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Handout #1 HOMOGENEOUS EQUATIONS WITH CONSTANT Professor Moseley
COEFFICIENTS:   INTRODUCTION

Let L:C2(I) C(I) where I = (a,b) and p,q  C(I), I = (a,b) be defined by

     L[y] = y" + p(x) y' + q(x) y. (1)

Alternately consider L:A(I)A(I) with p,q  A(I) or L:H(C)H(C) with p,q H(C). We consider
the second order linear homogeneous equation L[y] = 0:

y" + p(x) y' + q(x) y = 0         x  I (2)

We consider the special case where p and q are real constants.  Since the coefficient functions are
constant, they are not only continuous for all x  R, but also analytic on R.   Hence the interval of
validity for all solutions is the entire real line, that is, I = (, ) = R and L maps A(R) back into
A(R) with N(L)A(R).  Recall that A(R) can be embedded in H(C), the set of functions which are
analytic or holomorphic on C (see Exercise #5 in Handout #3 SUBSPACE OF A VECTOR
SPACE in Chapter 2-3) .  For notational convenience, we consider:  

L[y] =  a y" + b y' + c y a,b,cC with a0. (2)

Since as constant functions, a,b,cH(C), L maps H(C) into H(C) and we can extend L to map
H(C) to H(C).  We first solve L[y] = 0 in this setting.  When x is time (which we model as a real
variable), a, b, and c, are real-valued physical parameters, and y is a real physical variable.  For
applications where a, b, c R, we consider A(R) as a subset of H(C) and use Euler’s formula to
find solutions in A(R).

For the homogeneous equation L[y] = 0:

a y" + b y' + c y = 0           x  C      a,b,cC with a  0 (3)

the linear  theory implies:

THEOREM #1.  Let S = { y1, y2 } be a set of solutions to the homogeneous equation (3) for xC. 
Then the following are equivalent (i.e. they happen at the same time).  

a. The set S is linearly independent on I (i.e.,  y1 and y2 are linearly independent in the vector
space H(C) ).  Since the dimension of the null space NL  is two, S is then a basis of  NL .

b. W[ y1, y2 ; x]  0    x  C.  

c. The general solution of (3) is 
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y(x) = c1 y1(x) + c2 y2(x)    x C (4)

    That is; all solutions of (3) can be written in the form (4)  where c1 and c2 are arbitrary
    constants.  Since S is a basis of NL,  it is a spanning set for NL and hence every function
    ("vector") in NL can be written as a linear combination of  the functions ("vectors") in S.

Equation (4) gives the parametric representation of a two dimensional linear manifold in an
infinite dimensional function space.  If y1 and y2 were vectors in R3, (4) would be the parametric
equations of a plane through the origin.  (Recall that planes through the origin in R3 are
subspaces.)

Theorem #1 reduces the problem of finding the general solution of the homogeneous
equation (2) to the finding of the two linearly independent solutions y1(x) and y2(x).  We now
develop a technique for finding the functions y1(x) and y2(x).  We "guess" (actually, we repeat a
guess that was made a long time ago) that there may be solutions to (2) of the form 

y(x) = erx  x C (5)

where r is a constant to be determined later.  (Euler’s formula can be used to extend the
exponential function to the complex plane.  It can then be shown that dex/dx = ex.) We determine
the required condition on r by substituting y = erx  into the ODE.  Using our standard technique
for substituting into a linear ODE we obtain:

a)              y  =    erx

b)              y' =  r erx

c)              y" = r2 erx
)))))))))))))))))))))))))))))))   a y" + b y' + c y = ( a r2 + b r + c ) erx   =  0. 

Hence we obtain the Characteristic or Auxiliary equation:

a r2 + b r + c = 0. Auxiliary equation (6)

Thus if r satisfies (6), then (5) gives a solution of (3).  Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus" problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation.  Hence computation of antiderivatives is not
required.  

In accordance with the fundamental theorem of algebra, (5) has "two solutions" as given
by the quadratic equation.  However, the two solutions may be the same.  (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem.  To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".)  The two roots are given by the quadratic formula:
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       = (b/(2a))ei(β-α) ± (d/(2a))ei(δ-α)/2. (7)r b b 4ac
2a

2


  

 where, as complex numbers,   a = aeiα, b = beiβ, and b24ac = deiδ with d>0, 0α<2π,
0β<2π, and 0δ<2π.  Now let 

 =  (b/(2a))ei(β-α) + (d/(2a))ei(δ-α)/2, (8)r b b 4ac
2a1

2


  

 =  (b/(2a))ei(β-α)  (d/(2a))ei(δ-α)/2. (9)r b - b 4ac
2a2

2


 

If the discriminant b2 - 4 a c = 0,  then r1 = r2 and we obtain only one real linearly
independent solution.  We must then come up with a method for finding a second solution.  But if
b2 - 4 a c  0, then  r1  r2 and we obtain the two solutions

  and  . (10)y e1
r x1 y e2

r x2

It can be shown that in this case ( r1  r2 ) that the set B = { y1, y2 } is linearly independent
(compute the Wronskian) and we have

y(x)  =  c1 y1(x) + c2 y2(x)   =   c1    + c2  . (11)e r x1 e r x2

as the general solution of (2) in H(C).  
If a, b, c R, we wish solutions in A(R).  If  b2 - 4 a c > 0, then r1 and r2 are real so that

when x is real so that  and can be considered to be in A(R) as as a subset ofy e1
r x1 y e2

r x2
H(C) .  However, if b2 - 4 a c < 0, then the solutions involve exponentials of nonreal complex
numbers.  We will see that we can still find two linearly independent solutions in A(R) by using
Euler’s formula.  We will also see how to use the process of “reduction of order to obtain a
second solution in A(R) when b2 - 4 a c = 0.

EXERCISES on Homogeneous Equations with Constant Coefficients: Introduction

EXERCISE #1.  Show that y1 = e-3x  and  y2 = e-2x are linearly independent solutions to 
y" + 5 y' + 6 y = 0.  Hint: First show that they are solutions.  Then compute the wronskian.
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Handout #2 HOMOGENEOUS EQUATIONS WITH CONSTANT Professor Moseley
COEFFICIENTS:   REAL AND UNEQUAL ROOTS

Recall that we are considering the operator

L[y] =  a y" + b y' + c y (1)

and the homogeneous equation L[y] = 0:

a y" + b y' + c y = 0          x  C      a,b,cC with      a  0 (2)

Since a, b, c  H(C), the domain of validity for all solutions is H(C).  The linear  theory implies
that the general solution is :

y(x) = c1 y1(x) + c2 y2(x) (3)

where  S = { y1, y2 } is a linearly independent set of solutions.  Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y1(x) and y2(x).  Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian.  We "guessed" that there may be solutions
to (2) of the form

y(x) = erx (5)

where r is a constant to be determined later.  We determined the required condition on r by
substituting y = erx  into the ODE to be that r satisfies the Characteristic or Auxiliary equation:

a r2 + b r + c = 0. Auxiliary equation (6)

Hence 

     . (7)r b b 4ac
2a

2


  

Now let 

               ,      . (8)r b b 4ac
2a1

2


   r b - b 4ac

2a2

2


 

Case 1. REAL AND UNEQUAL ROOTS. ( b2 - 4 a c > 0 ) 

If a, b, c  R and the discriminant   b2 - 4 a c > 0, then  r1  r2, where r1, r2R and we
obtain the two solutions

  and  . (9)y e1
r x1 y e2

r x2
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in H(C).  It can be shown that in this case ( r1  r2 ) the set B = { y1, y2 } is linearly independent
(compute the Wronskian) so that the general solution of (2) is 

y(x)  =  c1 y1(x) + c2 y2(x)   =      c1    + c2  . (10)e r x1 e r x2

If we restrict x to R, then (9) gives two linearly independent solution in A(R) and (10) gives the
general solution of (2) in A(R).

EXAMPLE #1.  Solve (i.e. find the general solution of) y" + 5 y' + 6 y = 0.
Solution. Let   y(x) =  erx. Hence substituting into the ODE we obtain:

6)              y  =    erx        
5)              y' =  r erx        
1)              y" = r2 erx         ))))))))))))))))))))))))))))-    y" + 5 y' + 6 y = ( r2 + 5 r + 6 ) erx = 0.

Hence we obtain:       r2 + 5 r + 6 = 0.       Auxiliary equation   

This quadratic factors so we can solve to obtain:

STATEMENT REASON
      ( r + 3 ) ( r + 2 ) = 0 Factoring
      ( r + 3 ) = 0 or ( r + 2 ) = 0 A fundamental theorem of real numbers
       r = - 3     or   r = - 2 Algebra

We let  r1 = - 3  and  r2 = - 2  and    y1 = e-3x  and  y2 = e-2x.  

Using the theory, we see that the general solution to the ODE   y" + 5 y' + 6 y = 0  is 

     y(x)    =    c1 y1(x)  +  c2 y2(x)   =    c1 e-3x  + c2 e-2x. 

EXAMPLE #2.  Solve the Initial Value Problem (IVP): ODE  y" + 5 y' + 6 y = 0.
IC’s y(0) = 1, y(0) = 2

Solution.  From the previous problem the general solution of the ODE y" + 5 y' + 6 y = 0 is
y(x)   =    c1 e-3x  + c2 e-2x.   Applying the IC y(0) = 1 we obtain c1 e-3(0)  + c2 e-2(0) = c1  + c2  = 1.
Now  y(x)   = (3) c1 e-3x  + (2)c2 e-2x  so that applying the IC  y(0) = 2 we obtain 
(3) c1 e-3(0)  + (2)c2 e-2(0) = (3) c1  + (2)c2 = 2.  Hence we obtain the two linear algebraic
equations:

       c1  +       c2  = 1
(3) c1  + (2)c2 = 2
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We could use Gauss elimination or Cramer’s Rule, but, as is often the case for these problems we
can solve by multiplying the first equation by 2 and adding the second equation.  We obtain:
c1 = 4 so that c1 = 4 and hence c2 = 1  c1 = 1  (4) = 5.  Hence y   =    4 e-3x  + 5 e-2x.   

EXERCISES on Homogeneous Equations with Constant Coefficients: Real and Unequal 
Roots

EXERCISE #1.  Show that y1 = e-3x  and  y2 = e-2x are linearly independent solutions to 
y" + 5 y' + 6 y = 0..

EXERCISE #2.  Find the general solution (i.e. a formula for all solutions) to 
a) y" + 5 y' + 6 y = 0   b) y" + 6 y' + 8 y = 0  c) y" )  y' ) 6 y = 0   d) y" + 2 y' +  y = 0
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Handout # 3 HOMOGENEOUS EQUATIONS WITH CONSTANT Professor Moseley
COEFFICIENTS: NONREAL COMPLEX ROOTS

Recall the second order linear differential operator from the vector space C2(R) 
to the vector space C(R) given by:

L[y] =  a y" + b y' + c y (1)

We consider the associated second order linear homogeneous equation L[y] = 0:

a y" + b y' + c y = 0           x  R       a  0 (2)

Note that the interval of validity for all solutions is the entire real line. The linear  theory implies
that the general solution is :

y(x) = c1 y1(x) + c2 y2(x) (3)

where  S = { y1, y2 } is a linearly independent set of solutions.  Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y1(x) and y2(x).  Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian.  We "guessed" that there may be solutions
to (2) of the form

y(x) = erx (4)

where r is a constant to be determined later.  We determined the required condition on r by
substituting y = erx  into the ODE to be the Characteristic or Auxiliary equation:

a r2 + b r + c = 0. Auxiliary equation (5)

Thus if r satisfies (5), then (4) gives a solution of (2) in H(C).  Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus" problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation.  Hence no antiderivatives are required.

In accordance with the fundamental theorem of algebra, (4) has "two solutions" as given
by the quadratic equation.  However, the two solutions may be the same.  (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem.  To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".)  The two roots are given by the quadratic formula:

     (6)r b b 4ac
2a

2


  

Let 
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               ,      . (7)r b b 4ac
2a1

2


   r b - b 4ac

2a2

2


 

Case 2. NONREAL COMPLEX ROOTS. ( b2 - 4 a c < 0 ) 

If a, b, c  R and the discriminant  b2 - 4ac < 0, then the two roots to the auxiliary
equation may be written as

     = µ ± iν (10)r
b i  4ac - b

2a

2


 

where µ =    and ν =  are real numbers so that  b
2a

4ac b
2a

2

            =  µ + iν,          =  µ ) i ν. (11)r b i  4ac - b
2a1

2


  r b -  i 4ac - b

2a2

2




     Rather then continue with the general case, we consider an example.  This will make the  
problem less messy.  You should be able to see how the procedure works for the general case.

EXAMPLE. Solve (i.e. find the general solution of)    y" + y' + y = 0.

Solution The Auxiliary equation is:   r2 + r + 1 = 0

so that             = .r
  1 -  4(1)(1)

2(1)

2


 1  1   -  3

2

Let     r1  =  ,     r2  = . 1   -  3
2

 1   -  3
2

Using Euler's formula we obtain:

y1 = = e r x1 e (-1/2 +i 3/2) x

    = =  [cos( x ) + i sin( x )]e (-1/2) x e i ( 3/2) x e (-1/2) x 3
2

3
2

y2 = = e r x2 e (-1/2 -i 3/2) x

    = =  [cos( x ) + i sin( x )]e (-1/2) x e i (- 3/2) x e (-1/2) x 3
2

3
2

 =  [cos( x )  i sin( x )]e (-1/2) x 3
2

3
2
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as two linearly independent solutions to  y" + y' + y = 0 in  H(C).  The general solution to  
y" + y' + y = 0 in  H(C) may then be written as 

y(x) = c1  y1 + c2 y2

     = c1  [cos( x ) + i sin( x )] + c2  [cos( x )  i sin( x )].e (-1/2) x 3
2

3
2

e (-1/2) x 3
2

3
2

Since the coefficients a = b = c = 1 are real numbers, we wish solutions which are real 
valued functions of a real variable in A(R) when c1 and c2 are real numbers.  However, we have
come up with complex valued functions in H(C) even when c1 and c2 are real numbers.  On the
other hand (OTOH), we recall that since  L[y] = a y" + b y' + c y   is a linear operator, linear
combinations of solutions in H(C) are also solutions.  (The null set is a subspace.)  Hence we
consider

y3 = (½) ( y1 + y2 ) =  cos( x ) e (-1/2) x 3
2

y4 = (-i/2) ( y1 - y2 ) =  sin( x ).e (-1/2) x 3
2

It can be shown that { y3, y4 } is a linearly independent set.  Check the Wronskian!  Hence we can 
write the general solution as

     y(x) = c1 y3(x) + c2 y4(x) =  c1  cos( x )  + c2   sin( x ).e (-1/2) x 3
2

e (-1/2) x 3
2

Hence when c1 and c2 are real numbers we have the general solution to y" + y' + y = 0 in A(R).

GENERAL CASE FOR NONREAL COMPLEX ROOTS.  Suppose the roots of (5) are 
r = µ ± i ν   where µ and ν are real numbers and let r1 = µ + i ν  and  r2 = µ - i ν.  Repeating the
process for the general case it can be shown that the general solution of (2) is given by

y(x) = c1  eµx cos( ν x ) + c2 eµx sin( ν x ).

Since for applications problems we wish real solutions to real problems, writing the solutions in
this form is mandatory. 
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EXERCISES on Homogeneous Equations with Constant Coefficients: Nonreal Complex 
Roots

EXERCISE #1.  Show that   y1 =   cos( x ) and y2 =  sin( x ) aree (-1/2) x 3
2

e (-1/2) x 3
2

linearly independent solutions to y" + y' + y = 0..

EXERCISE #2.  Find the general solution (i.e. a formula for all solutions) to 
a) y" +  y' + 6 y = 0   b) y" +  y' + 8 y = 0  c) y" )  y' + 6 y = 0   d) y" + 2 y' + 5 y = 0
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Handout #4 HOMOGENEOUS EQUATIONS WITH CONSTANT Professor Moseley
COEFFICIENTS:  REAL AND EQUAL ROOTS

Recall the second order linear differential operator from the vector space C2(R) 
to the vector space C(R) given by:

L[y] =  a y" + b y' + c y (1)

We consider the associated second order linear homogeneous equation L[y] = 0:

a y" + b y' + c y = 0           x  R       a  0 (2)

Note that the interval of validity for all solutions is the entire real line. The linear  theory implies
that the general solution is :

y(x) = c1 y1(x) + c2 y2(x) (3)

where  S = { y1, y2 } is a linearly independent set of solutions.  Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y1(x) and y2(x).  Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian.  We "guessed" that there may be solutions
to (2) of the form

y(x) = erx (4)

where r is a constant to be determined later.  We determined the required condition on r by
substituting y = erx  into the ODE to be the Characteristic or Auxiliary equation:

a r2 + b r + c = 0. Auxiliary equation (5)

Thus if r satisfies (5), then (4) gives a solution of (2).  Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus" problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation.  Hence no antiderivatives are required.

In accordance with the fundamental theorem of algebra, (4) has "two solutions" as given
by the quadratic equation.  However, the two solutions may be the same.  (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem.  To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".)  The two roots are given by the quadratic formula:

     . (6)r b b 4ac
2a

2


  

Let 
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               ,      . (7)r b b 4ac
2a1

2


   r b - b 4ac

2a2

2


 

Case 3. REAL REPEATED ROOTS. ( b2 - 4 a c = 0 ) 

If a, b, c  R and the discriminant  b2 - 4ac = 0,  we have repeated roots so that 

        r1 = r2 = r = -b/(2a)  R. (8)

Since there is only one root to the auxiliary equation, we only get one (linearly independent)
solution, namely, 

y1= e r x.  (9)

This results in the one dimensional subspace of solutions 
S = {y  C2(R): y = c1 ert where c1  R}.  Recall that to obtain the general solution to (1), we
need a set of two linearly independent solutions since the null space of the linear operator 
L[y} = ay" + by' + cy  has dimension two.  

     To find a second solution  y2  we use the method of Reduction of Order (also known as
variation of parameter or finding a second solution from a given one).  To apply this method, we
assume that y2 has the gereral form

y2 = v(x) y1(x) = v erx (4)

Since  y1  is a solution, we know that cy1(x)  is also (by  linearity).  The name variation of
parameter (a.k.a. variation of constant) comes from allowing  the constant (or parameter) c  to be
a function of  x.  To indicate that it is a function, we renamed it  v(x).  To find  y2, it remains to
find  v so that y2  = verx is a solution of (1).  Substituting  y2 = verx into (1) gives a condition on v
that must be satisfied.  Substituting (4) into (1) we obtain

c) y2 = v erx

b)

a)  
)))))))))))))))))))))))))))))))))))))))))))))))))

But  r  is always chosen so that  ar2 + br + c = 0 and for this case (b2 - 4ac = 0).  Hence 
r =  b/(2a)  so that  2ra + b = 0.  Since a  0  we obtain  v" = 0  so that  v = c1x + c2.  Since we
wish  {y1, y2}  to be linearly independent, we choose  c1 = 1  and  c2 = 0  so that  y2 = xerx.  It can
be shown (how?) that {y1, y2} is linearly independent.  Hence 

y = c1erx + c2xerx
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is the general solution of (1).  Since this procedure always works for (1) and is not dependent on
the specific values of the constants a, b, and c, we have the following:

THEOREM #2. If the Auxiliary equation (2) has repeated roots, then a second linearly
independent solution y2 of (1) can be obtained by multiplying the first solution y1 by the
independent variable x.

EXERCISES on Homogeneous Equations with Constant Coefficients: Real and Equal 
Roots

EXERCISE #1.  Show that   y1 = e - x  and y2 = x e - x  are linearly independent solutions to 
y" +2 y' + y = 0..

EXERCISE #2.  Find the general solution (i.e. a formula for all solutions) to 
a) y" + 4 y' + 4 y = 0   b) y" + 6 y' + 9 y = 0  c) y" ) 4 y' + 4 y = 0   d) y" ) 2 y' +  y = 0
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Handout #5 ANOTHER USE FOR REDUCTION OF ORDER Professor Moseley 

Even if the equation does not have constant coefficients, reduction of order can be used
to obtain a second linearly independent solution provides one solution is already known. 
However, the first order equations obtained will require antiderivatives.

EXAMPLE. Given that y1(x) = x is one solution, solve (i.e. find the general solution of) 
(1-x2)y" - 2xy' + 2y = 0.

Solution.  First verify that  y1 = x  is a solution.  

 2 )             y1  = x 
- 2 x )          y1' = 1 
(1-x2) )         y1" = 0 )))))))))))))))))))))))))))))))))))))))))-(1-x2) y1" - 2 x y1' + 2 y1 =  (1-x2)( 0 ) - 2 x ( 1 ) + 2 ( x ) = 0

Hence y1 is a solution to (1-x2)y" - 2xy' + 2y = 0.
Now let  y2(x) = v y1(x) = v x.

     2 )            y2  = v x 
- 2 x )           y2' = v' x + v 
                    y2" = v"x + v' + v'
(1-x2) )         y2" = v"x + 2 v' 
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(1-x2) y2" - 2 x y2' + 2 y2 =  (1-x2)(x) v" + ( (1-x2)(2) - 2 x(x) ) v'  + ( - 2 x + 2 x ) v = 0

Simplifying we obtain: x(1 - x2)v" + (2 - 4x2)v' = 0.

Since  v  is missing, let  u = v'  to obtain the separable equation:  .

We do the integrals separately.

 (1/u) du = ln *u* + c

Let

I =   =    =     Partial Fractions 


(2 4x )
x(1 x )

dx
2

2
2 4x

x(x )
dx

2

2


 1
2 4x

x(x )(x + 1)
dx

2
 1

  =   +   + .2 4x
x(x )(x +1)

2
 1

A
x

B
x  1

C
x + 1

  2 - 4 x2  =   A (x - 1)(x + 1) + B x (x + 1) +  C x (x - 1)
  2 - 4 x2  =   A (x2 - 1) + B (x2 + x) +  C (x2 - x)
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so that

x2)    A  +  B  +  C  = - 4            A = - 2
x1)             B  -  C   =   0            B = C
x0)   - A                   =   2                  2 B = - 4 - A = - 4 + 2 = - 2

Hence  A = - 2, B = -1, and C = -1 so that

I  =      =   +   + .2 4x
x(x )

dx
2

2


 1
- 2
x

dx
-1

x 1
dx




1
1x

dx

   = - 2 ln * x * -  ln * x - 1 *  -  ln * x + 1 * + c

   = - ln * x2 (x2 - 1 )* + c.

Hence the solution of the ODE is

 ln *u* = - ln * x2 (x2 - 1 )* + c      or     ln *u ( x2 )(x2 - 1 )* =  c.

Letting A = ± ec we obtain:    u ( x2 )(x2 - 1 ) = A.  

Recalling that we are looking for a second linearly independent solution (and not the general
solution) we may take A = 1 to obtain:

  u  =   v'   =                 Partial Fractions1
x (x 1)2 2 

  =     + .+   +1
x  (x )(x + 1)2  1

A
x2

B
x

C
x  1

D
x + 1

  1  =   A (x - 1)(x + 1) + B x (x2 - 1) +  C x2 (x + 1) +  D x2 (x - 1)
  1  =   A (x2 - 1) + B (x3 - x) +  C (x3 + x2) +  D (x3 - x2)

so that

x3)          B  +  C  +  D  =  0             A = - 1
x2)    A        +  C  -  D  =  0                B =   0
x1)        - B              =   0                         C  +  D  =  0 
x0)  - A                    =   1                         C  -  D  = - A = 1

Hence  A = - 1, B = 0,  2 C = 1, D = - C so that C = ½ and D = -1/2.
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Hence

v  =    =       .+   +1
x  (x )

dx2 2  1
-1
x

dx2 1 / 2
x 1

dx


- 1 / 2
x + 1

dx

   =  1/x  + ½  ln * x - 1 *  - ½  ln * x + 1 * + c
    =  1/x  - (½) ln * (x + 1)/(x - 1) * + c

Letting c = 0, we obtain

y2  = v x
     =  (  1/x  - (½) ln * (x + 1)/(x - 1) * ) x
     = 1 - (x/2) ln *(x+1)/(x-1)*

so that

  y = c1x + c2(1 - (x/2) ln *(x+1)/(x-1)*).

EXERCISES on  Another Use for Reduction of Order
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