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A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND
NONLINEAR 

PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

DE CLASS NOTES 1

A COLLECTION OF HANDOUTS ON 

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS (ODE's)

CHAPTER 6

 Introduction to Second Order ODE's and 

Solution by First Order Techniques 

1. Introduction to Second Order ODE’S: Initial  and Boundary Value Problems

2. Solution to Second Order ODE’S by First Order Techniques
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ODE’s_I-6 INTRODUCTION TO SECOND ORDER ODE’S: INITIAL 
Handout No. 1 AND BOUNDARY VALUE PROBLEMS Professor Moseley

Read the introduction and Section 3.1 of Chapter 3 of text (Elem. Diff. Eqs. and BVPs by Boyce
and Diprima, seventh ed.).  Also read the introduction and Section 10.1 of Chapter 10.  Pay
particular attention to Examples 1-4 on pages 543-4.

Second order ODE’s  can be written in the general form

F(x,y,y',y") = 0. (1)

where F is a function of four variables and yO must appear explicitly.  However, we only consider
second order ODE's of the form

y" = f(x,y,y'), (2)

that is, equations where we can explicitly solve for y".
Recall that the “general” solution (or a first integral) for the first order ODE yN = f(x,y)

has one arbitrary constant.  The "general" solution (or second integral) of the ODE (2)
will have two arbitrary constants.  To determine these constants, two constraints or side
conditions are specified.  These can be at the same value of x or at different values.  Recall that
when using Newton’s second law, F = ma, to find the position of a point mass experiencing  one-
dimensional motion, we needed both the initial position and the initial velocity.  However, we
could instead specify the initial position and the final position at some time t1.  For example, if
we throw a ball up, we could specify the time at which it is to come down.  
     The Initial Value Problem (IVP) for the general second order ODE  is:

ODE yO = f(x,y)
IVP

IC y(x0) = y0,    yN(x0) = v0

where we have specified Initial Condition's (IC) for the values of y and yN at x = x0.  As an
example, consider throwing a ball up.  In order to uniquely determine the motion of the ball, in
addition to the force acting on the particle, one must also specify the initial position and the
initial velocity.  The interval of validity for the solution (i.e., where the ODE must be valid) must
include x = x0.  (Finding the interval of validity can be thought of as part of the problem.)
      A Boundary Value Problem (BVP) for the general second order ODE  is:

ODE yO = f(x,y)
BVP

BC y(x0) = y0,    y(x1) = y1

where we have specified Boundary Conditions (BC's) for the values of y at x = x0 and at
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x = x1.  If we throw a ball up, we might wish to specify the initial position and the position at
some later time.  For example, If we throw the ball up at time t = 0, (so that y(0) = 0 ), we may
wish to specify the time at which it comes down ( y(t1) = 0 ).  More often, BVP’s involve spacial
rather than temporal conditions so that y = y(x) is appropriate.  

For elementary problems, the solution technique for IVP’s and BVP’s is essentially the
same.  First obtain the "general solution"  for the ODE.  The apply the IC's or BC's to obtain the
arbitrary constants.  However, the theory of IVP's and the theory of BVP's are different.  First, the
concept of interval of validity changes.  That is , our concept of solution changes.  To be a
solution, we now require that the function exist over the entire interval between the two points. 
For linear problems, we simply require the coefficient functions to be continuous.  However, for
nonlinear problems this is not sufficient to prevent “blow up”between the points.  Hence we must
require it.  On the other hand, for Boundary conditions that only involve the values of the
function at the endpoints, we are not as concerned with differentiablility at the end points.  Hence

we require only that solutions to the BVP be in G=  where I is the open interval I =

(x0,x1) and  is the close interval  = [x0,x1].  
 Second, the theorems for such problems are quite different in the following sense.  
Theorems involving linear IVP's usually assert that a unique solution exists, even if it is only a 
local solution and may “blow” up in finite time.  However, theorems for linear BVP's with the 
same ODE (and even having analytic coefficient functions) but boundary conditions instead of 
initial conditions may only be able to conclude that there exist no solution, one solution, or an 
infinite number of solutions.

For elementary problems, the solution technique for IVP’s and BVP’s is essentially the
same, first obtain the "general solution"  for the ODE and then apply the IC's or BC's to obtain
the arbitrary constants. However, since the theoretical results for IVP's and BVP's are different,.
(theorems for linear IVP's usually conclude that there exists a unique solution i.e., the problem is
set-theoretically well-posed whereas theorems for similar linear BVP's reflect the general linear
theory in that they typically state that there exist no solution, one solution, or an infinite number
of solutions), this solution technique may not yield a unique solution.  Conditions where BVP’s
are set-theoretically well-posed are of interest.

EXERCISES on Introduction to Second Order ODE’sInitial Value Problems and Boundary
Value Problems

EXERCISE #1.  The general solution of the second order linear ODE yO +y = 0 in A(R) is 
y = c1 sin x + c2 cos x   where c1 and c2 are arbitrary constants.  Apply the boundary conditions to
obtain all solutions to the following: 

a)   yO +y = 0 b)   yO +y = 0 c)   yO +y = 0
      y(0) =2, yN(0) =0       y(0) =2, y(B/4) =0            y(0) =2, y(B) =0       
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ODE's-I-6 SOLUTION TO SECOND ORDER ODE’S
Handout #2             BY FIRST ORDER TECHNIQUES Professor Moseley

Read the introduction and Section 3.1 of Chapter 3 of text (Elem. Diff. Eqs. and BVPs by Boyce
and Diprima, seventh ed.).  Also read the introduction and Section 10.1 of Chapter 10.  Pay
particular attention to Examples 1-4 on pages 543-4.

Recall that we only consider second order ODE's of the form

y" = f(x,y,y'), (1)

that is, equations where we can explicitly solve for y".

SPECIAL CASES   Several special cases of interest are listed below.  The first three give
examples of second order equations which can be solved using the first order techniques you
already know.  Thus you already know how to solve some second order nonlinear equations. 
The fourth case is the general form for a second order linear ODE.  We will spend the rest of
the semester on linear theory and its implications for solving linear problems.

1.  y" = f(x) (y,y' missing)
2.  y" = f(x,y') (y missing)
3.  y" = f(y,y') (x missing)
4.  y" = -p(x) y' - q(x)y + g(x) (linear)

Case 1.  y" = f(x)    (y,y' missing, f is only a function of x)

Since  f  is only a function of x, this equation can always be solved by quadrature (i.e.
by integrating twice).  Recall the example using Newton's second law with only the force of
gravity.

Case 2.  y" = f(x,y')  (y missing, f is only a function of x and yN)

Since  y" = (y')'  we can let  v = y'  and convert the second order equation to the first order
equation

v' = f(x,v). (2)

We can now use any first order techniques that are applicable (i.e., first order linear, separable,
exact and substitutions).  Once v is obtained, y can be obtained by quadrature (i.e. by
integration).  You have already worked application problems like this using Newton's second
law.  First you found the velocity and then integrated the velocity to find the position.
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EXAMPLE. Solve the Boundary Value Problem (BVP) yO = yN, y(0)=0, y(1)=1.

Solution. Let v=yN so that yO=vN.  Substituting into the ODE we obtain the first order problem
vN=v which is linear and separable.  Its solution is v =C1 e

x.  Hence yN = C1 e
x and we can

integrate to obtain y = C1 e
x + C2.  Now applying the boundary conditions we obtain the two

equations:

0 = C1 e
0 + C2     Y C2 = !C1      Y  C1 (e+1) =1 Y C1= 1/(e+1) Y C2 = !1/(e+1)

1 = C1 e
1 + C2   A 

Hence       y =  1/(e+1)(ex ! 1).

Case 3.  y" = f(y,y') (x missing, f is only a function of y and yN)

Let  v = y'.  Now using the chain rule for derivatives, we obtain 

 yO =  =  = . 

 Hence y" = f(y,y') can be written as the first order equation

  = f(y,v) (3)

Note that if we can now solve for v, we get v in terms of y instead of x.  More likely we have an
equation involving v and y.  Since v = y', this is a first order equation, which we may (or may
not) be able to solve.  In the special case where, in addition to x, y' is also missing,

y" = f(y) (4)

we call the equation an autonomous equation.  If (5) is the model of a point mass whose mass is
equal to one (m = 1), and x is time, the total energy of the point mass can be written in terms of
the velocity (kinetic energy) and position (potential energy).  We sometimes refer to this
method of solution as an energy method  since we can derive conservation of energy from
conservation of momentum (F = ma).  

v   =  f(y)   Y   I v dv = I f(y) dy = - P(y) + c   where  )  P'(y) = f(y).

That is P(y) is an antiderivative of ) f(y) and is referred to as a potential function.  Hence, 
K(v) =df  ½ v2 = - P(y) + c so that  



Ch. 6 Pg. 6

           K(v) + P(y) = ½ v2 + P(y) = c = constant. 

that is; the kinetic energy plus the potential energy equals the total energy which is constant.  
There is no energy transfer from the system.

Case 4.  y" = -p(x) y' - q(x)y + g(x) (linear)

          This case will be covered in detail later.  Note that the example given in Case 2 is in fact 
linear.
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