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A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR
PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

DE CLASS NOTES 1

A COLLECTION OF HANDOUTS ON 

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS (ODE's)

CHAPTER 7

An Introduction to Numerical Methods
for 

Linear and Nonlinear ODE’s

1. An Introduction to Numerical Solutions for the IVP and Mapping Problems

2.  Solution of IVP’s: Euler’s Method for a Scalar Equation

3. An Introduction to Error Analysis for the Mapping Problem
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Handout #1 INTRODUCTION TO NUMERICAL SOLUTIONS Professor Moseley
FOR THE IVP AND MAPPING PROBLEMS

We consider the (possibly nonlinear) initial value problem:

ODE (1)

IVP

IC           (2)

where  is the state vector containing all of the state variables for the system  which vary with
time t.

Time Invariant (Autonomous) (Possibly Nonlinear) System

  We are particularly interested in the problem:

ODE (3)

IVP

IC           (4)

where T maps a vector space V back into itself; that is, T:V6V where  V is the (real or complex) 
vector space of all possible states of the system.

Steady State or Equilibrium Problem for the 

Time Invariant (Autonomous) (Possibly Nonlinear) System

Assume that   and that  (e.g., ).  Then we have .

We view this as a mapping problem; that is we wish to find those vectors  which T maps into

.  If we have a well-posed problem, then there is exactly one such vector. If this is true for all

 then T is one-to-one.  Then its inverse, T!1, exists with domain the range of T..  Then  =

T!1( ).  However, even when T!1 exists, it is rare that it is “computed”.

(Possibly Nonlinear) Dynamical System

Now let  so that N:V(t)6V(t) where V(t) is the vector space of time-varying

vectors in V.  That is, V(t) = { : :I6V} where I = (a,b) is an open interval in R to be 
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determined as the interval of validity of the solution .  Now let D = { 0V(t): = }

and N0 be the restriction of N to D so that N0:D6V(t).  Viewed as a mapping problem, to solve 
 N0[ ] = , we simply wish to find all vectors 0V(t) that are mapped into  by the

operator N0.  If we have a well-posed problem, then there is exactly one such vector. If this is
true for all , then N0 is one-to-one and its inverse, N0

!1, exists and = N0
!1( ).

Although we can treat both the steady state and the dynamic (initial value) problem as 
mapping problems, numerically they are treated differently.  If we wish to solve an IVP 
numerically we discretize both the state vector  and time t and solve using finite difference or
finite element methods as a “marching” problem.  That is, we find the time varying vector 

one step at a time, where as we find the vector that solves the steady state problem all at once.

Time Invariant (Autonomous) Linear Discrete System

ODE (3)

IVP

IC           (4)

We now assume that Tis a linear operator.  We also assume that there are a finite number of
state variables so that we have a discrete system.  If we started with a continuous problem, this
could be the discretized problem.  It could also be a lumped parameter system (e.g., circuits,
springs, and trusses).  Again T is a linear operator from a vector space V into itself; that is, 
T:V6V where V is the (real or complex) vector space of all possible states of the system. 
However, since we have now assumed that there are only a finite number of state variables, V is 
finite dimensional and we assume V = Rn.  Since T is linear, it has a matrix representation, say
A.  We change notation and use  as our state variable since now the operator T may be
represented using matrix multiplication as

(5)

and we may rewrite (3) and (4) as

ODE (6)

IVP

IC           (7)

Steady State or Equilibrium Problem for the Time Invariant (Autonomous) Linear System
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Assume that  and that    (e.g., ).  Then we have

. (8)

Thus the problem indicates that we wish the inverse of the operator (matrix)  A where
A:Rn6Rn.  Again we view this problem as a mapping problem; that is we wish to find those 

vectors  x which T maps into  (i.e., those column vectors  that when multiplied by A result

in the column vector ).  The use of Gauss Elimination (row reduction) to solve linear algebraic
equations is discussed in Chapter 2-4.  The purpose here is to introduce such problems as
mapping problems.  

Linear Dynamical Systems

Now assume T:V6V is linear (  is also linear), let  be the solution to the

steady state problem and  replace  with so that  is the displacement from

equilibrium.   Since T is linear we have T( ) = T( ) + T( ).  Also  

d /dt = d( )/dt.  Substituting into (3) and letting  T( ) !  = 0 we obtain.

ODE (3)

IVP

IC           (4)

Now let  so that L:V(t)6V(t) where V(t) is the vector space of time-varying

vectors in V.  That is, V(t) = { : :I6V} where I = (a,b) is an open interval in R to be 

determined as the interval of validity of the solution .  Now let D = { 0V(t): }

and L0 be the restriction of L to D so that L0:D6V(t).  Theoretically, to solve L0[ ] = g(t), we

simply wish to invert the operator L0.  However, numerically we would discretize and solve using 
finite difference or finite element methods and solve as a marching problem.  An introduction
to numerical techniques for first order systems is given in the next section by considering Euler’s
method for a scalar equation (only one state variable).
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Handout #2 NUMERICAL SOLUTION OF IVP’S: Professor Moseley
EULER'S METHOD FOR A SCALAR EQUATION

Recall the Initial Value Problem (IVP)  

ODE      y' =  f(x,y) (1)
IVP

IC       y(x0) = y0. (2)

If f(x,y) is such that we can not solve this IVP, we can use numerical techniques. 
Although there are many numerical techniques, we consider a simple one known as Euler's
method or the tangent line method.  Since it is an IVP and since the independent variable is often
time, we think in terms of starting at x0 and determining the solution for x > x0.  Since we are
proceeding numerically, we wish to find (approximations) for the solution at a finite number of
points  x1, x2, ... xn-1, xn, where  x0 < x1 < x2 < ... < xn-1 < xn.  Recall that  y' =  f(x,y).  We consider
the approximation:

       .  f(x0, y0).

That is, we approximate the slope of the solution between the points x0 and x1 using two
methods:

1) As the difference quotient ( y(x1) - y(x0) )/( x1  -  x0 ) and 
2) By the value of f(x,y) at the initial point (x0, y(x0)).

To simply the notation, we let yk = y(xk) for k = 0, 1, 2, ... , n.  Hence we get

    .   f(x0, y0).

We use this approximation to define our numerical value of y1 (see sketch on next page).  Hence
we obtain:

         y1  -  y0  =  f(x0, y0) ( x1  -  x0 )
         y1  =  y0  +  f(x0, y0) ( x1  -  x0 ).

Repeating the process to obtain y2, y3, ...,  yk-1, yk, ...  yn-1, yn: 

         y2  =  y1  +  f(x1, y1) ( x2  -  x1 )
         y3  =  y2  +  f(x2, y2) ( x3  -  x2 )
          .
          .
          .
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         yk-1  =  yk-2  +  f(xk-2, yk-2) ( xk-1  -  xk-2 )
         yk  =  yk-1  +  f(xk-1, yk-1) ( xk  -  xk-1 )
          .
          .
          .
         yn-1  =  yn-2  +  f(xn-2, yn-2) ( xn-1  -  xn-2 )
         yn  =  yn-1  +  f(xn-1, yn-1) ( xn  -  xn-1 )

       Y
 dy

       8     )))    )))   = f (x,y) = slope 
       *    *  dx
  y1  *    *
       *    9'*
       *   '    *
  y0  *'___*
       *
       *
       *)))))))))))))))))))))))))))))))))))))))))))))))))))))))))6 X
       *       x1      x2      x3      x4                 xk-1    xk                          xn-1    xn

If spacing is uniform: and x0 = 0, then
                h       2h      3h     4h            (k-1)h   k h             (n-1)h    nh
        7)h)6 7)h)6 7)h)6 7)h)6

Hence we obtain the general formula:

         yk  =  yk-1  +  f(xk-1, yk-1) ( xk  -  xk-1 )  k = 1, 2, ..., n.

If the spacing is uniform: h = )x =  xk  -  xk-1,         k = 1, 2, ..., n, then we obtain:

         yk  =  yk-1  + h f(xk-1, yk-1)            k = 1, 2, ..., n
or
         yk+1  =  yk  + h f(xk, yk).              k = 0, 1, 2, ..., n-1.

MEMORIZE THIS FORMULA AND BE ABLE TO USE IT.

EXAMPLE.   Using Euler's Method with h = 0.1, find the first two iterates (i.e. y1 and y2) to
obtain a numerical approximation of  y(0.2)  if y is the solution to the Initial Value Problem
(IVP)

ODE    y' = 2xy 
IVP

IC        y(0) = 1
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Be sure you  1) Give the general formula for Euler's method
                    2) Develop a table to display your results.                                                      

Solution.

General formula for Euler's method:         yk  =  yk-1  + h f(xk-1, yk-1).            k = 1, 2, ..., n.

Table for  h = 0.1

 ))))))))))))))))))))))))))))))))))))))))))))))))))))
* *
*                     TABLE *
* * ))))))))))))))))))))))))))))))))))))))))))))))))))))
* * *          * * *
*   n *   xn *  yn *   fn = f(xn,yn)= 2 xn yn * yn+1 = yn + h fn *
* * * * * * ))))))))))))))))))))))))))))))))))))))))))))))))))))
* * * * * *
* * * * * *
*   0 *   0 *   1 *  2 ( 0 ) ( 1 ) = 0 *  1 + (0.1) (0) = 1 *
* * * * * * )))))))))))))))))))))))))))))))))))))))))))))))))))
* * * * * *
* * * * * *
*   1 *  0.1 *   1 * 2 (0.1) ( 1 ) = 0.2 *1 + (0.1)(0.2) = 1.02 *
* * * * * * ))))))))))))))))))))))))))))))))))))))))))))))))))))
* * * )))  * * *
* * *         * *
*   2 *  0.2 **1.02* * *
* * *  ))) * * *
* * * * * * ))))))))))))))))))))))))))))))))))))))))))))))))))))

“Clearly” the method extends directly to the discrete system  

ODE (3)

IVP

IC           (4)

where  has only a finite number of state variables.
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EXERCISES on Numerical Solution of IVP’S: Euler’s Method for a Scalar Equation

EXERCISE #1.  Using Euler's Method with h = 0.1, find the first two iterates (i.e. y1 and y2) to
obtain a numerical approximation of  y(0.2)  if y is the solution to the Initial Value Problem 
(IVP)
.

ODE    y' = xy 
IVP

IC        y(0) = 1

Be sure you  1) Give the general formula for Euler's method
                    2) Develop a table to display your results.                                                      

EXERCISE #2.  Using Euler's Method with h = 0.05, find the first four iterates (i.e. y1 and y2) to
obtain a numerical approximation of  y(0.2)  if y is the solution to the Initial Value Problem 
(IVP)
.

ODE    y' = xy 
IVP

IC        y(0) = 1

Be sure you  1) Give the general formula for Euler's method
                    2) Develop a table to display your results.                                                      
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Handout #3 AN INTRODUCTION TO ERROR ANALYSIS Professor Moseley
FOR THE MAPPING PROBLEM

Let T:V6W be a mapping (i.e., operator) from a vector space V to another vector space
W.   (It is assumed that you have some knowledge of vectors.  See Chapter 2-4 for the
mathematical definition of a vector space.  It is sufficient at this point to understand that a vector
space is a set with structure.  Examples are Rn and the function spaces C(R,R) and A(R,R).)  We
wish to solve the (vector) equation 

(1)

where  is a given vector in W.  That is we wish to find all of the vectors that map into .   It
is assumed that we know how to compute T( ) for any 0V.  Thus we can check to see if any 
particular vector  is indeed a solution  If T provides a one-to-one correspondence between V 

and W, then for every 0W there is exactly one vector 0V that maps into .  Thus the

inverse operator T-1 exists and the formal solution to the problem is = T-1( ).  Knowing that
T-1 exists proves the existence and uniqueness of the solution but may do little to help us
compute  as we must first compute T-1.  Even when T-1 is known to exist, it is rare to actually

compute it. Since we generally are only solving (1) for one (or a few) specific ’s and not for all 

’s, we do not really need T-1.  Generally, computation of T-1 is not cost effective.
More importantly, if we are using a computer, we expect to find approximate solutions

using approximate arithmetic rather than exact solutions using exact arithmetic.  We assume 
that V and W are not just mathematical vector spaces but that all vectors have lengths or norms. 
That is, we assume that V and W are normed linear spaces.  (Vector spaces are also called 
linear spaces.)  If ** ** is the length of a vector  in V, then the metric 
D( , ) = **  ! ** gives a measure of the distance between  and .  ( In R3, **  ! **
is the distance between the ends of the position vectors  and .)  

Now let  be an approximate solution to (1) and  be its exact solution (which we 

assume to exist).  A measure of how good  is given by the norm of the error vector 

 =  ! . (2)

Let 

Ev  =  ** ** = **  ! **. (3)

Suppose T is invertible.  Let T( ) =  ba so that   = T-1( ) and  = T-1( ). 

Substituting into (3) we obtain

Ev  = ** ** = **T-1( ) !T-1( )**. (4)
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If T is a linear operator, then so is T-1 and we have

Ev  = ** ** = **T-1(  ! )**. (5)

If T-1 is a bounded linear operator, then   

Ev  = ** ** = **T-1(  ! )** # **T-1** **  !  **. (6)

If an a priori “estimate” (i.e., bound, but analysts use the term “estimate”) of **T-1** can be
obtained, then we see that an “estimate” of (i.e., bound for)  Ev can be obtained by first 
computing 

EW = **  ! ** =  ** T( ) ! ** (7)

Even without an estimate of **T-1**, and indeed without T even being linear, we can still use EW 

as a measure of the error in .  Amazingly, this is possible even if (1) does not have a solution. 

That is, we can look for a least error solution that minimizes EW.  (In Rn with the Euclidean
norm, this is called a least squares solution.)  If (1) has one or more solutions, then these are all

least error solutions since they all give EW = 0.  On the other hand (OTOH), choosing  to

minimize EW, gives , in some sense, the “best possible” solution to a problem with no solution
even though it may or may not minimize EV.  Also viewing the solution of (1) as a minimization
problem often has a physical interpretation (e.g., minimizing potential energy).    
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