,  yN(0) = 5,  yO(0) = 0
 8. yiv + yO = 1 + x + x2

 9. yiv + y� = x3 - x2 
10. yiv + 4yO = 16 x sin 2x
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EXERCISE #3.  Use the principle of superposition to find the general solution of the following.

1. y� + yN = 1 + 2 sin x
2. y� - 2yO - 3yN = x - x2 + ex

3. y� + 4yN = 3 cos 2x - 7x2

4. y� + 4yO + 4yN = xex + sin x
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Handout #4 TECHNIQUE FOR SOLVING NONHOM. EQS.: Professor Moseley
METHOD OF VARIATION OF PARAMETERS

     Recall the general second order homogeneous equation with variable coefficients:

y(n) + pn-1(x) y(n-1) + pn-2 (x) y(n-2) + ... +  p1(x)' + p0(x) y  =  0           � x 0 I (1)

and the general second order nonhomogeneous equation with variable coefficients:

y(n) + pn-1(x) y(n-1) + pn-2(x) y(n-2) + ... +  p1(x)' + p0(x) y = g(x)          � x 0 I (2)

THEOREM.  Let S = { y1, y2,..., yn } be a set of linearly independent solutions to the
homogeneous equation (1).  Now assume that we can find a (i.e one) particular solution yp(x) to
the nonhomogeneous equation (2). Then y(x) =  yp(x) + yc(x) where yc(x) is the general solution
of the associated homogeneous equation (also called the complementary equation) (1).  Thus:

 y(x) =  yp(x) +  c1 y1(x) + c2 y2(x) + ... + cn yn(x).

The notation yh is also used to denote the solution to the complementary (homogeneous)
equation.

The theorem reduces the problem of finding the general solution of the nonhomogeneous
equation (2) to the finding of the n+1 functions  yp(x), y1(x), y2(x), ..., yn(x).  We have considered
the technique for finding the particular solution yp which we called undetermined coefficients or
judicious guessing.   We now wish to extend the method of variation of parameters to find a
particular solution yp(x).  Recall that the methods strong points are that it works for the general
(variable coefficient) case and that it works even when the forcing function (right hand side) is
not "nice".  One draw back is that it requires that we know the general solution of the
complementary (associated homogeneous) equation.  Another is that we must be able to find
antiderivatives.  Similar to second order, we assume a solution of the form:

 yp(x) =  v1(x) y1(x) + v2(x) y2(x) + ... + vn(x) yn(x) (3)

By calculating derivatives and making the appropriate set of assumptions, we obtain the set of
equations:
 v1' y1 + v2' y2 + ... + vn' yn = 0
 v1' y1' + v2' y2' + ... + vn' yn' = 0
 v1' y1" + v2' y2" + ... + vn' yn" = 0
  .         .               .        .
  .         .               .        .
  .         .               .        .
 v1' y1

(n-1) + v2' y2
(n-1) + ... + vn' yn

(n-1) = g(x)

These can be solved to obtain  v1', v2', ... , vn'.  Integration yields  v1, v2, ... , vn, and hence yp.
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