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Handout #1 INTRODUCTION TO DIFFERENTIAL EQUATIONS Professor Moseley
AND MATHEMATICAL MODELING

Our objective is to not only to learn how to solve differential equations, but to also
understand why we use the methods we choose.  That is, we not only want to learn methods and
be able to apply them to problems where we are told they work, but also to know what methods
apply to what problems and to understand the theory behind the methods.  We are motivated by
the fact that differential equations are used as mathematical models of scientific and other
phenomena, particularly systems that change with time and space.  To understand differential
equations, we begin by asking some fundamental questions:
1) What is a differential equation?
2) How are differential equations different from algebraic equations?
3) Where do differential equations come from?
4) What do we mean by a solution to a differential equation?
5)  Can a differential equation have more than one solution?
6) How does one obtain  solutions to differential equations?

To answer these questions (and many others) completely will take time, particularly for
the last one.  However, a partial answer to most of them can be obtained by considering a simple
example of an applied math problem with which you are  familiar.  Applied math problems are
driven by a desire to get answers to specific questions in a given application area.  For example:

QUESTION: If a ball is thrown up with an initial velocity of 30 ft per second, when will it come
down?  What will its velocity be when it comes down?

We use a five step procedure to solve any applied math or application problem:

Steps in Solving an Applied Math Problem

Step 1. Understand the required concepts from the application area where solution to a
mathematical model will provide answers to the questions of interest.

Step 2. Understand the required concepts from mathematics that are needed to develop and
solve the mathematical model.

Step 3. Use your mathematical knowledge and your knowledge of the application area to develop
 a mathematical model at an appropriate level of generality.  

Step 4. Use your mathematical knowledge to solve the mathematical model.
Step 5. Interpret your results.  This includes applying the specific data that originally motivated
the development of the model and answering  the specific questions originally asked.

To answer the specific questions originally asked requires all five steps, but to (partially) answer
our questions about ODE’s requires only the first three.  Answers to the application questions
asked must wait until  Chapter (1-)5.
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APPLICATION   ONE DIMENSIONAL MOTION OF A POINT MASS
Application Areas include Physics and Mechanical Engineering.

Step 1: UNDERSTAND THE CONCEPTS IN THE APPLICATION AREA.  This step begins
with a description of the phenomenon to be modeled, including the concepts involved and the
“laws” it must follow.  For one-dimensional motion we need the following concepts:
1) Time, 2) Point mass or particle, 3) Position, Velocity, and Acceleration in one dimensional
space, and 4) Force in one dimensional space.  Now consider the following physical laws for the
motion of a point particle.

PHYSICAL LAW#1. (Newton’s Second Law of Motion) At any given time, the net force
(magnitude and direction) on a particle (point mass) is equal to its mass times its acceleration. 
(F = MA).

PHYSICAL LAW#2. (Force of Gravity) The magnitude of the force of gravity on a point mass
equals its mass times a constant (which we denote by g).  Its direction is towards the center of the
earth.

It is assumed that you have been exposed to these concepts, these laws, and indeed, to the model
we will develop.  Physical laws are referred to as theoretical if they are simply assumed as a
foundation for a general theory, much as axioms in mathematics are assumed (without proof). 
They are referred to as empirical if they are found to describe particular experimental data
(without worrying about how they might fit into or be derived from any general theory).  Both of
these laws could be described as either theoretical or empirical.  However, since Newtonian
Mechanics can be used to predict virtually all macroscopic experimental results on earth, it is
thought of as theoretical and is used as a starting point for deriving many physical models in
science and engineering.  However, it is just an approximation of the more general (and more
complicated) relativity theory which also works at speeds close to the speed of light.  Similarly,
the (earthly) gravitational law for “small” objects on the surface of the earth approximates the
General Gravitation Law which can be applied to describe the motion of planets.

Step 2: UNDERSTAND THE REQUIRED CONCEPTS IN MATHEMATICS.  The required
mathematics for all of the mathematical models developed in this course is as follows: 

1. High School Algebra, including the solution of algebraic equations and inequalities, 
2. Calculus including computation of derivatives, antiderivatives, and definite integrals, 
3. Solution techniques for differential equations developed in this course, and
4. Concepts from Linear Algebra including solution of a system of linear algebraic equations. 
     (Before we use linear theory, we will review it in Part 2 of these notes.) 

Step 3.  DEVELOP THE MATHEMATICAL MODEL. To develop a model for the one
dimensional motion of a ball, we make three assumptions
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ASSUMPTION #1:  The ball can be modeled as a particle or point mass.  (We are only
interested in the longitudinal motion and not the rotational motion of the ball.  This helps
simplify the model.) 

ASSUMPTION #2:  The ball is constrained to move in one direction, namely up and down.  For
this problem, we assume up is positive.  The particle has one degree of physical motion. 
However, as we shall see later, there are two state variables so that the model actually has two
degrees of freedom.  (We learn later that the state space for the model is two dimensional.)

ASSUMPTION #3: Air resistence is negligible and we assume that the only force acting is
gravity.

Next we  list the variables and parameters used in our model (we may add to the list as
the model is developed) and draw a sketch to help visualize the process.

Nomenclature:

   =  the acceleration of the particle.

=  the velocity of the particle (state variable #2) �    mass

x  =   the  position of the particle (state variable #1) *    F *  Fg  = ) mg

t   =   time. * �
m =   the mass of the particle. *

F  =   the force of the particle (in the  x  direction). *___ground level
g  =   acceleration due to gravity          x = 0
Fg =  the force of gravity

We set up a coordinate system where the positive direction for  x  is up with  x = 0  being at
ground level.  Since the only force acting on the particle is the force due to gravity then

F  =  Fg   =   ! mg. (1)

The minus sign is required since we have selected up as the positive x direction and gravity acts
in the downward direction (force is a vector quantity even though we are considering only one
dimensional motion).  Hence, if the velocity is positive, this means that the particle is moving up.
If the velocity is negative, the particle is traveling down.  If we had selected down as the positive
direction, then the model would be different mathematically by a minus sign.  Then  
Step 4: SOLUTION OF THE MATHEMATICAL MODEL  would yield different mathematical
formulas for the position and velocity of the particle.  However, the particle  behaves the same
for both models.  The mathematical descriptions are just different.  That is, 
Step 5: INTERPRETATION OF THE MATHEMATICAL RESULTS will yield the same
physical results, even though different mathematical functions would be used to describe the
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physical behavior.  Here  g  is the acceleration due to gravity with magnitude,  32 ft/sec2 in
English units.  However, g is easier to write and we leave open the option to use metric units.  

To develop the mathematical model we use the physical laws we have cited and the
notation we have developed.  Putting  F = ma  or  m a = F and  F  =  Fg   =  ! mg    together we
obtain

m  = ! m g     or  = ! g . (2)

With more or different forces acting, the Ordinary Differential Equation (ODE, since it 
involves only derivatives with respect to one independent variable, namely time t) is given by

     m   =  F(t, x, )  =   sum of all forces acting on the particle (3)

which can be much more complicated and more difficult to solve.  (Can you see why?)  In order
to uniquely determine the path of the particle and complete the mathematical model, we must
also specify the particle's initial position, say x(0) = x0,  and initial velocity, say (0) = v0.  (We
need initial values for both of our state variables.)  Hence our mathematical model for the
particle acted on only by gravity is given by the Initial Value Problem (IVP):

ODE     =  !g (4)
IVP

IC’s  x(0) = x0,         (0) = v0. (5)

The usual strategy for solving an IVP is to first find all solutions of the ODE.  There will be an
infinite number of solutions involving one or more arbitrary (integration) constants.  We then
apply the IC’s to evaluate these constants.  You already know how to solve this ODE, simply
integrate twice.  However, at this point we are not interested in learning how to solve differential
equations.  That will come soon enough.  Currently we are interested in 

Î establishing an interest in studying differential equations, 
Ï learning that a solution to an ODE is a function (and not a number), and 
Ð learning how to determine if a given function is or is not a solution to a particular ODE
    (e.g.,the one developed as part of this model).

SOLUTIONS TO THE ODE  Some solutions to the ODE (4) are given by the following: 

                     x1  =  !½ gt2 (6)
                     x2  =  !½ gt2 + t + 3 (7)
                     x3  =  !½ gt2 + c1 t + c2 (8)

Actually, x3 is not just one solution (function)  but a parametric representation of a whole
family of solutions (functions) since c1  and  c2  are arbitrary constants. 
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EXISTENCE PROBLEM:  CHECKING THAT A GIVEN FUNCTION IS A SOLUTION.  How
do we know that the functions given by (6) and (7) and each function in the family of functions
given by (8) are solutions?  Just as we can check that  x = ! 2  is a solution of  x2 = 4  by simply
computing  x2, we can show that x1 satisfies (4) by computing its second derivative:

  x1 =  !½ g t2,        =  !g t,      = !g 

Similarly you can compute the second derivatives of x2 and x3 to show that they are solutions to 
(4).  Note that even though x3, because of the parameters c1 and c2, represents an infinite number 
of  functions,  we can use theorems from calculus to compute the first and second derivatives of
the whole (infinite) family of functions at the same time.  Hence we can check that each
function in this infinite family of functions is a solution.  This computation proves the following
existence theorem:

THEOREM (EXISTENCE).  Each member of the family of functions given by   x   =  - ½ g t2  +
c1 t + c2 is a solution to the ODE     =  )  g          

UNIQUENESS PROBLEM:  Not only is each member of the whole family of functions given
by (8) a solution of the ODE (4), but the converse is true.  It is easily shown by integrating twice
(using theorems from calculus) that any solution of the ODE (4) must be a member of the family
of functions given by  x3 in Equation (8).  Thus the solution process solves the uniqueness
problem (i.e., limits the set where all solutions must reside).   

THEOREM #2.  If x is a solution of   = !g, then x is in the family of functions given by 
 x   =  - ½ g t2  + c1 t + c2.

GENERAL SOLUTION:  Hence  x3  given in Equation (8) is the general solution of the ODE
given in Equation (4) (i.e., gives all of the infinite number of solutions and only solutions).

CLASS EXERCISE:  What are the values of  c1  and  c2  which give  x1  and  x2?  

The constants  c1  and c2  are simply the constants of integration.  If the force is simply a function 
of time (e.g. a constant) then this is always possible.  

However, the force is often a function not only of time t but also of distance (space) x and
velocity  v = .  This makes the solution process more difficult.  Can you explain why? 
Suppose, instead of (4) we wish to solve  m  = !c ! kx + g(t)  which is the equation for the
displacement of a point mass hanging on a spring from its equilibrium position where there is
damping (see Chapter 3-4).  This equation is linear (we will explain what linear means shortly)
and is usually written as

 m  + c + kx = g(t).
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Similar to checking that a number is a solution of an algebraic equation (e.g., that x=2 is a
solution to x2 +3x ! 4= 6), we can check that a function is a solution to an ODE by substituting
it into the ODE.  Suppose our spring problem is 

 + 5  + 6x  =  5 cos t !5 sin t = 5 cos(t !B/4) (9)

Since our ODE is linear, an easy technique for substituting into the ODE is illustrated below:

CHECK that each and every member of the family of functions given by

  x =   sin t  + c1 e
 !2t + c2 e

 !3t (10)

 is a solution of the ODE (9):

Coefficient,    Function or derivative   
       6)                  x =  sin t  + c1 e

 !2t + c2 e
 !3t

       5)                  =  cos t !2 c1 e
 !2t ! 3 c2 e

 !3t

       1)                  = !sint  + 4 c1 e
 !2t + 9 c2 e

 !3t

))))))))))))))))))))))))))))))))))))))))))))))

  + 5 + 6 x  =  (!1 +6) sin t  +  5 cos t  + (4 !10 + 6) c1 +  (9 !15 +6) c2 =  5 cos t ! 5 sin t

so each member of the family of functions given by  x in  is a solution to the ODE (9).  Note
again that even though x, because of the parameters c1 and c2, represents an infinite number of 
functions, we can use theorems from calculus to compute the first and second derivatives of the
whole family of functions at the same time.  Hence we can check that a whole family of
functions are solutions.  This computation proves the following existence theorem:

THEOREM #3.  Each member of the family of functions (10) is a solution to the ODE  (9)          

GENERAL SOLUTION OF AN ODE Although it is not easy to prove, we will eventually learn
that not only is each member of the whole family of functions given by (9) a solution of the
ODE (10), but the converse is true.  That is, it can be shown that all solutions of (9) are
members of the family of solutions given by (10).  Hence  x  given by (10) is in fact the general
solution of  (9) (i.e., it gives all solutions of (9)).

WHAT KINDS OF THINGS ARE SOLUTIONS TO ODE’S.  It is important to emphasize  that
the "unknown" that we solve for when solving an ordinary differential equation (ODE) is a
function (or family of functions) instead of a number (or set of numbers) as when solving
elementary algebraic equations.  Just as it is important to know the set of numbers where
solutions of an algebraic equation are to be found (e.g., in R or C), it is important to know the set
of functions where solutions of a differential equation are to be found.  Since our examples
involve the second derivative, solutions must be functions with at least two derivatives and we
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look for solutions in the set of functions denoted by C2(R).  (See Chapter 3 of the Remedial Class
Notes for notation for sets of functions.)

NOTATION FOR FUNCTIONS. Since we begin by studying solution techniques for differential
equations and consider applications later, we begin by using the notation standard for variables
and functions used in algebra and calculus and let y = f(x).  However, unless it is essential to
distinguish between the function f as a rule to compute the dependent variable y we usually make
no such distinction and use the “engineering” notation y = y(x).  Hence for derivatives we use:

yN = , yO   =  ,     y�  =    .

Derivatives of order higher than 3 may be indicated in three ways.  One is by Roman numerals
(both upper and lower case are used).  The second method is by integers in parentheses (in order
to distinguish them from exponents).  A third way is to use Roman numerals in parentheses.
Although redundant, this does insure that a distinction between powers and derivatives and is
acceptable.  Thus 

yiv    =   yIV   =   y(4)   =  y(iv)   =   y(IV)  

all indicate the fourth derivative.  Since for applications the independent variable is often time,
dynamical systems people like to use t for the independent variable.  Hence we will also use

yN =     =  ,  yO =     =   ,  y� =    = .

The context should tell you the meaning of yN, yO, and y�.  (If x or t is not specified in problems, 
you may use either.  However, if it is specified, you must use the one specified.  Points will be
deducted on every problem on exams where you have used the wrong independent variable. 
Learn to proof read your work.  As engineers and scientists, this is very important.)

EXAMPLES.  Other examples of ordinary differential equations (ODE's) are:
1)  yN + x2 y = 0
2)  (yN)2 + x y' + 4 = 0
3)  y IV + sin x y' + y = ln x
4)  yO + p(x)yN + q(x)y = g(x) where p, q, and g are continuous functions of the 

                 independent variable x in some open interval I = (",$).

SCANTRON EXERCISES on the reading assignment for Introduction to Differential
Equations
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EXERCISE #1. True of False.  History of Differential Equations.

          1.  Isaac Newton (1642-1727) was one of the “inventors” of calculus.

          2.  Gottfried Wilhelm Leibniz (1646-1716) was one of the “inventors” of calculus.

          3.  The brothers Jakob (1654-1705) and Johann (1667-1748) did much to develop methods 
    of solving differential equations.

          4.  Leonhard Euler (1741-1766) identified the condition for exactness of first order ODE’s. 

          5.  Joseph-Louis Lagrange  (1736-1813) showed that the general solution of an nth linear 
   homogeneous ordinary differential equation is a linear combination of n linearly
   independent solutions.
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Handout #2 USEFUL CHARACTERISTICS OF ODE's Prof. Moseley

Ordinary Differential Equations (ODE’s) have certain characteristics.  These
characteristics often determine the method of solution.  We classify ODE's using these
characteristics.  It is important that you learn what these characteristics are and how to recognize
them.

ORDER.  The order of an ODE is the order of the highest derivative that appears in the
equation.  Recall that derivatives higher than 3 may be indicated in different ways.  Thus 
yiv = yIV = y(4) = y(iv) = y(IV) all indicate the fourth derivative.  

LINEARITY.  The general nth  order  ODE of the form

F(x,y,y',...,y(n)) = g(x) (1)

is said to be linear in y  if  F  is a linear function of the  "variables"  y,y',...,y(n).  Hence the
general  nth order linear equation is given by

            an(x) y(n) + an-1(x) y(n-1)+...+a1(x) y'+a0(x) y = g(x). (2)

For example, the general form for a first order linear ODE (after dividing by a1(x) )is

     y' + p(x) y = g(x). (3)

where p(x) = a0(x)/a1(x) and g(x) is redefined to be g(x)/a1(x).  The general form for a second
order linear equation can be written as

                        y" + p(x) y' + q(x) y = g(x). (4)

CLASS EXERCISE. Determine the order of the following ODE's.
1. y' + 3x2 y = 15 4. (y''')2 + y2 = xex

2. (y')2 + 3(sin x) y = x2 5. y(4) + 3x y = 17
3. y" + 3y3 = x3 6. yO + 3y = 3ex

CLASS EXERCISE. Determine which of the  ODE's  above are linear.

ODE’s-I-2 TECHNIQUE FOR SOLVING FIRST ORDER LINEAR
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Handout  #1 ODE’S USING AN INTEGRATING FACTOR Professor Moseley

The general first order ODE is of the form

F(x,y,y') = g(x) (1)

We only consider first order ODE's  that can be put into the standard general form given by
 

y' = f(x,y) (2)

where we have solved for the first derivative.  To get you started with learning solution processes
for first order ODE’s, we begin with first order linear:  

y' = !p(x) y + g(x) (3)
where 

f(x,y) = !p(x) y + g(x). (4)

The solution strategy is similar to solving algebraic equations.  But for an ODE we wish to
isolate the unknown function(s) on one side of the equation.  Then the solution function (actually
a family of an infinite number of functions since we will have an arbitrary parameter obtained as
an integration constant) will be on the other side of the equation.  To do this, we put (3) in the
standard general form for a first order linear ODE in y given by 

y' + p(x) y = g(x). (5)

For reasons that will become apparent when we consider systems of first order ODE’s, some
texts use the alternate general form

y' = a(x) y + g(x) (6)

so that there is a sign change as well as a notational change from what we use here.
Note that the form of Equation (5) prescribes the way f(x,y) will be a function of  y  but

not  x.  That is,  p(x)  and  g(x)  are arbitrary functions of  x (except for continuity constraints). 
Hence, recognizing a first order linear ODE in y means recognizing how f(x,y) is a function of y. 
(We can also consider first order linear ODE’s in x where x is a function of y.)  The reason we
put p(x) y on the left hand side with  y'  will become clear from our solution technique which will
isolate the unknown function on the left side of the equation and from our later study of mapping
problems for linear operators on vector spaces.  

SOLUTION TECHNIQUE.  To find the general solution of a first order linear ODE in y, we
follow the technique used to solve algebraic equations.  That is, we use equivalent equation
operations (EEO’s) to obtain a sequence of equivalent equations (all having the same solution)
and eventually isolate the unknown function on the left side of the equation.  We first put the
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equation in the standard form and identify the function p(x).  Next we find an Integrating
Factor (IF)  :, all of which are defined by the formula

IF =  µ(x) = exp(Ix p(t) dt)  = eIp(x) dx (7)
 
That is, first find the family of antiderivatives of  p(x).  (Both notations for the general
antiderivative of a function will be used.)  Since we need only one integrating factor and not the
entire family, only one antiderivative is needed. Hence we usually take the integration constant c
to be zero (c = 0).  We then apply the exponential function to this function, that is, we use the
antiderivative selected as the exponent of  e.  Next we multiply both sides of the ODE by the
integrating factor.  (This is an EEO.)  To see how we may then isolate the unknown (family of)
function(s), we consider a nine step process for obtaining and checking the general solution for
some examples.

EXAMPLE 1)  y' + 2y = e-x           (ODE) (8)
 y(0) = 3                 (IC) (9)

SOLUTION (Giving a step by step procedure for solving):

Step 1: Identify  p(x):   "Clearly"     p(x) = 2          (a(x) = -2).

Step 2: Compute the integrating factor :: I p(x) dx = I 2 dx = 2x + c
Choosing  c = 0   so that    IF =  : = e2x.

Step 3: Multiply both sides of the ODE by the integrating factor IF = ::
e2x(y' + 2y) = e2x(e-x)

y'e2x + y(2e2x) = ex The left hand side (LHS) will always be .

Step 4: Replace the left hand side of the ODE  with this term:

   =  ex

Step 5: Check that your integrating factor is correct: You should always check this 
out.  It will help you to locate computation errors.  You will receive no part credit 
on exams if your answer is wrong and you have failed to check  your integrating 
factor.  (Also, checking your integrating factor avoids confusion if the alternate
form y' = a(x) y + g(x) is used.)  Using the product rule we obtain:

     =   y' e2x  + y (2 e2x )

Compare this to the left hand side (LHS) of the ODE to see if they are the same.  
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If not, recheck your computation.  Specifically check to see if you have identified 
p(x) correctly.  Since we see that it is correct, we return to the ODE:

       =  ex

Step 6: Integrate both sides of the equation:

     y e2x   =  Iex dx  = ex  + c

Note that we have used the fundamental theorem of calculus to obtain the left 
hand side (LHS).

Step 7: Solve for y:  Hence       y = (ex + c)e-2x   =   e-x + ce-2x   = ce-2x + e-x. 
 is the general solution of the ODE (8).  Note that the process of isolationg the 
unknown function(s) on the LHS proves that all solutions are of the form y = ce-2x

+ e-x. 
Since all steps are reversible (i.e.they are EEO's) we have that all functions of the

form 
y = ce-2x + e-x are solutions.  It is useful to check that all solutions of the form 
y = ce-2x + e-x are solutions.

Step 8: Check that these functions are all solution:  We can check directly that
functions of the 

form y = ce-2x + e-x are solutions by using the previously described technique to 
substitute back into the linear ODE.
2) y = ce-2x + e-x

1) y'= -2ce-2x - e-x

     ))))))))))))))))))
y'+2y = 2e-x -e-x = e-x

Step 9: Apply the  Initial Conditions (IC’s)  If an initial condition is given so that 
we have an initial value problem (IVP), we apply it to the general solution to 
obtain a value for the constant  c

 .

Substituting  y = 3 and  x = 0  into (10) we obtain

3 = c e-2(0) + e-0   Y  3 = c + 1  Y  c = 2.

Hence the unique solution to the initial value problem (IVP) posed by (7) and (8)
                        is
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        y = 2e-2x + e-x . (10)

EXAMPLE 2. y' =  2xy + x     ODE (11)
y(0) = 1             IC (12)

SOLUTION (This time we number the steps without identifying what they are):

Step 1:     We must first put the ODE in the standard form: y' ! 2xy = x     
"Clearly"     p(x) = !2x     (a(x) = 2x).

Step 2      I p(x) dx = I !2x dx = !x2 + c,          Choosing  c = 0 Y : = 

Step 3:      =   or  =   

Step 4:      Y =   

Step 5:    Note   =  U 

Step 6: Returning to the problem,

 =  =  =  =  =    

Step 7: y =      or  y = (14)

Step 8: Checking !2x) y = 

  1) yN = 

)))))))))))))))))))))))))

yN !2xy  =   ! 2x( )  =  x  U

Step 9: Since    we substitute  y = 1  and  x = 0  into (14) to obtain

  1 = ce0  !(1/2)  so that  c = 3/2   and hence    y = 

What happens if g(x) = 1 instead of x ?
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WRITTEN EXERCISES on Technique for Solving First Order Linear ODE’s Using an
Integrating Factor

1. Solve a) yN + 2y = 3   b)  2yN + y = x    c)  yN ! 2x y = 1   d) yN + (1/x)y = 3 cos 2x

2. Solve a) 2yN + y = 3x   b)  xyN + 2y = sin x    c)  (1 + x2)yN + 4x y = (1 +x2)!2 
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