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ODE’s-I-1 SOME THEORETICAL CONSIDERATIONS
Handout #1 FOR FIRST ORDER ODE’s Prof. Moseley

Read Sections 1.2, 2.1, 2.4, and 2.8  of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by Boyce
and Diprima, seventh ed.).  Pay particular attention to the concepts of general solution and
integral curves introduced on page 11 and solution introduced on page 20.  Read the existence
and uniqueness theorem on page 106.

     We give more definitive answers to the questions:

1) What do we mean by an Ordinary Differential Equation (ODE)?
2) What do we mean by a solution to an Ordinary Differential Equation (ODE)?
3) What do we mean by  the general solution of an ODE?
4) What do we mean by the existence of a solution to an ODE?
5) What do we mean by uniqueness of the solution of an IVP?
6) What do we mean by explicit and implicit solutions?

By an  nth order ODE we mean an equation of the form 

F(x,y,y',...y(n)) = 0     x  I = (a,b) (1)

where the nth derivative must appear explicitly in the equation.  Thus the equation may contain x
(the independent variable), y (the dependent variable), and  y' through y(n-1) (the first  n-1 
derivatives of the dependent variable) , but it must contain the nth derivative explicitly.  The order
of the ODE determines the qualitative behavior of its family of solution.  Specifically, the family
should have n arbitrary parameters.  For the most part, we consider ODE’s where we can
algebraically solve for the nth derivative, that is, those of the form

yn = f(x,y,y',...y(n-1)) = 0     x  I = (a,b). (2)

DEFINITION.  A solution to (1) on the open interval  I = (α,β)  is a function  y = φ(x)  in  
 = C(n)(I)   (i.e. a function  φ(x)  for which the first  n  derivatives  φ'(x), φ"(x),...,φ(n)(x)  exist
and are continuous on the open interval I)   such that if it (and its first  n  derivatives) are
substituted into Equation (1) we have equality  x  I (i.e. for all x such that α < x < β).  That is,

F(x,φ(x),φ'(x),...,φ(n)(x)) = 0    (3)

is an identity (i.e. (3) is true  x  I = (a,b) ).

If a family of functions given by a formula which contains, in addition to the independent
variable  x,  n  arbitrary constants satisfies (1) (i.e. each member of the family is a solution to 
(1) ), then we refer to this formula as the “general solution” of Equation (1).  Hence the “general
solution” of (1) is a family of an infinite number of solutions.  For linear ODE's with
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reasonable hypotheses on the coefficients, the linear theory assures that the formula for the
“general solution” will give all of the solutions of Equation (1).  However, for nonlinear
equations, the formula obtained may not give all of the solutions.   Hence, what we have called
the “general solution” is sometimes referred to as the nth general integral of the ODE.  We will
use the term “general solution”, but for nonlinear equations, we will put it in quotation marks
since this parametric formula may not give all of the solutions to the ODE.

EXISTENCE of solutions to an ODE.  Not all ODE's have solutions.  Sometimes no solution
exists.  On the other hand, not all solutions to ODE's are elementary functions.  That is, an ODE
may have a solution which is not given by an algebraic formula (e.g. 3x2 + 2x), not an algebraic
function, not an elementary function, or even have a name.  (Recall that sin(x) is the name of a
function that you learned about in trigonometry that is not an algebraic function; it is
transcendental.)  It easy to understand why if you recall that antiderivatives of elementary
functions need not be elementary functions, and may not have names.  (See Chapter 0-3 for a
definition of algebraic, transcendental, and elementary functions.)  Some non-elementary
functions, mostly because of their importance in applications,  have been given names (e.g., the
error function and Bessel functions) and as a group are called special functions.

UNIQUENESS of solutions to an ODE.   The “general solution” of an nth order ODE will be a
family of (an infinite number of)  solutions because of the n arbitrary constants in the parametric
formula.  A particular solution from this family can be specified by requiring side conditions
(e.g., the initial position and velocity) which can be used to evaluate the constants.  If they are
specified at one point, they are called  initial conditions (IC's).  If n2, they may be specified at
more than one point and are then called  boundary conditions (BC's).  (We have already seen
initial conditions; we consider boundary conditions later, after we consider second order ODE’s).
2)   An Initial Value Problem (IVP) or a Boundary Value Problem(BVP) consisting of an
ODE and appropriate side conditions is called well-posed in a set theoretic sense if there exists
exactly one solution.  (An additional condition that is sometimes required for a problem to be
well-posed concerns continuity with respect to the parameters involved.)

EXPLICIT AND IMPLICIT SOLUTIONS.  As we have seen, the general solution of a first order
linear  ODE can always be found explicitly.  However, for many nonlinear problems it is not easy
or even possible to obtain explicitly the family of functions which gives the “general solution”
(e.g., y = f(x;c) ).  For this reason, sometimes an equation for a collection of curves 
(e.g., circles) that implicitly define functions that are solutions to the first order equation  
y' = f(x,y) will be given as  g(x,y;c) = 0  and often as  g(x,y) = c.

THEOREM.  If c > 0, then all of the functions y = y(x) defined on the open interval ( ,  )c c
by the equation 

 y2 + x2 = c (4)

(this is a family of curves, specifically they are circles) are solutions of
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y =  x/y (5)

Proof.  To prove that all of the functions defined by the family of curves in (3) are all solutions, 
we must substitute these into (4).  However, since we do not have the solution explicitly, (the 
problem is nonlinear and the solutions are given implicitly), we use a different technique from 
that used for linear equations.  We compute the derivative y of these functions using 
implicit differentiation.  Let  y  be a function defined by the equation  y2 + x2 = c.  Then  
2yy + 2x  = 0 implies  2yy =  2x  so that  y =  x/y .  Hence any function y defined 
implicitly by (3) satisfies the nonlinear ODE (4).

QED

Note that the family of circles   y2 + x2 = c   implicitly defines two solutions for each value of  c.

 y1  =     and     y2  =  (6)c x2 2 c x2 2

We accept  y2 + x2 = c  as the "general" solution of (4).  Sometimes the term first integral is used
since we have not shown that every solution of (4) is obtainable by specifying a value of c.  Note
that the interval of validity (i.e., the domain of the solution) depends on the parameter c.  Note
that the differential equation

 y2 y + x y = 0 (7)

has not only the solutions given by (6) but also y3 = 0.  There is no value for the parameter  c  in
(4) that gives this solution so that it is not represented by this family of curves.
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ODE’s-I-3 PROBLEM SOLVING CONTEXTS FOR  
Handout #2 A FIRST ORDER INITIAL VALUE PROBLEM Professor Moseley

Recall the first order Initial Value Problem (IVP):

ODE (1)dy
dx f(x, y)

IVP

IC    y(x0) = y0 (2)

Since we are considering the mathematical solution to a mathematical problem, we choose to use
y as a function of x and we allow the initial condition (IC) to be at an arbitrary point.  It is
perhaps better referred to as a side condition (SC) since an interpretation of x as time is not
required and in deed may cause false conclusions.  We require that all of our logic must be
mathematical and not temporal or spacial.  

We consider three problem solving contexts: Calculus, Classical, and Modern.

Calculus.  In this context, f(x,y) is specified explicitly in terms of elementary functions.  Algebra
and calculus are then used to obtain an (infinite) parametric family of solutions to the ODE, one
for each value of an (integration) constant, in terms of elementary functions  Then the particular
solution that satisfies the side condition is obtained by substituting these values into the formula. 
This context can be expanded to allow special functions and indeed to allow antiderivatives of any
elementary function.  It can be further expanded to allow general forms where we are assured that
for any specific f(x,y) having this form, a particular algorithm will work.  An example is when
f(x,y) has the (linear) form f(x,y) = p(x) y + g(x) where p,gC(I), then we know a procedure
that will solve the problem.  In addition to algebraic operations, the formula for the solution
involves antiderivatives of functions that involve p and g.  We say that the linear problem has been
solved in the general context or up to qradrature (i.e., up to finding antiderivatives of certain
functions).  

A difficulty can result from the lack of consideration for the number of solutions; that is,
what about existence and uniqueness?  How do we know that what we have is a solution and that
it is the only one?  If a solution technique results in a parametric family of solutions, they can be
checked by substituting into the ODE.  After the constant has been evaluated using the initial
condition, it can be checked by substituting the initial value.  However, what about uniqueness? 
Is this the only solution?  For a linear equation, the solution process itself  provides a proof of
existence and uniqueness since each step is reversible.  A sequence of equivalent equations show
that all solutions to the ODE are given by the parametric family obtained..  It assumes that a
solution exists and goes through a sequence of equivalent problems (or properties) that the
solution function must satisfy, ending with the family that gives a formula (i.e., a collection of
names) for a parametric family of solution functions (e.g., sin(x) + c or an algebraic formula
defining the function including an arbitrary constant).  Since all steps are reversible, all of these
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functions are solutions to the ODE.  Similarly for the steps in finding the arbitrary constant. 
However, this is not the case for nonlinear equations.

Another difficulty is that these solution processes (e.g., for nonlinear problems) may result
in implicit, rather than explicit descriptions of the functions (i.e., curves rather than functions). 
Thus the interval of validity (i.e., the domain of the function we seek) is not self evident and must
be determined on a problem by problem basis.

For these reasons and others, we need a second context.

Classical.  Instead of specifying f(x,y) explicitly, we simply require it to satisfy certain conditions
and then show that there exist exactly one solution in a particular function class.  This context can
be further subdivided based on the function class.

Classical I : Sufficient conditions are given so that there is exactly one solution in C1(I) where 
x0I=(a,b)  (see Chapter 0-3 for the notation for sets of functions).
Classical II : Sufficient conditions are given so that there is exactly one solution in A(I) where 
x0I=(a,b)  (see Chapter 0-3 for the notation for sets of functions).

Modern.  This is the same as classical except that the problem is reformulated to allow “weak”
solutions, that is, things that, strictly speaking, are not functions.  For example, solutions may be
considered to be distributions or equivalence classes of functions (Look up the definition of an
equivalence class in any good abstract algebra textbook)..  

In addition to the reasons sighted above, if the traditional context does not yield an explicit
solution in terms of elementary functions, it is very useful to know that exactly one solution exist
to an initial value problem. If we know that the problem is well-posed, numerical techniques such
as finite differences and finite elements can then be used to find approximate solutions that can
be shown to be “close” to the actual solution.  This requires that the set of functions (or function
space) where we look for solutions be equipped with a topology, or at least a metric.  If we do
not know that exactly one solution exists, there is no guarantee that the approximate solution
obtained has any relevance to the problem.  A metric gives the “distance”  between the
approximate solution and the exact solution and hence an estimate of how good the approximate
solution is.

We end with a “proof” (i.e. an outline of a proof since all details are not included) that if
f(x,y) is infinitely differentiable, then in the Classical II context, there is at most one solution to
the IVP problem (i.e. the problem has the uniqueness property).  This “proof” also provides an
infinite recursive solution algorithm.  Since the proof is the same, we first extend our context to
allow both the independent and the dependent variables to be complex.  The concepts of
derivative and analytic function can be extended to the complex plane.  In this setting, the open
interval I is replaced by a domain D (an open connected set).  The terms open and connected
have technical definitions in complex analysis (and indeed in general topology), but these coincide
with (but are more restrictive than) their general “dictionary” definitions.  Although D is the
domain of a complex function of a complex variable, since the use of the word domain in complex
analysis (and in multi-variate calculus) is more restrictive then its general use as the set of things
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that get mapped by a function, we must be sure we understand the difference between these two
uses of the word domain.  For convenience, we require D to be an open simply connected set. 
(The term simply connected also has a technical definitions in complex analysis.) The nice thing
is that all of the calculus formulas you know for elementary functions of a real variable extend to
complex variables.  Often, in complex analysis, the word analytic is replaced by the word
holomorphic and x is replaced by  z and y by w so that w = w(z).  The holomorphic functions on
D are denoted by H(D) (see Chapter 0-3).

ODE (3)
dw
dz

f(z, w)

IVP

IC   w(z0) = w0 (4)

THEOREM.  If f(z,w)C(C2,C), then there exists at most one holomorphic (and hence analytic if
z and w are real variables in the IVP defined by (1) and (2) ) solution to the problem 
Prob( H(D), (3) and (4) (i.e., to the problem of finding a holomorphic solution to (3) and (4) )
where D is a simply-connected domain in C, (see Chapters 0-3 and 1-3 as well as an introductory
text in complex variables).  

Proof idea.  If there exists a solution wH(D) to Prob( H(D), (3) and (4) ), then it has a Taylor
series given by

w(z) =  (5)
w (z )

n!
(z z )

(n)
0

n 1
0

n





 

where
w(z0) = w0 and w(z0) = f(z0, w0). (6)

Recall that the constants w(n)(z0), n = 0, 1, 2, 3, ...,  define the function w.  That is, if I know the
function w (i.e the rule assigning a value w(z) to each z in the domain D) and I know that w is
holomorphic (i.e. analytic), then (at least in theory) I can compute all of the constants w(n)(z0), 
n = 0, 1, 2, ...  and conversely, if I know all of the constants w(n)(z0), n = 0, 1, 2, 3, ..., then the
rule given by (5) defines the function w.  Equations (3) and (4) explain how to find w(z0) and
w(z0).  The remaining constants, w(n)(z0), n = 2, 3, ..., can be computed recursively (and hence
are shown to be unique, assuming, as we have, that they exist), starting with w(z0) as follows:

   ,       w (z)
f(z,w)

z
f(z,w)

w
dw(z)

dz






  w (z )
f(z , w ) f(z , w dw(z

dz0
0 0 0 0 0



z w

) )

This process can be repeated to obtain all of the constants w(n)(z0), n = 3, 4, 5 ... ..
   Q.E.D.
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A difficulty is that the radius of convergence of the holomorphic function defined by (5) using the
computed constants might be zero yielding the result that no solution exists.  Another difficulty is
that the solution process is infinite and hence can only be carried out in part.  However, you
should recall that the polynomial

wA(z) =  (7)
w (z )

n!
(z z )

(n)
0

n 1

N

0
n


 

where N is chosen sufficiently large will approximate the holomorphic function w close to 
z = z0.
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ODE’s-I-2 TECHNIQUE FOR SOLVING
Handout #3 SEPARABLE DIFFERENTIAL EQUATIONS Professor Moseley

Read Sections 2.2 and 2.4  of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by Boyce and
Diprima seventh ed.) again.  Pay particular attention to the form given on page 40 for the general
first order ODE.  Be able to determine when an equation is separable and how to solve it.

The general first order ODE

dy/dx = f(x,y) (1)

can be written in the form

M(x,y) + N(x,y)  dy/dx  =  0 (2)

in many different ways.  For example, by letting N(x,y) = 1 and M(x,y) = - f(x,y).  If this can be
accomplished so that M is only a function of x and N is only a function of y, we say that the ODE
is separable: 

M(x) + N(y)  dy/dx = 0. (3)

Using differentials and proceeding informally we write (3) as  

M(x) dx =   N(y) dy (4)

and "integrate" both sides.  More formally we can integrate (3) to obtain

 [M(x) + N(y) dy/dx] dx = c (5)

 M(x) dx +  [N(y) dy/dx] dx  =  c. (6)

THEOREM #1.  If  F(x)  is any antiderivative of  M(x)  and  G(y)  is any antiderivative of  N(y),
then

g(x,y)  =  F(x) + G(y) = c. (7)

defines implicitly a family of solution curves for (3).  If, on some interval, G has an inverse
function G-1, then (7) can be solved explicitly to obtain y = G-1(F(x) + c).

EXAMPLE #1: Solve (i.e., find an implicit solution of) the IVP:  = ,    y(0) = 1
dy
dx 2

ycos x
1 2y

Solution:  = 
21 2y dy

y


 cos x dx
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ny + y2 = sin x +  c

Hence G(y) = lny   + y2   and F(x) =  ) sin x.  Since G(y) is not readily invertible, we can not
solve for y explicitly, but must be content with an implicit solution.  The "general solution"or first
integral is a family of curves rather than a family of functions.  Applying the initial condition  y = 1
when x = 0  to this family of curves, we obtain ln 1 + 1 = sin(0) + c   so that c = 1.  Hence the
particular curve that goes through the point (0,1) is

ln *y* +  y2 = sin x + 1.

WRITTEN EXERCISES on Technique for Solving Separable Differential Equations

EXERCISE #1.  Write a formal statement of Theorem #1.  Include continuity conditions on M(x)
on an open interval I = (a,b) and N(y) on an open interval J = (c,d).  Can you determine a priori an
interval of validity for the entire family of solution curves?  Why or why not?  Can you add
additional conditions on N(y) so that G(y) is invertible?  Supposing that such a condition is
possible, what is the interval of validity of the entire family of solutions?

EXERCISE #2.  Proof Theorem #1.  Hint: Justify the steps in the discussion prior to the
statement of the theorem.

EXERCISE #3.  Solve (i.e., find the family of solution curves of).  If possible, solve for y in terms
of  x.
a) y = (x2 + 1) y  b) y (x2 + 1) y = 1    c)  y = sin (x /y)        d)  y = (y2 +y) (x2 + x)
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ODE’s-I-2 USE OF DIRECTION FIELDS  TO
Handout #4 SKETCH SOLUTIONS OF FIRST ORDER ODE’S Professor Moseley

Read Chapter 1 and Sections 2.1 ) 2.4  of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by
Boyce and Diprima, sixth ed.) again.  Pay particular attention to the direction fields given on
pages 7,8,9,22, and 35.  Be able to sketch isoclines direction fields and integral curves (solutions
to specific IVPs)

DIRECTION FIELDS We illustrate how to use isoclines and a direction field to provide
qualitative information about a solution to a first order ODE.

EXAMPLE #1. First, use isoclines to draw the direction field for  y = y + x     (Note  
f(x,y) = y + x).  Then draw the integral curves associated with the following IVP’s:
(1) y = y + x   (2)  y = y + x   (3) y = y + x    (4) y = y + x    (5) y = y + x
      y(0) = 0            y(0) = 1           y(0) = 2             y(0) = -1            y(0) = -2

Solution.  We first sketch some isoclines (curves where solutions all have the same slope).   Let
f(x,y) = p = constant where we initially choose p =  2,  1, 0, 1, 2.  We sketch these curves on a
Cartesian coordinate axes on the next page.  First let p = 2.  We get  y + x =  2 or  y = x 2
which is a (straight) line that we can sketch.  Next, letting p = 1 and 0, we note that  y + x = 1
implies  y = x 1 and  y + x = 0   implies  y = x.  There is a pattern!  In general, y + x = p  
y = x + p which is always a (straight) line with slope 1.  Changing p simply changes the 
y-intercept.  (In general isoclines can be any family of curves, e.g., lines, parabolas, ellipses,
hyperbolas, sine curves, etc.)  We sketch all of these curves and , noting the pattern, also sketch
the isoclines for p =3,4, and 3.  On the next page we have draw the direction field by sketching
“tic” marks with the appropriate slope on the isoclines.  A computer could draw the direction field
by simply drawing “tic” marks with the appropriate slope at the points with integer coordinates
and not worry about isoclines (see the textbook).  But if we are drawing the direction field by
hand, the isoclines for p = 2, 1, 0, 1, 2 are generally the most helpful.  Other isoclines may be
helpful as indicated by the particular problem.  Since we saw a pattern that made them easy to
draw, on the next page we have drawn the isoclines  for p =3, 4, and  3 as well as those for p =
2, 1, 0, 1, 2.  However if they are drawn by hand, differences between the slopes of “tic” marks
for p = 2, 3, and 4 are hard to discern. 

Now consider the solutions of the following IVP’s.  Solutions are also called integral
curves of the ODE.

(1) y = y + x   (2)  y = y + x   (3) y = y + x    (4) y = y + x    (5) y = y + x
      y(0) = 0            y(0) = 1           y(0) = 2             y(0) = -1            y(0) = -2

We use the direction field to sketch in these three integral curves on the sketch on the next page
and label them (1), (2), and (3).  Note that since the problem is linear with p(x) = 1 and 
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g(x) =  x.  Since p,gC(R), the interval of validity for all solutions is R.  As is indicated by our
choice of initial conditions, we can obtain all integral curves (i.e., all solutions) by varying the
initial condition at x = 0.

The isoclines, the direction field, and the integral curves (i.e., solutions) are sketched on
the next page.  We now check this work by computing the exact solutions.  Since the problem is
linear, we may find the general solution (i.e., the entire family of all solutions to this ODE).

y  y = x I =  =  xex + xxe dx xe dx
u = ex u = x           dv = xe

d/dx(y ex) = xex du = dx         v =   xe

y ex = xex   + c I = xex   + cxe xe

y  = x 1 + c ex

Applying the general initial condition y(0) = y0 we obtain y0 = 1 + c so that c =y0 + 1.  Hence we
obtain 

y = (x+1) + (y0 + 1) ex

For the five IVP’s given we obtain the Table:

y1(x) y2(x) y3(x) y4(x) y5(x)

y0 0 1 2 1 2

c 1 2 3 0 1

Hence we have the solutions:

y1 = (x + 1) + ex,
y2 = (x + 1) + 2ex,
y3 = (x + 1) + 3ex,
y4 = (x + 1),
y5 = (x + 1)  ex.

Check that the solutions we sketched are consistent with these algebraic formulas
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ODE’s-I-2 SOME THEORETICAL RESULTS FOR
Handout #5 FIRST ORDER LINEAR ODE'S Professor Moseley

Read Introduction and Sections 2.1 and 2.4  of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by
Boyce and Diprima, seventh ed.) again.  Think about and learn the process (algorithm) for solving
a first order linear ODE.  Again think about  the concept of general solution and the existence and
uniqueness theorem on page 65.   Avoid learning the formulas.  LEARN THE PROCESS.

The general initial value problem (IVP) for first order linear ODE is given by .

ODE y' + p(x)y = g(x) (1)
IVP

IC y(x0) = y0 (2)

THEOREM #1.  (General Solution of the First Order Linear ODE) Suppose that p,gC(I) 
where I=(α,β) and let 

µ(x) =   . (3)e  p(s)dsx

Then the general solution of (1) (i.e. the family of all solutions of (1) in the 
function space C1(I) ={y:IR: yexists and is continuous for all xI}  )  is given by

  y(x) = yp(x) + yc(x) = yp(x) + c y1(x) (4)
where

 yp(x) =  (5)
1
(x)

(s)g(s)ds
x




is a (i.e. any) particular solution of (1) (selected by the choice of the integration constant), 

yc(x) =  c    =   c    =   c y1(x)  (6)
1
(x)

e  p(s)dsx 

is the general solution (i.e. family of all solutions) of the associated homogeneous (the use of the
word homogeneous is different here from its use in Chapter 1-3) or complementary equation  

y' + p(x) y = 0. (7)
and

y1(x) =     =       (8)
1
(x)

e  p(s)dsx 
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(You will learn later that B = {y1} where  y1(x) = 1/µ(x) is a basis of the null space of the linear
operator L[y] = y' + p(x) y where  L maps the vector space C1(I) into the vector space C(I).)

Note that Equations (5) and (6) can be considered as  "formulas" for  yp and yc.  Do not
use these.  Learn to solve first order linear equations by using the integrating factor.  Attempts to
use these "formulas" will receive little or no part credit if precisely the correct answer is not
obtained.  Learn the process.  No credit will be given for using even a slightly  incorrect formula.

DEFINITION. A function f:IR is analytic at  x0I = (a,b) if there exists a δ>0 such that its
Taylor series converges to f in (x0δ,x0+δ).  We say that f is analytic on I if it is analytic at each
point in I.  (Recall that f is continuous on I if it is continuous at every point in I.)  Let A(I) denote
the set of all functions that are analytic on I = (a,b).  

THEOREM #2.  Suppose I=(a,b) is an open interval.  Then   A(I)C1(I)C(I).

That is, analytic functions are “nicer” than functions with continuous derivatives which in turn are
“nicer” than continuous functions.  The fact that we have parametric formulas for all solutions in
terms of the integrals of p(x) and µ(x) g(x) gives us the following regularity result: If p,gA(I),
then the solutions to (1) are not only in C1(I), but that they are analytic on I.

THEOREM #3.  Suppose that p,gA(I) where I=(α,β).  Then the results of Theorem#1 are still
true and in fact all solutions are in A(I).

We turn now to the IVP:

THEOREM #4.  (Existence and Uniqueness of the Solution to the IVP for a First Order Linear
ODE) If  x0  I = (α,β)  and  p,g  C(I)  (i.e. the functions  p  and  q  in (1) are continuous on the
open interval (α,β)), then ! φ(x) (i.e. there exists a unique function  y=φ(x)) that satisfies (1) and
(2) (i.e. the initial value problem (IVP) consisting of the ODE (1) and the IC (2) where  
y0  R  is an arbitrarily prescribed value of the function at x0).  The solution is given by:

  y(x) = yp(x) + yc(x) = yp(x) + y0 y1(x) (8)
where

 yp(x) =    (9)
1
(x)

(s)g(s)ds
x




x0


y1   =      =   (10)
1
(x)

e
 p(s)dsxx0

 µ(x) =      (11)e  p(s)dsx
x0

If p,gA(I), then the solution is likewise in A(I).
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COMMENTS.  The discontinuities in p(x) and g(x) (may but do not have to) produce
discontinuities in the solutions to Equation (1).  This will determine the interval of validity of the
solution (i.e., the largest open interval I on which the solution is valid).  The theory guarantees
that if  p(x) and g(x)  are at least continuous on  I = (α,β) then the interval of validity of the
solution (i.e. the domain of the function which is the solution) will at least contain I.  For linear
problems, the interval of validity for the entire family of functions is the same (i.e. independent of
the integration constant).  However, for nonlinear problems, the interval of validity may very well
depend on the constant in the formula.

The concepts of derivative and analytic function can be extended to the complex plane.  In
this setting, the open interval I is replaced by a domain D (an open connected set).  Although D is
the domain of a complex function of a complex variable, the use of the word domain in complex
analysis (and in multi variate calculus) is more restrictive then its general use as the set of things
that get mapped by a function.  D must be an open connected set.  (The terms open and
connected have technical definitions in complex analysis (and indeed in general topology), but
these coincide with their general “dictionary” definitions.)  The nice thing is that all of the calculus
formulas you know for elementary functions extend to complex variables.  Often, in complex
analysis, the word analytic is replaced bt the word holomorphic and x is replaced by  z and y by
w so that w = f(z).  The holomorphic functions on D are dented by H(D).  If p,gH(D), then all of
the solutions to (1) are given by (3) and are in H(D).  When p(z) and g(z) are elementary
functions, they may have isolated singularities where they become infinite (e.g., p(z) = sec z or
when the denominator becomes zero, p(z)=1/z ).  These produce isolated singularities in the
solutions.  

ODE’s-I-2 SOME THEORETICAL CONSIDERATION

Ch. 2 Pg. 16



Handout #6 FOR FIRST ORDER NONLINEAR ODE’S Professor Moseley

Read Sections 2.4 and 2.8  of Chapter 2 of text (Elem. Diff. Eqs. and BVPs by Boyce and
Diprima, seventh ed.).  Pay particular attention to the existence and uniqueness theorem on page
106.  Try to understand the concepts of general solution and implicit and explicit solutions.  How
is the linear and nonlinear case different?

For the general (possibly nonlinear) first order ODE we consider the IVP

ODE y = f(x,y)
IVP (1)

IC y(xo) = yo

(i.e. only those where we can solve for y' explicitly).  It is not always easy to obtain the general
solution of the ODE as a family of functions in the form y = f(x;c) (e.g. y = yp(x) + c y1(x) for the
linear case) with one parameter.  Instead we often obtain a family of curves in the form 
g(x,y;c) = 0 (e.g., g(x,y) = c) where a section of the curve which is not vertical will provide a
solution over some interval of validity.  A particular curve can be selected by requiring the initial
condition.  Under certain conditions the existence and uniqueness of the solution to the IVP can
be asserted (see the text).  The "interval of validity" for a nonlinear ODE (i.e., the domain of the
solution function) is much more complicated than it is for a linear ODE and is usually found for
each problem separately after a solution curve has been found.

IMPLICIT SOLUTIONS FOR NONLINEAR EQUATIONS

EXAMPLE #1.  The functions defined by the curves (hyperbolas)
 

y2  )  x2  + cx = 0 (or  y2  =  x2  )  cx   or     ) ( y2  ) x2)/x   = c  ) (2)

satisfy the ODE

2xy y' = x2 + y2 (or     y  =   (x2 + y2)/(2xy)    ). (3)

The implicit description of a family of curves given by (2) is usually preferable to the explicit
description

for  x2 ) cx  0. (4)y x cx2  

The domain for these functions is

  D  = {x  R : x2 ) cx  0} = {x  R : x(x ) c)  0} 
       = {x  R : (x0 and xc) or ( x 0 and xc)}.

To check that g(x,y) = 0 provides solutions for a nonlinear problem is more complicated. 
Implicit differentiation of (3) yields 
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2y y’ - 2x + c = 0 (so that 2yy’ = 2x - c). (5)
Hence 

 2xyy  =   x(2x - c)   =   2x2 - cx     =     x2 + ( x2 - cx)    =    x2 + y2. (6)

Hence all of the curves    y2 - x2 + cx = 0  satisfy the ODE    2xy y' = x2 + y2   at points on the
curves where y exists.
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