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Handout #1 HOMOGENEOUS EQUATIONS WITH CONSTANT  Professor Moseley
COEFFICIENTS: INTRODUCTION

Let L:C?(1) ~C(l) where | = (a,b) and p,q € C(1), | = (a,b) be defined by
LIyl =y +p(x) ¥ +a(x) y. (1)

Alternately consider L:A(l1)-A(1) with p,q € A(l) or L:H(C)-H(C) with p,q eH(C). We consider
the second order linear homogeneous equation L[y] = O:

Yy'+pX)y+ax)y=0  vxel (2)

We consider the special case where p and g are real constants. Since the coefficient functions are
constant, they are not only continuous for all x € R, but also analytic on R. Hence the interval of
validity for all solutions is the entire real line, that is, I = (-, ) = R and L maps A(R) back into
A(R) with N(L)cA(R). Recall that A(R) can be embedded in H(C), the set of functions which are
analytic or holomorphic on C (see Exercise #5 in Handout #3 SUBSPACE OF A VECTOR
SPACE in Chapter 2-3) . For notational convenience, we consider:

Lly]= ay'+by +cy a,b,ceC with a=0. (2

Since as constant functions, a,b,ceH(C), L maps H(C) into H(C) and we can extend L to map
H(C) to H(C). We first solve L[y] = 0 in this setting. When x is time (which we model as a real
variable), a, b, and c, are real-valued physical parameters, and y is a real physical variable. For
applications where a, b, ¢ eR, we consider A(R) as a subset of H(C) and use Euler’s formula to
find solutions in A(R).

For the homogeneous equation L[y] = 0:

ay"+by+cy=0 vxeC abceCwitha=0 3)
the linear theory implies:

THEOREM #1. LetS={vy,, Y, } be a set of solutions to the homogeneous equation (3) for xeC.
Then the following are equivalent (i.e. they happen at the same time).

a. The set S is linearly independent on | (i.e., y, and Y, are linearly independent in the vector
space H(C) ). Since the dimension of the null space N, is two, S is then a basis of N, .

b.W[y,V¥,:;X]#0 VxeC.

c. The general solution of (3) is
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Yy(X) = ¢ yi(X) + ¢, ¥5(X) VxeC (4)

That is; all solutions of (3) can be written in the form (4) where c, and c, are arbitrary
constants. Since S is a basis of N, it is a spanning set for N, and hence every function
("vector™) in N, can be written as a linear combination of the functions ("vectors") in S.

Equation (4) gives the parametric representation of a two dimensional linear manifold in an
infinite dimensional function space. Ify, and y, were vectors in R®, (4) would be the parametric
equations of a plane through the origin. (Recall that planes through the origin in R® are
subspaces.)

Theorem #1 reduces the problem of finding the general solution of the homogeneous
equation (2) to the finding of the two linearly independent solutions y,(x) and y,(x). We now
develop a technique for finding the functions y,(x) and y,(x). We "guess" (actually, we repeat a
guess that was made a long time ago) that there may be solutions to (2) of the form

y(x) = e™ v xeC (5)
where r is a constant to be determined later. (Euler’s formula can be used to extend the
exponential function to the complex plane. It can then be shown that de*/dx = e*.) We determine
the required condition on r by substituting y = e™ into the ODE. Using our standard technique
for substituting into a linear ODE we obtain:

a) y= &~
y' = re™

b)
DIRPIRPDNPIPINMNIVY

Hence we obtain the Characteristic or Auxiliary equation:

ar*+br+c=0. Auxiliary equation (6)

Thus if r satisfies (6), then (5) gives a solution of (3). Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus” problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation. Hence computation of antiderivatives is not
required.

In accordance with the fundamental theorem of algebra, (5) has "two solutions™ as given
by the quadratic equation. However, the two solutions may be the same. (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem. To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".) The two roots are given by the quadratic formula:
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r- =22 zbaz 2 = (- blA2]a])e £ (d2la])e ()

where, as complex numbers, a = |ale", b= |b|e®, and b*-4ac = de® with d>0, 0<a<2x,
0<P<2m, and 0<6<2n. Now let

. —b++/b% —4ac

- = (Cbli2lale + @2lae @
o= T2 olialayen - @2lal)e @

If the discriminant b*- 4 ac =0, thenr, =r, and we obtain only one real linearly
independent solution. We must then come up with a method for finding a second solution. But if
b?-4ac =0, then r, # r, and we obtain the two solutions

y,=e"™ and y, = e?". (10)

It can be shown that in this case (r, # r, ) that the set B = { y,, ¥, } is linearly independent
(compute the Wronskian) and we have

X

Y(X) = ¢ yi(X) +C¥,(X) = ¢ € *+C e, (11)

as the general solution of (2) in H(C).
Ifa, b, ¢ €R, we wish solutions in A(R). If b*-4ac>0,thenr, andr, are real so that
when x is real so that Yy, = e"™ and Yy, = e 2" can be considered to be in A(R) as as a subset of

H(C) . However, if b? - 4 a ¢ < 0, then the solutions involve exponentials of nonreal complex
numbers. We will see that we can still find two linearly independent solutions in A(R) by using
Euler’s formula. We will also see how to use the process of “reduction of order to obtain a
second solution in A(R) when b? - 4ac = 0.

EXERCISES on Homogeneous Equations with Constant Coefficients: Introduction

EXERCISE #1. Show thaty, = e and y, = e® are linearly independent solutions to
y'+5Yy +6y=0. Hint: First show that they are solutions. Then compute the wronskian.
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Handout #2 HOMOGENEOUS EQUATIONS WITH CONSTANT  Professor Moseley
COEFFICIENTS: REAL AND UNEQUAL ROOTS

Recall that we are considering the operator
Llyl= ay"+by+cy 1)
and the homogeneous equation L[y] = 0:
ay"+by+cy=0 vxeC abceCwith a=0 (2

Since a, b, ¢ € H(C), the domain of validity for all solutions is H(C). The linear theory implies
that the general solution is :

Y(X) = ¢; Y4(X) + ¢, Y5(X) (3)

where S ={vy,, Y, }is a linearly independent set of solutions. Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y,(x) and y,(x). Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian. We "guessed" that there may be solutions
to (2) of the form

y(x) = e™ ()

where r is a constant to be determined later. We determined the required condition on r by
substituting y = €™ into the ODE to be that r satisfies the Characteristic or Auxiliary equation:

ar*+br+c=0. Auxiliary equation (6)
Hence
~b++/b® -4ac
r= . (7
2a
Now let
—~b++/b* —4ac —b -4/b* - 4ac
r = ' 2 = . (8)
2a 2a
Case 1. REAL AND UNEQUAL ROOTS. (b?-4ac>0)
Ifa, b, ¢c € R and the discriminant b*-4ac >0, then r, = r,, where r,, r,cR and we
obtain the two solutions
y,=e"™ and y, = e?". (9)
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in H(C). It can be shown that in this case (r, # r, ) the set B = { y,, ¥, } is linearly independent
(compute the Wronskian) so that the general solution of (2) is

yX) = cyix)+cy,(x) = ¢ e + C, e, (10)

If we restrict x to R, then (9) gives two linearly independent solution in A(R) and (10) gives the
general solution of (2) in A(R).

EXAMPLE #1. Solve (i.e. find the general solution of) y*+5y' + 6y =0.
Solution. Let y(x) = e™. Hence substituting into the ODE we obtain:

6) y= ¢
y' = re™

5)
IPVIDIPHIMNVHPLY-
Hence we obtain: r+5r+6=0. Auxiliary equation

This quadratic factors so we can solve to obtain:

STATEMENT REASON
(r+3)(r+2)=0 Factoring
(r+3)=0o0r(r+2)=0 A fundamental theorem of real numbers
r=-3 or r=-2 Algebra

Welet r;=-3 and r,=-2 and y,=e* and y,=¢e?.
Using the theory, we see that the general solution to the ODE y"+5y' +6y=0 is

YX) = Cyi(X) + CY(x) = ce® +ce™

EXAMPLE #2. Solve the Initial VValue Problem (IVP): ODE y"+5y +6y=0.
IC’s y(0)=1, y'(0)=2

Solution. From the previous problem the general solution of the ODE y" +5y +6y=01s
y(xX) = c,e* +c,e? Applying the IC y(0) = 1 we obtainc, e*® +¢,e?@=¢c, +¢, = 1.
Now y'(x) =(-3)¢c,e* + (-2)c, e® so that applying the IC y’(0) = 2 we obtain

(-3) ¢, &%@ + (-2)c,e?@ = (-3) ¢, + (-2)c, =2. Hence we obtain the two linear algebraic
equations:

c,+ ¢ =1
(-3)c, +(-2)c,=2
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We could use Gauss elimination or Cramer’s Rule, but, as is often the case for these problems we
can solve by multiplying the first equation by 2 and adding the second equation. We obtain:
-c,=4sothatc,=-4andhencec,=1-¢,=1-(-4)=5. Hencey = -4e* +5¢e%

EXERCISES on Homogeneous Equations with Constant Coefficients: Real and Unequal
Roots

EXERCISE #1. Show thaty, = e and y, = e® are linearly independent solutions to
y'+5y +6y=0..

EXERCISE #2. Find the general solution (i.e. a formula for all solutions) to
a)y"+5y+6y=0 b)y"+6y+8y=0c)y’) y)6y=0 dy"+2y+y=0
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Handout # 3 HOMOGENEOUS EQUATIONS WITH CONSTANT  Professor Moseley
COEFFICIENTS: NONREAL COMPLEX ROOTS

Recall the second order linear differential operator from the vector space C*R)
to the vector space C(R) given by:

Llyl= ay"+by+cy (1)
We consider the associated second order linear homogeneous equation L[y] = 0:
ay"+by+cy=0 VXxeR a=0 (2

Note that the interval of validity for all solutions is the entire real line. The linear theory implies
that the general solution is :

Y(X) = ¢, Y4(X) + ¢, Y5(X) (3)

where S ={vy,, Y, }is a linearly independent set of solutions. Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y,(x) and y,(x). Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian. We "guessed" that there may be solutions
to (2) of the form

y(x) = e™ (4)

where r is a constant to be determined later. We determined the required condition on r by
substituting y = €™ into the ODE to be the Characteristic or Auxiliary equation:

ar*+br+c=0. Auxiliary equation (5)

Thus if r satisfies (5), then (4) gives a solution of (2) in H(C). Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus™ problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation. Hence no antiderivatives are required.

In accordance with the fundamental theorem of algebra, (4) has "two solutions™ as given
by the quadratic equation. However, the two solutions may be the same. (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem. To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".) The two roots are given by the quadratic formula:

_ —b++/b?-4ac

2a

r

(6)
Let
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; :—b+Vb2—4ac —b -vb? -4ac

, = 7
' 2a ? 2a ()
Case 2. NONREAL COMPLEX ROOTS. (b?*-4ac<0)
Ifa, b, c € R and the discriminant b? - 4ac < 0, then the two roots to the auxiliary
equation may be written as
—b+iy4ac-b? .
r= SUEiv (20)
2a
4 _h?
where g = - b and v :Lb are real numbers so that
2a 2a
~b+i+dac-b®> . ~b - ivdac-b*> _
r = 2 = Uiy, r, = >3 = u)iv. (11)

Rather then continue with the general case, we consider an example. This will make the
problem less messy. You should be able to see how the procedure works for the general case.

EXAMPLE. Solve (i.e. find the general solution of) y"+y +y=0.
Solution The Auxiliary equationis: r’+r+1=0

-1 Y- 4)(1) _ -1x -3

so that r=
2(1) 2

Let n=———, 1, =

Using Euler's formula we obtain:

y, = p"X = e(-1/2 +i/3/2) x

= gD gl V3 x_ gl [cos(gx) +isin(§x)]

phX = p(l2-iV3/2)x

Y, =
= gl UAX @I CNaRX_ gLUAX foqq g X ) + i sin(- g x)]
= gllax [cos(gx) - isin(gx )
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as two linearly independent solutionsto y" +y'+y=0in H(C). The general solution to
y'+y +y=0in H(C) may then be written as

YX)=¢C Y, +C ¥,

NETP V3 J3 Ny V3 NE)

=C [cos(7x)+isin(7x)]+c2 [cos(7x)f isin(7x)].

Since the coefficients a = b = ¢ = 1 are real numbers, we wish solutions which are real

valued functions of a real variable in A(R) when c, and c, are real numbers. However, we have
come up with complex valued functions in H(C) even when ¢, and c, are real numbers. On the
other hand (OTOH), we recall that since L[y] =ay"+by +cy isa linear operator, linear
combinations of solutions in H(C) are also solutions. (The null set is a subspace.) Hence we
consider

y;= (%) (Y, +y,) = V2 cos(gw
Yo = (i12) (v, -y,) = €% sin(@x ).

It can be shown that { y,, y, } is a linearly independent set. Check the Wronskian! Hence we can
write the general solution as

a(V2)x J3

ptyax sin(=-x).

Y(X) = ¢, Y3(X) + €, Yu(X) = ¢ COS(% X) *+¢,

Hence when c, and c, are real numbers we have the general solutionto y" +y' + y =0 in A(R).

GENERAL CASE FOR NONREAL COMPLEX ROOQOTS. Suppose the roots of (5) are
r=pzxiv wherepandvarereal numbersand letr,=p+iv and r, = -iv. Repeating the
process for the general case it can be shown that the general solution of (2) is given by

y(x) =c, e®™cos(vx)+c,e™sin(vx).

Since for applications problems we wish real solutions to real problems, writing the solutions in
this form is mandatory.
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EXERCISES on Homogeneous Equations with Constant Coefficients: Nonreal Complex
Roots

EXERCISE #1. Show that y, = ptyax cos(- gx )andy, = ptyax sin(- g X ) are

linearly independent solutionsto y" +y' +y =0..

EXERCISE #2. Find the general solution (i.e. a formula for all solutions) to
a)y'+ y+6y=0 b)y'+y+8y=0c)y") y+6y=0 d)y" +2y+5y=0
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Handout #4 HOMOGENEOUS EQUATIONS WITH CONSTANT  Professor Moseley
COEFFICIENTS: REAL AND EQUAL ROOTS

Recall the second order linear differential operator from the vector space C*R)
to the vector space C(R) given by:

Llyl= ay"+by+cy (1)
We consider the associated second order linear homogeneous equation L[y] = 0:
ay"+by+cy=0 VXxeR a=0 (2

Note that the interval of validity for all solutions is the entire real line. The linear theory implies
that the general solution is :

Y(X) = ¢, Y4(X) + ¢, Y5(X) (3)

where S ={vy,, Y, }is a linearly independent set of solutions. Thus the problem of finding the
general solution of the homogeneous equation (2) is reduced to finding of the two linearly
independent solutions y,(x) and y,(x). Once we have two solutions, we can check to see if they
are linearly independent by computing the Wronskian. We "guessed" that there may be solutions
to (2) of the form

y(x) = e™ (4)

where r is a constant to be determined later. We determined the required condition on r by
substituting y = €™ into the ODE to be the Characteristic or Auxiliary equation:

ar*+br+c=0. Auxiliary equation (5)

Thus if r satisfies (5), then (4) gives a solution of (2). Using the theory of abstract linear
operators and our knowledge of the dimension of N(L), we have changed the "calculus™ problem
of solving a second order linear differential equation with constant coefficients to a high school
algebra problem of solving a quadratic equation. Hence no antiderivatives are required.

In accordance with the fundamental theorem of algebra, (4) has "two solutions™ as given
by the quadratic equation. However, the two solutions may be the same. (The semantics of the
standard verbiage is sometimes confusing, but once you understand what is meant, you should
have no problem. To handle the case when there is really only one solution, we speak of the
special case of "repeated roots".) The two roots are given by the quadratic formula:

_ —b++/b?-4ac

2a

r

(6)
Let
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_ —b++b*-4ac ; _—b -vb*-4ac @)

t 2a ’ 2 2a

Case 3. REAL REPEATED ROOTS. (b*-4ac=0)

Ifa, b, ¢ € R and the discriminant b® - 4ac = 0, we have repeated roots so that
r,=r,=r=-b/(2a) € R. (8)

Since there is only one root to the auxiliary equation, we only get one (linearly independent)
solution, namely,
y:=e'™ (9)

This results in the one dimensional subspace of solutions

S ={ye C¥R):y=c, e"where ¢, € R}. Recall that to obtain the general solution to (1), we
need a set of two linearly independent solutions since the null space of the linear operator
L[y} =ay" + by' + cy has dimension two.

To find a second solution y, we use the method of Reduction of Order (also known as
variation of parameter or finding a second solution from a given one). To apply this method, we
assume that y, has the gereral form

Y2 = V(X) ya(x) = v e* (4)

Since vy, is a solution, we know that cy,(x) is also (by linearity). The name variation of
parameter (a.k.a. variation of constant) comes from allowing the constant (or parameter) ¢ to be
a function of x. To indicate that it is a function, we renamed it v(x). To find y,, it remains to
find v so thaty, =ve™is a solution of (1). Substituting y, = ve™ into (1) gives a condition on v
that must be satisfied. Substituting (4) into (1) we obtain

C) y, =ve”
/
b) y, =v'ie™ +vre™

35))){ )))33")3)3%5))33;55:’) ))V)ﬁ)(?r)g))))))))f)rg))g

ay, + Cy, br + c)vle
But r is always chosen so that ar?+ br + ¢ = 0 and for this case (b? - 4ac = 0). Hence
- b/(2a) sothat 2ra+b=0. Sincea # 0 we obtain v"'=0 sothat v=c,x+c, Sincewe
wish {y,, y,} to be linearly independent, we choose ¢, =1 and c,=0 so that y, =xe™ Itcan
be shown (how?) that {y,, y,} is linearly independent. Hence

y =c,e™+ ¢ xe™
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is the general solution of (1). Since this procedure always works for (1) and is not dependent on
the specific values of the constants a, b, and ¢, we have the following:

THEOREM #2. If the Auxiliary equation (2) has repeated roots, then a second linearly
independent solution y, of (1) can be obtained by multiplying the first solution y, by the
independent variable x.

EXERCISES on Homogeneous Equations with Constant Coefficients: Real and Equal
Roots

EXERCISE #1. Show that y, =e ™ andy, =xe* are linearly independent solutions to
y'+2y +y=0..

EXERCISE #2. Find the general solution (i.e. a formula for all solutions) to
a)y'+4y +4y=0 b)y'+6y+9y=0c)y" )4y +4y=0 d)y")2y+y=0
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Handout #5 ANOTHER USE FOR REDUCTION OF ORDER  Professor Moseley

Even if the equation does not have constant coefficients, reduction of order can be used
to obtain a second linearly independent solution provides one solution is already known.
However, the first order equations obtained will require antiderivatives.

EXAMPLE. Given that y,(X) = x is one solution, solve (i.e. find the general solution of)
(1-x3)y" - 2xy' + 2y = 0.

Solution. First verify that y, = x is a solution.

2) y; =X
-2X) y, =1

D8I P DRIV

Hence v, is a solution to (1-x?)y" - 2xy' + 2y = 0.
Now let y,(X) = vy, (X) =V X.

2) Y, =VX

-2X) Y, =V X+Vv
y2ll:VllX+Vl+Vl

RIEDDRISTHIRIEPIII SRS DRDRIDLEDAIPIIDIDRRNIIDIDIRINIIPIIINS

Simplifying we obtain: X(1 - X)V"' + (2 - 4xA)V' = 0.

du _ -(2 - 4x Y)dx

Since v is missing, let u=V' to obtain the separable equation:
u x(1 - x?)

We do the integrals separately.

[ (Mu)du=In*u*+c

Let
(9 Ay2 A2 A2
| = L‘b;)dx = | 2o gy = | 2= 4x  Partial Fractions
X(1-x%) X(x° -1) X(X-1D(x +1)
2
i = é + i + ¢ .
X(X-D(x +1) X x-1 x+1

AX-1)(x+1)+Bx(x+1)+ Cx(x-1)
AX-1)+B (X +x)+ C(X*-Xx)
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) A+B+C=-4 A=-2
xY) B-C=0 - B=C
X°) -A =2 2B=-4-A=-4+2=-2

Hence A=-2,B=-1, and C = -1 so that

— 2 - - J—
| = I%X = J-—de + —1dX + —1dX
X(x* =1) X x-1 x+1

=-2In*x*-In*x-1* - In*x+1*+c
=-In*x*(x*-1)*+c.

Hence the solution of the ODE is

In*u*=-In*x*(x*-1)*+c or In*u(x*)(x*-1)*=c.
Letting A = = e°we obtain:  u (x?)(x*-1)=A.

Recalling that we are looking for a second linearly independent solution (and not the general
solution) we may take A =1 to obtain:

1

u= v = —/———— = Partial Fractions
X (x°-1)
1 = AZ +E,+L + D
x? (x=D(x+1) X X x-1 x+1

1= AX-1)X+1)+Bx(x*-1)+ Cx*(x+1)+ Dx*(x-1)
1= AK-1)+BX-x)+ C(+x)+ D(X*-x9)

so that

x%) B+C+D=0 A=-1

¥ A +C-D=0 - B= 0

x) -B =0 C+D=0

XO)-A =1 C-D=-A=1

Hence A=-1,B=0, 2C=1,D=-Csothat C=%and D =-1/2.
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Hence

vV = J';d = I-—ldX + J.l/—ZdX +J._1/2dX

X
x? (x2 -1) x? x-1 x+1

=1I/Xx+% In*x-1* -Y% In*x+1*+c¢
=IX-*)In*(x+1)/(x-1)*+c

Letting ¢ = 0, we obtain

Y2

V X
(1% - (%) In* (x+ 1)/(x- 1) * ) x
1- (x/2) In *(x+1)/(x-1)*

so that

y = CX + Cy(1 - (xI2) In *(x+1)/(x-1)*).

EXERCISES on Another Use for Reduction of Order
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