A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR
PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

DE CLASS NOTES 1

A COLLECTION OF HANDOUTS ON
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS (ODE's)

CHAPTER 7

An Introduction to Numerical Methods
for

Linear and Nonlinear ODE’s

1. An Introduction to Numerical Solutions for the IVP and Mapping Problems
2. Solution of IVP’s: Euler’s Method for a Scalar Equation

3. An Introduction to Error Analysis for the Mapping Problem
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Handout #1 INTRODUCTION TO NUMERICAL SOLUTIONS  Professor Moseley
FOR THE IVP AND MAPPING PROBLEMS

We consider the (possibly nonlinear) initial value problem:

du = _
ODE — =F(t,u 1
= e (D

IVP
IC u(0) =1, (2)

where U is the state vector containing all of the state variables for the system which vary with
time t.

Time Invariant (Autonomous) (Possibly Nonlinear) System

We are particularly interested in the problem:

ODE ‘:1_‘: +T(@) = b+5(t) 3)

IVP
IC 4(0) =1, 4)

where T maps a vector space V back into itself; that is, T:V-V where V is the (real or complex)
vector space of all possible states of the system.

Steady State or Equilibrium Problem for the

Time Invariant (Autonomous) (Possibly Nonlinear) System

—+

Assume that % =0 and that lim g(t) = 0 (e.g., g(t)= 0). Then we have T(i)=b.
t—poo

We view this as a mapping problem; that is we wish to find those vectors i which T maps into
b. If we have a well-posed problem, then there is exactly one such vector. If this is true for all
b then T is one-to-one. Then its inverse, T"', exists with domain the range of T.. Then 11 =

T’I(E ). However, even when T ' exists, it is rare that it is “computed”.

(Possibly Nonlinear) Dynamical System
Now let N[u]= i—l:+ T(u) so that N:V(t)-V(t) where V(t) is the vector space of time-varying

vectors in V. That is, V(t) = {ii(t) : () :[-V} where I = (a,b) is an open interval in R to be
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determined as the interval of validity of the solutionii(t) . Now let D = {ii(t) e V(t):6(0) = 1, }

and N, be the restriction of N to D so that N,;:D-V(t). Viewed as a mapping problem, to solve
Nol@i(t) ] = gi(t), we simply wish to find all vectors ii(t) € V(t) that are mapped into git) by the

operator N,. If we have a well-posed problem, then there is exactly one such vector. If this is
true for all g(t), then N, is one-to-one and its inverse, N, ', exists and i(fy= N, '(g(t) ).
Although we can treat both the steady state and the dynamic (initial value) problem as
mapping problems, numerically they are treated differently. If we wish to solve an I[VP
numerically we discretize both the state vector 1i and time t and solve using finite difference or
finite element methods as a “marching” problem. That is, we find the time varying vector i(t)

one step at a time, where as we find the vector that solves the steady state problem all at once.

Time Invariant (Autonomous) Linear Discrete System

—+

ODE ‘;—‘t‘ +T(@) = b+5(t) (3)

IVP
IC 4=, 4)

We now assume that Tis a linear operator. We also assume that there are a finite number of
state variables so that we have a discrete system. If we started with a continuous problem, this
could be the discretized problem. It could also be a lumped parameter system (e.g., circuits,
springs, and trusses). Again T is a linear operator from a vector space V into itself; that is,
T:V-V where V is the (real or complex) vector space of all possible states of the system.
However, since we have now assumed that there are only a finite number of state variables, V is
finite dimensional and we assume V =R". Since T is linear, it has a matrix representation, say
A. We change notation and use X as our state variable since now the operator T may be
represented using matrix multiplication as

TR=AX )

ron nxl

and we may rewrite (3) and (4) as

ODE ‘;—T+A i1:6+g(t) (6)
IVP
IC X(0) =X, (7

Steady State or Equilibrium Problem for the Time Invariant (Autonomous) Linear System
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—+

Assume that % =0 and that lim gty = 0 (eg., g(t)= 0). Then we have
t—poo

A

T

1=n21' ®)

Thus the problem indicates that we wish the inverse of the operator (matrix) A where
A:R"-R". Again we view this problem as a mapping problem; that is we wish to find those

vectors X x which T maps into b (i.e., those column vectors X that when multiplied by A result

in the column vector b ). The use of Gauss Elimination (row reduction) to solve linear algebraic
equations is discussed in Chapter 2-4. The purpose here is to introduce such problems as
mapping problems.

Linear Dynamical Systems

—

Now assume T:V-V is linear (L[u] = % +T(u) is also linear), let 1, be the solution to the

steady state problem and replace i with u_ + 0, so that u, is the displacement from
equilibrium. Since T is linear we have T(u_ + u,)=T(u,) + T(u, ). Also

du /dt=d(u_ +u, )/dt. Substituting into (3) and letting T(1_) - b =0 we obtain.

ODE d;‘—td =T(,)+ 3(t) (3)
IVP
IC i (0) =1, — i, 4)

L. di . . . )
Now let L[u] = d_l: +T{u) so that L:V(t)- V(t) where V(t) is the vector space of time-varying

vectors in V. That is, V(t) = {1i(t) : ti(t) :[-V} where I = (a,b) is an open interval in R to be

determined as the interval of validity of the solution ii(f). Now let D = {ii(ty e V(t): u(0) =u, }
and L, be the restriction of L to D so that L,:D-V(t). Theoretically, to solve L[ i(t) ] = g(t), we

simply wish to invert the operator L,. However, numerically we would discretize and solve using
finite difference or finite element methods and solve as a marching problem. An introduction
to numerical techniques for first order systems is given in the next section by considering Euler’s
method for a scalar equation (only one state variable).
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Handout #2 NUMERICAL SOLUTION OF IVP’S: Professor Moseley
EULER'S METHOD FOR A SCALAR EQUATION

Recall the Initial Value Problem (IVP)

ODE y'= f(x)y) (D
Yo yx) =y 2)

If f(x,y) is such that we can not solve this IVP, we can use numerical techniques.
Although there are many numerical techniques, we consider a simple one known as Euler's
method or the tangent line method. Since it is an [VP and since the independent variable is often
time, we think in terms of starting at x, and determining the solution for x > x,. Since we are
proceeding numerically, we wish to find (approximations) for the solution at a finite number of
points X, X,, ... X, ;, X,, Where X, <x, <X, <...<X,, <X, Recall that y'= f(x,y). We consider
the approximation:

¥y{x,) - y(X,)
X1~ Xp

= (X0, ¥o)-
That is, we approximate the slope of the solution between the points x, and x, using two

methods:

1) As the difference quotient ( y(X,) - y(X,) )/( X, - X, ) and
2) By the value of f(x,y) at the initial point (x,, y(X,))-

To simply the notation, we let y, = y(x,) fork =0, 1, 2, ... , n. Hence we get

¥~ ¥a
X=X

~ (X, ¥o)-

We use this approximation to define our numerical value of y, (see sketch on next page). Hence
we obtain:

Vi - Yo = (X ¥0) (X - X¢)
Yi = Yo + (X0, ¥o) (X; - Xg).

Repeating the process to obtain y,, s, ..., Vi1> Yo -+ Yais Yo

v, =y + fx,y)(x, - xp)
& Yo T 1(x,y) (X5 - X5)
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Vi = Yo T (X Vo) (Xp - X40)
Ve = Yo T X Vi) (X - X))

}}n—l = Y2 + f(Xn—27 Yn—2) (Xn—l - Xn—Z)
Yo T Yo + f(Xn—17 Yn—l)(xn - Xn—l)

Y
d
. A f (x,y) = slope
~ dx
i |/
/
Yo |/
1 - X
X X X X X1 Xg Xp1 Xy
If spacing is uniform: and x, = 0, then
h 2h 3h 4h (k-Dh kh (n-1)h  nh
«—h—- «—h—- «—h— «—h—
Hence we obtain the general formula:
Yo = Yir T & Vi) (% - X)) k=12, ..,n.
If the spacing is uniform: h=Ax = x, - x, |, k=1, 2, ..., n, then we obtain:
Yo = Yo Thixe, i) k=1,2,..,n
or
Y1 = Yk +hf(Xk7 Yk) kZO’ 1525 eeey n-1.

MEMORIZE THIS FORMULA AND BE ABLE TO USE IT.

EXAMPLE. Using Euler's Method with h = 0.1, find the first two iterates (i.e. y, and y,) to
obtain a numerical approximation of y(0.2) if'y is the solution to the Initial Value Problem
(IVP)

ODE y'=2xy
Ivp
IC y(0)=1
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Be sure you 1) Give the general formula for Euler's method

2) Develop a table to display your results.

Solution.

General formula for Euler's method: y, =

Table for h=0.1

Vi Phix,, yir)-

TABLE
no | x| v | 6= fy)=2x,y, P
o | o | 1 |200)(1)=0 1+(0.1) (0)=1
1 o1 | 1 |201)(1)=02 1+ (0.1)(0.2) = 1.02
2 | 02 |]L02 |||

“Clearly” the method extends directly to the discrete system

ODE

VP
IC

du = .
—=F{t,u
= (t.u)
u(0) =u,

where U has only a finite number of state variables.
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EXERCISES on Numerical Solution of IVP’S: Euler’s Method for a Scalar Equation

EXERCISE #1. Using Euler's Method with h = 0.1, find the first two iterates (i.e. y, and y,) to
obtain a numerical approximation of y(0.2) if'y is the solution to the Initial Value Problem
(IVP)

ODE vy =xy
Ivp
IC y(0)=1

Be sure you 1) Give the general formula for Euler's method
2) Develop a table to display your results.

EXERCISE #2. Using Euler's Method with h = 0.05, find the first four iterates (i.e. y, and y,) to
obtain a numerical approximation of y(0.2) if'y is the solution to the Initial Value Problem
(IVP)

ODE vy =xy
Ivp
IC y(0)=1

Be sure you 1) Give the general formula for Euler's method
2) Develop a table to display your results.
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Handout #3 AN INTRODUCTION TO ERROR ANALYSIS Professor Moseley
FOR THE MAPPING PROBLEM

Let T:V-W be a mapping (i.e., operator) from a vector space V to another vector space
W. (It is assumed that you have some knowledge of vectors. See Chapter 2-4 for the
mathematical definition of a vector space. It is sufficient at this point to understand that a vector
space is a set with structure. Examples are R" and the function spaces C(R,R) and A(R,R).) We
wish to solve the (vector) equation

T@)=b (1)

where b isa given vector in W. That is we wish to find all of the vectors u that map into b. It
is assumed that we know how to compute T( @i ) for any 11 €V. Thus we can check to see if any
particular vector U is indeed a solution If T provides a one-to-one correspondence between V

and W, then for every b €W there is exactly one vector i €V that maps into b . Thus the

inverse operator T exists and the formal solution to the problem is 11 = T‘I(B ). Knowing that
T exists proves the existence and uniqueness of the solution but may do little to help us
compute 1 as we must first compute T". Even when T is known to exist, it is rare to actually

compute it. Since we generally are only solving (1) for one (or a few) specific b *s and not for all

—+

b ’s, we do not really need T"'. Generally, computation of T is not cost effective.

More importantly, if we are using a computer, we expect to find approximate solutions
using approximate arithmetic rather than exact solutions using exact arithmetic. We assume
that V and W are not just mathematical vector spaces but that all vectors have lengths or norms.
That is, we assume that V and W are normed linear spaces. (Vector spaces are also called
linear spaces.) If || @ || is the length of a vector 11 in V, then the metric
p(u,v)=||0 - v || gives a measure of the distance between U and v. (InR’, ||u - v ||
is the distance between the ends of the position vectors Ui and v .)

Now let U, be an approximate solution to (1) and 1, be its exact solution (which we

assume to exist). A measure of how good 1_ is given by the norm of the error vector

Ev=ﬁ -u, . (2)
Let
E, = ||Ey[l=]]1, -1,]] 3)

Suppose T is invertible. Let T(1, )= Ba b, sothat 1, = T'I(BEl yand 1, = T'(b).
Substituting into (3) we obtain

E, = || Eq[[=]IT"(b,)-T'(B)]|. @)

v
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If T is a linear operator, then so is T"' and we have

.= |IEy [|=]IT'(b, - b)]|. 5)
If T is a bounded linear operator, then

Bo= IEy [|=[IT'(o, - D)< [[T'[][[B, - bIl. (6)

If an a priori “estimate” (i.e., bound, but analysts use the term “estimate”) of | | T"'| | can be
obtained, then we see that an “estimate” of (i.e., bound for) E, can be obtained by first
computing

Ey=|b, - b|[= ] T(i,)- b )

Even without an estimate of | |T"||, and indeed without T even being linear, we can still use Ey,
as a measure of the error in U, . Amazingly, this is possible even if (1) does not have a solution.
That is, we can look for a least error solution that minimizes Ey,. (In R" with the Euclidean
norm, this is called a least squares solution.) If (1) has one or more solutions, then these are all
least error solutions since they all give Ey, = 0. On the other hand (OTOH), choosing 1, to

minimize E,, gives , in some sense, the “best possible” solution to a problem with no solution
even though it may or may not minimize E,. Also viewing the solution of (1) as a minimization
problem often has a physical interpretation (e.g., minimizing potential energy).
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