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Handout No. 1 INITIAL VALUE PROBLEMS (IVP’S) Professor Moseley
AND BOUNDARY VALUE PROBLEMS (BVP’S)

Recall that a "general" solution (or a second integral) for the ODE  y = f(x,y,y)  will
have two arbitrary constants.  (Recall the special case y = g(x) .  Why are there two arbitrary
constants in the solution?)  To determine these constants, two constraints or side conditions are
specified.  These can be at the same value of x or at different values. 

The Initial Value Problem (IVP) for the general second order linear ODE is:

ODE   y + p(x)y + q(x)y = g(x)
IVP (2)
             IC’s     y(x0) = y0   y(x0) = v0

where we have specified Initial Condition's (IC’s) for the values of  y and y at x = x0.  As an
example, consider throwing a ball up.  In order to uniquely determine the motion of the ball, one
needs to specify values for the two state variables, position and velocity, at the same time.  If
x0I=(a,b), and p,gC(I), our theory will assure exactly one solution in C2(I). 

A Boundary Value Problem (BVP) for the general second order linear ODE is:

ODE   y + p(x)y + q(x)y = g(x)
IVP) (3)
             BC’s     y(x0) = y0   y(x1) = y1

where we have specified Boundary Conditions (BC's) for the values of y at both x = x0 and at 
x =x1.  If we throw a ball up, we might wish to specify the initial position and the position at some
later time.  For example, If we throw the ball up at time t = 0, (so that y(0) = 0 ), we may wish to
specify the time at which it comes down ( y(t1) = 0 ).

For elementary problems, the solution technique is essentially the same, first obtain the
"general solution"  for the ODE and then apply the IC's or BC's to obtain the arbitrary constants.
However, the theoretical results for IVP's and BVP's are often different.  Theorems for linear
IVP's usually conclude that there exists a unique solution (i.e., the problem is set-theoretically
well-posed.)   Theorems for similar linear BVP's reflect the general linear theory in that they
typically state that there exist no solution, one solution, or an infinite number of solutions.  Special
cases where BVP’s are set-theoretically well-posed are of interest.

EXERCISES on Initial Value Problems and Boundary Value Problems

EXERCISE #1.  The general solution of the second order linear ODE y +y = 0 is 
y = c1 sin x + c2 cos x   where c1 and c2 are arbitrary constants.  Apply the boundary conditions to
obtain all solutions to the following: 

a)   y +y = 0 b)   y +y = 0 c)   y +y = 0
      y(0) =2, y(0) =0       y(0) =2, y(π/4) =0            y(0) =2, y(π) =0       
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Handout No. 2 APPLICATION OF LINEAR THEORY Professor Moseley
TO SECOND ORDER LINEAR ODE’S

To solve second and higher order linear differential equations, instead of using a strategy
of trying to isolate the dependent variable (i.e., the unknown function) on one side of the
equation, we first formulate these equations as mapping problems.  An operator, like a function,
maps one set to another set, but we use the term operator when the mapping is from one vector
space to another, instead of from one number to another.  Since we can treat certain collections
of functions as vector spaces (which we refer to as an function spaces), we use the term
operator when mapping one function to another.  Similar to the notation,  f: R  R, for real
valued functions of a real variable, we use the notation, T: V  W  to indicate that T is an
operator where V and W may be unspecified vector spaces or specified function spaces.  Recall
the definition of a linear operator from one vector space to another:

DEFINITION #1. An operator T:V  W from a vector space V to another vector space W is said 
to be linear if for all vectors  and  in V and all scalars α and β, it is true that

x y

T( α + β ) =  α T( )  +  β T( ). (1)
x y x y

The general second order linear differential operator, which we denote by  L, is

L[y] = y + p(x)y + q(x)y. (2)

We introduce three contexts (or settings).  If p,q  C(I), I = (a,b), we take V = C2(I), the set of
functions which have two derivatives and whose second derivative is continuous on the open
interval I, and W = C(I), the space of continuous functions on I.  If p,q  A(I), I = (a,b), we take 
V = W = A(I), the set of functions which are analytic on I.  If p,q  H(C), we take V = W = H(C),
the set of functions which are analytic or holomorphic on C.  For the first context, we prove
directly using the above definition (DUD) that the general second order linear differential operator
L given by (1) is a linear operator.  That is, we write a clear explanation of why the operator L
satisfies property (1) in this context.  Proofs in the other contexts are similar.

THEOREM #1. The general second order linear differential operator L: C2(I)  C(I) defined by
(1) is a linear operator from the vector space C2(I) to the vector space C(I) where I= (a,b) is an
open interval on which p and q are continuous.  

Proof.  By the above definition of a linear operator, to show that the operator L defined by (2) is a
linear operator, we must show that if  c1 and c2 are arbitrary scalars (constants in R) and  φ1(x) 
and  φ2(x)  are “vectors” (functions in C2(I) ), then: 

L( c1 φ1(x) + c2 φ2(x) ) =   c1 L( φ1(x) ) + c2 L( φ2(x) )     x  I = (a,b)
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Since this is an identity, we use the standard format for proving identities.

STATEMENT REASONS

L( c1 φ1(x) + c2 φ2(x) ) =  ( c1 φ1(x) + c2 φ2(x) )" Definition of   L
+ p(x)( c1 φ1(x) + c2 φ2(x) )'
+ q(x)( c1 φ1(x) + c2 φ2(x) )

 =   c1 φ1"(x) + c2 φ2"(x) Properties of Derivatives
+ c1 p(x)  φ1'(x) + c2 p(x) φ2'(x) and some algebra
+ c1 q(x) φ1(x) + c2 q(x) φ2(x)

=   c1 ( φ1"(x) + p(x) φ1'(x) + q(x) φ1(x) ) Algebra
   + c2 ( φ2"(x) + p(x) φ2'(x) + q(x) φ2(x) )
=  c1 L( φ1(x) ) + c2 L( φ2(x) ) Definition of  L

Since we have shown for arbitrary constants (scalars in R) and arbitrary functions (“vectors” in
C2(I) ) that L( c1 φ1(x) + c2 φ2(x) ) = c1 L( φ1(x) ) + c2 L( φ2(x) ), we have by the definition of a
linear operator (as applied to a mapping from the vector space  C2(I) to the vector space C(I) )
that L is a linear operator.

QED.

COROLLARY #2.  Let L:C2(I)C(I) where I = (a,b) and L is given by (2).  If  y1  and  y2  are
solutions of L[y] = 0 (i.e. L[y1] = 0, and  L[y2] = 0, then y(x) =  c1 y1(x) + c2 y2(x)  is also a
solution to L[y] = 0.  

Proof.  Left to the exercises.

This corollary is sometimes called the superposition principle (for the homogeneous equation). 
Actually, it just states that the null set of L is a subspace.  Hence, we call 
N(L) = {yC2(I): L[y] = 0} the null space of L.  We sometimes denote N(L) by NL.

It can be shown that A(I)C2(I)C1(I)C(I) where we recall that A(I) is the set of analytic
function on I.  Initially we have assumed p,qC(I) so that L maps V=C2(I) to W=C(I). Hence
VW so that the domain of L is a subset of its codomain.  If we require that p,qA(I), then L
maps A(I) into A(I) so that V=W=A(I).  Much of our work will be where p and q are analytic,
indeed, where they are constants and hence in A(R).  Recall that A(R) can be embedded in H(C),
the set of functions which are analytic or holomorphic on C (see Exercise #5 in Handout #3
SUBSPACE OF A VECTOR SPACE in Chapter 2-3) .  If we require that p,qH(C), then L
maps H(C) into H(C) so that V=W= H(C).  Whether p,q are in A(I), C(I), or H(C), we have the
following :

THEOREM #3.  The dimension of the null space of L, N(L), is 2.  If  L:C2(I)C(I), then 
N(L)  C2(I); if  L:A(I)A(I), then N(L) A(I) C2(I); if  L:H(C)H(C), then N(L) H(C).  We
write dim N(L) = 2.   
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Since we know that the dimension of the null space is two, if we have two linearly independent
solutions, φ1 and φ2, of 

 y + p(x)y + q(x)y = 0 (3)

we can prove that B = { φ1, φ2 } is a basis of N(L).  Hence all solutions of the linear
homogeneous equation (3) (i.e., L[y] = 0) can be written as a linear combination of the functions
in B, i.e., as 

 y(x)  = c1 φ1(x)    +   c2  φ2(x). (4)

Theorem#3 and other linear theory form the basis for the standard techniques for solving linear
ODE’s and PDE’s (partial differential equations).  Thus we abandon the strategy of isolating the
unknown function and instead rely on linear theory.  We view our problem as a mapping
problem with a linear operator L mapping functions (vectors) from one function space to
another.  We solve the homogenous equation by finding a basis of the null space.  That is, we
wish to find all functions y in the domain that map to the zero function.  Theorem #3 says that for
the linear operator (2), the set of all such functions is just the set of all linear combinations of
φ1(x) and φ2(x) where B = { φ1, φ2 } is a basis of N(L) where L.  Unfortunately, a direct proof of
Theorem #3 is beyond the scope of this course.  However, an indirect proof can be obtained using
the uniqueness of the solution to the associated IVP.  We state this theorem later.  However, a
proof that this IVP is well-posed in a set-theoretic sense is also beyond the scope of this course. 
On the other hand (OTOH), it is easy to use Theorem #3 to prove:

THEOREM #4.  Let p,qC(I) and  B = { φ1, φ2 } be a linearly independent set of solutions to (2)
(so that it is a basis of NL).  Suppose ypC2(I) and L[yp] = g.  Then the general solution of  
L[y] = g(x), i.e., to the linear nonhomogeneous equation 

 y + p(x)y + q(x)y = g(x) (5)
is 

 y(x)  = yp(x) +  c1 φ1(x)    +   c2  φ2(x). (6)

Proof.  Left as an exercise.

Theorem #4 says that the set of all yC2(I) that L[y] maps to g is the two parameter infinite set of
functions given by (6).  Similar theorems can be proved in the other two contexts for L.
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EXERCISES on Second Order Linear Differential Operators

EXERCISE #1
(a) Let  L[y] = y + y.  Compute L[φ] if  (i)  φ(x) = sin x,   (ii)  φ(x) = cos x,  (iii)  φ(x) = ex.
(b) Let L[y] = y -  y Compute L[φ] = if  (i)  φ(x) = sin x,  (ii)  φ(x) = ex  (iii)  φ(x) = e-x.

EXERCISE #2.  Using DUD, prove that each of the following is a linear operator.
(a)  L[y] = y   (b)  L[y] = 3y + y   (c)  L[y] = y + 3y + 4y    (d) L[y] = y + ay + by
(e)  L[y] = y + x2y + exy   (f)   L[y] = y + p(x)y + q(x)y

EXERCISE #3.  Prove Corollary #2.

EXERCISE #4.  Use Theorem #3 to prove Theorem #4.
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Handout #3 LINEAR INDEPENDENCE OF FUNCTIONS Professor Moseley

Read Section 3.3 of  Chapter 3 of text (Elem. Diff. Eqs. and BVPs by Boyce and Diprima,
seventh ed.) again.  Pay particular attention to informal definitions of linear dependence and
independence for two functions (on page 147) and Theorems 3.3.1 (on page 148) and 3.3.3 (on
page 150).

It is important that you know and understand the definition of linear independence in an
abstract vector space and how to apply it directly to various specific vector spaces including Rn

and the function spaces (and not that you just learn a process that only works in one vector
space).

DEFINITION #1.  Let V be a vector space.  A finite set of vectors   V isS {x ,..., x }1 k
 

linearly independent (.i.) if the only set of scalars c1, c2, ..., ck which satisfy the (homogeneous)
vector equation

                              (1)c x .c x .. c x 01 1 2 2 k k
   
   

is   c1 = c2 =  = cn = 0; that is, (1) has only the trivial solution.  If there is a set of scalars not all
zero satisfying (1) then S is linearly dependent (.d.).

DEFINITION #2.  Let  f1,...,fk(I,R) where I = (a,b).  Now let J = (c,d)  (a,b) and for 
i = 1,...,k, denote the restriction of fi to J by the same symbol.  Then we say that  
S = {f1,...,fk}  (J,R) (I,R) is linearly independent on J if S is linearly independent as a
subset of (J,R).  Otherwise S is linearly dependent on J.

Applying Definitions #1 and 2 to a set of two functions in the function space (I,R) we obtain:

THEOREM #1. (Definition of linear independence of two functions in (I,R). ) The set  
S = {f,g}  (I,R), I = (a,b)  is linearly independent on I if (and only if) the only solution to the
equation

c1 f(x) + c2 g(x) = 0             x  I (1)

is the trivial solution c1 = c2 = 0 (i.e., S is a linearly independent set in the vector space 
(I,R) ).    If there exists c1 , c2  R, not both zero, such that (1) holds, (i.e, there exists a
nontrivial solution) then S is linearly dependent on I (i.e., S is a linearly dependent set in the
vector space (I,R) ).  

Often people abuse the definition and say the functions  f  and  g  are linearly independent
or linearly dependent on I rather than the set {f,g}is linearly independent or dependent.  Since it is
in general use, this abuse is permissible, but not encouraged as it can be confusing.  Note that Eq.
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(1) is really an infinite number of equations in the two unknowns c1 and c2, one for each value of x
in the interval I.  Four theorems are useful.

THEOREM #2.  If a finite set  S  (I,R), I = (a,b) contains the zero function, then S is linearly
dependent on I.

THEOREM #3. If f is not the zero function, then S = {f}(I,R) is linearly independent on I.

THEOREM #4.  Let S = {f,g}(I,R)  where I= (a,b).  If either f or g is the zero function in
(I,R) (i.e., is zero on I), then S is linearly dependent on I.

THEOREM #5.  Let S = {f,g}(I,R)  where I= (a,b) and suppose neither f or g is the zero
function.  Then S is linearly dependent if and only if one function is a scalar multiple of the other
(on I).

Since a subspace of a vector space is in fact a vector space, we can apply the definition of linear
independence and linear dependence to each of the subspaces 

A(I)C2(I)C1(I)C(I)(I,R).

PROCEDURE.  To show that {f,g} is linearly independent directly using the definition (i.e., using
DUD), assume (1) and try to show  c1 = c2 = 0.  If this appears not to be the case, then try to find
explicit nontrivial values of c1 and c2 so that (1) is true  ( x  I).  If there is one such nontrivial
solution, then there will in fact be an infinite number of such solutions.  However, it is not
necessary to find all solutions of (1) to show that S is linearly dependent.  The exhibition of a
single nontrivial solution to (1) is sufficient to prove that S is linearly dependent.  (It is the linear
theory that says that there can not be exactly two solutions.  Since the trivial solution is always a
solution, if we exhibit a nontrivial solution, then there are at least two solutions and hence an
infinite number of solutions.)  To help you better understand the definition of linear dependence in
a vector space, to show that S is linearly dependent, an exhibition of a nontrivial solution is
required.  On the other hand, to show that a set is linearly independent, you must do the
complete computation that shows that the only solution to (1) is c1 = c2 = 0

Ch. 1 Pg. 8



EXERCISES on Linear Independence of Functions

EXERCISES #1.  Determine (and prove your answer directly using the definition, i.e. using
DUD) if the following sets are linearly independent or linearly dependent on I = R (i.e., in the
vector space C2(R) ).
a)  {ex,e2x}   b)  {sin x, cos x}  c) {3ex,2ex}   d)  {1 - sin2x, cos2x}   e) {sin 2x, sin x cos x}.
Hint: For the set to be linearly independent,  (1) must hold   x  R.  Pick two (distinct) values of 
x  to obtain two equations in c1 and c2.  Now show (if possible) that c1 = c2 = 0.  Hence use
Theorem 2 to show that the set is linearly independent.  If this is not possible, see if one of the
functions is a scalar multiple of the other.  You may finish the proof by citing Theorem 2 or by
finding explicit values of   c1  and  c2, not both zero such that (1) holds   x  R.  Exhibiting (1)
with these values provide conclusive evidence that {f,g}  is linearly dependent.
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Handout No. 4 THE WRONSKIAN Professor Moseley

DEFINITION #1.  If y1,y2  C1(I), where I = (a,b), then

W(y1,y2,x)   =df    W(x)   =df    =df      y1 y'2 - y'1 y2 (1)
y y
y y

1 2

1 2 

is called the Wronski determinant or the Wronskian of y1 and y2 at the point x.

EXAMPLE #1.  Compute the Wronskian of y1 = x and y2 = x2.

W(y1,y2;x)   =df    W(x)   =df   =     = 2x2  ) x2 = x2.
y y
y y

1 2

1 2 
x x
1 2x

2

THEOREM #1. Let p,gC(I), where I = (a,b), Then the set  S = {f,g}  C1(I,R) is linearly
independent on I (i.e., in the function C1(I,R) ) if there exists x0I such that W(y1,y2;x0)  0.  On
the other hand, if S = {f,g}  C1(I,R), I = (a,b)  is linearly dependent on I, then W(y1,y2;x) = 0 for
all xI.

THEOREM #2.  (Abel)  If φ1, φ2 are solutions of

y + p(x)y + q(x)y = 0 (2)

then there exists  c  R (the value of c will depend on φ1 and φ2)  such that

W(φ1,φ2;x) = c exp( ) x p(t) dt ). (3)

THEOREM #3.  Suppose f,gC2(I,R) where I = (a,b) are solutions to the homogeneous equation
(2) where p,q  C(I,R).  Then S={f,g} is linearly dependent on I if and only if W(y1,y2;x) = 0 for
all xI.  Also, S is linearly independent on I if and only if W(y1,y2;x)  0 for all xI.

EXAMPLE #1. Show that y1 = sin(x) and y2(x) = cos(x) are solutions of  y" + y = 0.  Using
Theorem #3, show that the set S = {y1, y2} is linearly independent. 

Solution. To use Theorem #3, we must first show that y1 and y2 are solutions to  y" + y = 0.  Here
 I = R.  

1)     y1  = sin(x)
        y1'  = cos(x)
1)     y1" = - sin(x)
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))))))))))))))))))))))           y1" + y1 = ( - 1 + 1 ) sin(x) = 0   so that   y1 is a solution to  y" + y = 0.

1)     y2  = cos(x)
        y2' = - sin(x)
1)     y2" = - cos(x)))))))))))))))))))))))           y2" + y2 = ( - 1 + 1 ) cos(x) = 0  so that   y2 is a solution to  y" + y = 0.

Instead of showing that the two functions are linearly independent using DUD, we use 
Theorem #3 and compute the Wronskian.  

W[ y1, y2 ; x] =  =  = - sin2(x) - cos2x  =  - 1    0,     x  R.
y y
y y

1 2

1 2 
sin(x) cos(x)
cos(x) sin(x)

Since we have shown that y1 = sin(x) and y2(x) = cos(x) are solutions of y" + y = 0 and that 
W[ y1, y2 ; x] = - 1  0,   x  R, we have by Theorem #3 that S = { y1, y2 } is a set of linearly
independent solutions to y" + y = 0. 

EXERCISES on The Wroskian

EXERCISE #1.  Compute the Wronskian W(y1,y2;x) of the following:  (a)  y1 = ex, y2 = e-x,
(b)  y1 = sin x  y2 = cos x,  (c)  y1 = eax, y2 = ebx.  (d)  y1 = sin wx y2 = cos wx

EXERCISE #2.  Compute the Wronskian W(x) for two solutions φ1 and φ2 of (2) if the initial
value of W(x) is as given:  (a)  y + q(x)y = 0, W(0) = 3,  (b)  y + q(x)y = 0, W(x0) = 0,
(c)  y + y + q(x)y = 0, W(0) = 5,  (d)  y + xy + q(x)y = 0, W(0) = 3.  Hint: Use (3).

EXERCISE #3.  (a)  Assume that φ1 and φ2 are solutions of (2).  Show that W(φ1,φ2;x) = W(x)
satisfies the ODE

W' + p(x)W = 0 (3)

Hint:  From  φ1 + pφ1 + qφ1 = 0 and  φ2 + pφ2 + qφ2 = 0   obtain
 (φ,φ2 - φ2φ1) + p(φ,φ2 - φ1 φ2) = 0.
(b)  Prove Theorem #1.  Hint:  What is the solution of (3).
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Handout #5 SUMMARY OF LINEAR THEORY Professor Moseley
FOR SECOND ORDER ODE’S

Let L:C2(I) C(I) where I = (a,b) and p,q  C(I), I = (a,b) be defined by

     L[y] = y" + p(x) y' + q(x) y. (1)

Alternately consider L:A(I)A(I) with p,q  A(I) or L:H(C)H(C) with p,q H(C). We consider
the second order linear homogeneous equation L[y] = 0:

y" + p(x) y' + q(x) y = 0         x  I (2)

and the nonhomogeneous equation L[y] = g:

y" + p(x) y' + q(x) y = g(x)        x  I. (3)

where gC(I) (or A(I) or H(C) ).

THEOREM #1. (Homogeneous Equation).  Let S = { y1, y2 } be a set of solutions to (2) in C2(I)
(or A(I) or H(C) ) to the homogeneous equation (2).  Then the following are equivalent (i.e. for a
particular equation (2) with solution set S, if one is true, they all are true).  

a. The set S is linearly independent (or y1 and y2 are linearly independent).  Since the dimension 
    of N(L) is two, if S is a linearly independent set, then it is a basis of the null space N(L).

b. W[ y1, y2 ; x]  0    x  I (or C ).  

c.  The general solution of (2) is  

y(x) = c1 y1(x) + c2 y2(x) (4)

     where c1 and c2 are arbitrary constants; that is, all solutions of (1) can be written in this form.
     Since S is a basis of N(L), it is a spanning set for N(L) and hence every function ("vector") in
     N(L) can be written as a linear combination of the functions ("vectors") in S.

Theorem #1 reduces the problem of finding the general solution of the homogeneous equation (2)
to that of finding of two linearly independent solutions.  

EXAMPLE #1. Using Theorem #1, show that the set S = { y1, y2 } where  y1 = sin(x) and
y2(x) = cos(x) are linearly independent solutions of  y" + y = 0.  Then give the general solution of 
y" + y = 0.
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Solution. To use Theorem #1, we must first show that y1 and y2 are solutions to  y" + y = 0.

1)     y1  = sin(x)
        y1'  = cos(x)
1)     y1" = - sin(x)))))))))))))))))))))))  y1" + y1 = ( - 1 + 1 ) sin(x) = 0   so that   y1 is a solution to  y" + y = 0.

1)     y2  = cos(x)
        y2' = - sin(x)
1)     y2" = - cos(x)
))))))))))))))))))))))  y2" + y2 = ( - 1 + 1 ) cos(x) = 0  so that   y2 is a solution to  y" + y = 0.

Instead of showing that the two functions are linearly independent using DUD, we use 
Theorem #1 and compute the Wronskian.  

W[ y1, y2 ; x] =  =  = - sin2(x) - cos2x  =  - 1    0,      x  R.
y y
y y

1 2

1 2 
sin(x) cos(x)
cos(x) sin(x)

Since we have shown that y1 = sin(x) and y2(x) = cos(x) are solutions of y" + y = 0 and that 
W[ y1, y2 ; x] = - 1  0,   x  R, we have by Theorem #1 that S = { y1, y2 } is a set of linearly
independent solutions to y" + y = 0.  Now by part c Theorem #1, we can assert that the general
solution to   y" + y = 0 on I = R is  y = c1 sin x + c2 cos x (This two-parameter formula gives all
solutions as we change the value of the real numbers c1 and c2.)  In fact, since p(x) = 0 and 
q(x) = 1 can be considered to be in H(C), y = c1 sin x + c2 cos x, xC is the general solution of 
y" + y = 0 in H(C).

THEOREM #2. (Nonhomogeous Equation).   Let S = { y1, y2 } be a set of linearly independent
solutions to the homogeneous equation (2).  Now assume that we can find a (i.e one) particular
solution yp(x) to the nonhomogeneous equation (3). Then 

y(x) =  yp(x) + yc(x) (5)

where yc(x) is the general solution of the associated homogeneous equation (also called the
complementary equation) (2). The notation yh is also used to denote the solution to the
complementary (homogeneous) equation. The general solution of (3) is then:

 y(x) =  yp(x) +  c1 y1(x) + c2 y2(x). (6)

Recall that for a first order linear ODE’s one can use an integrating factor to isolate the unknown
variable on the left side of the equation so that the right hand side of the equation gives all of the
family (because of the constant of integration) of unknown functions that satisfy the ODE.  There
is no extension of this technique (and no other technique) for isolating the unknown variable for a
second order linear ODE.  However, Theorem #2 reduces the problem of finding the general
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solution of the nonhomogeneous equation (3) to finding the three functions  yp(x), y1(x), and
y2(x).  Again, we use the linear theory to develop a solution technique.  We first solve the
associated homogeneous (complementary) equation using techniques for finding a basis of N(L)
(i.e., the functions y1(x) and y2(x) ) for the special case where p and q are constant functions.  We
then consider two standard techniques for finding a particular solution yp:  1) The Method of
Undetermined Coefficients and 2) The Method of Variation of Parameters.

Finally, we compare the linear theory as it applies to the solution of (2) and (3) with the
solution process for  and  where the vector spaces are finite dimensional.  WeAx


 0 Ax b 


learned how to write solutions of  as  and solutions to  as Ax


 0   x x x1 k      Ax b 


 where  is a basis of N(A) and  is a particular solution to 

   x x + x xp 1 k       B = x x1 k
 , ,  

x p

.  However, we do not know a priori the dimension of N(A).  The strategy for solving isAx b 


to eliminate variables until we have oone scalar equation in one variable.  This strategy sometimes
works for a system of nonlinear scalar equations.  However, for a system of m linear algebraic
equations in n unknown scalars, it always works.  Gaussian elimination can be learned with no
reference to the linear theory.  The thing that may be new is that there are three possibilities: no
solution, one solution, and an infinite number of solutions.  For second order linear ODE’s apply
the theory to obtain a solution process.  We (usually) do not have the possibility of no solution
since our codomain is the range so that there is always a solution.  Since dim N(L)=2, we are
always in the case of an infinite number of solutions.  However, we can add two initial conditions
to obtain a unique solution.  We develop this technique in the next chapter.

EXERCISES on Summary of Linear Theory for Second Order Linear ODE’s

Ch. 1 Pg. 14


