A SERIES OF CLASS NOTES TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS
TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

LINEAR CLASS NOTES:
A COLLECTION OF HANDOUTS FOR
REVIEW AND PREVIEW
OF LINEAR THEORY
INCLUDING FUNDAMENTALS OF
LINEAR ALGEBRA

CHAPTER 9

More on

Matrix Inverses

1. Re-introduction to Matrix Inverses
2. Computation Using Gauss Elimination

4. Formula for a 2x2 Matrix
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Handout #1 RE-INTRODUCTION TO MATRIX INVERSES Prof. Moseley

Recall that if A and B are square, then we can compute both AB and BA. Unfortunately,
these may not be the same.

THEOREM #1. If n >1, then there exists A, BER ™" such that AB = BA. Thus matrix
multiplication is not commutative.

Thus AB=BA is not an identity. Can you give a counter example for n=2? (i.e. an example
where AB # BA.)

DEFINITION #1. For square matrices, there is a multiplicative identity element. We define
the nxn matrix | by

1 0 . . . 0
0 1 . . . 0
mIXn = One's down the diagonal. Zero's everywhere else.
10 0 1]
THEOREM #2. Wehave A | = | A = A vV AeK™
nxn nxn nxn nxn nxn

DEFINITION #2. If there exists B such that AB = 1., then B is a right (multiplicative) inverse
of A. If there exists C such that CA = I., then C is a left (multiplicative) inverse of A. If

AB = BA =1, then B is a (multiplicative) inverse of A and we say that A is invertible. If B is
the only matrix with the property that AB = BA =1, then B is the inverse of A. If A has a unique
inverse, then we say A is nonsingular and denote its inverse by A™.

THEOREM #3. Th identity matrix is its own inverse.

Later we show that if A has a right and a left inverse, then it has a unique inverse. Hence we
prove that A is invertible if and only if it is nonsingular. Even later, we show that if A has a right
(or left) inverse, then it has a unique inverse. Thus, even though matrix multiplication is not
commutative, a right inverse is always a left inverse and is indeed the inverse. Some matrices
have inverses; others do not. Unfortunately, it is usually not easy to look at a matrix and
determine whether or not it has a (multiplicative) inverse.

THEOREM #4. There exist A, BER ™" such that A=1 is invertible and B has no inverse.
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INVERSE OPERATION. If B has aright and left inverse then it is a unique inverse ((i.e., 3 B*
such that BB = BB™ = 1) and we can define Right Division AB*and Left Division BA of A
by B (provided B™ exists). But since matrix multiplication is not commutative, we do not know

that these are the same. Hence E is not well defined since no indication of whether we mean

left or right division is given.

EXERCISES on Re-introduction to Matrix Inverses

EXERCISE #1. True or False.
1. If A and B are square, then we can compute both AB and BA.
2. If n >1, then there exists A, BeER ™" such that AB = BA.
3. Matrix multiplication is not commutative.
4. AB=BA is not an identity.
5. For square matrices, there is a multiplicative identity element, namely the nxn matrix I,

1 0 - . - 0
o1 - - - 0
givenby | =
o0 - - - 1]
6. VAeK™ wehave A I = | A = A
nxn nxn nxn nxn nxn

7. If there exists B such that AB = 1., then B is a right (multiplicative) inverse of A.

8. If there exists C such that CA = 1., then C is a left (multiplicative) inverse of A.

9. If AB = BA =1, then B is a multiplicative inverse of A and we say that A is invertible.

10. If B is the only matrix with the property that AB = BA = I, then B is the inverse of A.

11. If A has a unique inverse, then we say A is nonsingular and denote its inverse by A™.

12. The identity matrix is its own inverse.

13. If A has a right and a left inverse, then it has a unique inverse.

14. Ais invertible if and only if it is nonsingular.

15. If A has a right (or left) inverse, then it has a unique inverse.

16. Even though matrix multiplication is not commutative, a right inverse is always a left
inverse.

17. The inverse of a matrix is unique.

18. Some matrices have inverses; others do not.

19. It is usually not easy to look at a matrix and determine whether or not it has a
(multiplicative) inverse.

20. There exist A, BeER™" such that A#1 is invertible and B has no inverse
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EXERCISE #2. Let a=2, A

{1+i 1—i

1 0 _
1 0 ]andB= L 1+J. Compute the following:

A = AT = . A*= . aA=

A+B = . AB=

i 1-i 1 O _
EXERCISE #3. Let o= 3, A:{O l+i},andB: L 1+J. Compute the following:

A=__ = A= . A*= . 0A=

A+B = . AB=

- 1 i1 . [x T2
EXERCISE #4. Solve A X = b whereA={i } x:{y]and b:{l .

2x2 2x1 2x1

- 1 i1 _ |x ~ 1
EXERCISE #5. Solve A X = |y Where AZL : x:{y]and b{o}

2x2 2x1 2x1

- 1 0] _ X - 1
EXERCISE #6 Solve A X = p whereA{i } X{y]and b={l

2x2 2x1 2x1
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Handout #3 COMPUTATION USING GAUSS/JORDAN ELIMINATION Professor Moseley

We give an example of how to compute the inverse of a matrix A using Gauss-Jordan
elimination (or Gauss-Jordan reduction). The procedure is to augment A with the identity matrix.
Then use Gauss-Jordan to convert A into I. Magically, | is turned into A™%. Obviously, if A is not
invertible, this does not work.

EXAMPLE#1. Use Gauss-Jordan reduction to compute A ! where A=

2 1001000
R,+U2R|-1 2 -1 00100
041240010
00-120001

2 -1 0 01 0

_ 03/2 -1 oft/2 1

0 0 4/3 -11/3 2/3

R,+@/4R,J0 0 -1 2/0 0

o B O O

(2 21
0 3/2
R,+(2/3)R,|0 -1
0 0
0 2 1
o _ |03
0 0 0
1 0 0

We now divide by the pivots to make them all one.

2R [2 -1

0o o1 O

2 -1 0 0
-1 2 -1 0
0 -1 2 -1f
0 0 -1 2

0 0/1 00 O]

-1 0[1/2 100

2 10 010

-1 2{0 00 1]

0 0|1 0 0 O

-1 o0jy2 1 0 O

4/3 -1]1/3 2/3 1 0

0 5/41/4 1/2 3/4 1

0 0 1 -1/2 0 0 [1/2 0 0 0
2/3R,|0 3/2 -1 01/2 1 0 O |0 1 -2/3 0 [1/3 2/3 0 0
3/4R,)0 0 4/3 -11/3 2/3 1 0 0 0 1 -3/4[L/4 1/2 3/4 0
5/4R,/0 0 0 5/41/4 1/2 3/4 1 o 0 0 1 jir5 275 3/5 475
We now make zeros above the pivots.
1442 0 020 0 0 1 -1/2 0 qu2
0 1 23 0/U323 0 0 R24+2/3R,|0 1 -2/3 Q1/3
R43/4R[0 0 1 -3/4U4 12 3/4 0 0 0 1 Q25
0 0 0 1U52/5354/5 0 0 0 115
R,+1/2R,[1 -1/2 0 012 0 0 0 1 172 o  ola/s 3/5 2/5
- 0 1 -2/3 03/5 6/5 4/5 2/5 |0 1 -2/3 0|3/5 6/5 4/5
0 0 1 02/5 4/5 6/5 3/5 o o 1 0[2/5 4/5 6/5
0 0 0 11/5 2/5 3/5 4/5 o 0 0 Ll/5 2/5 375
1 415 315 215 1/5
Hence A :{2’,2 She o §j§]. We will check.
1/5 215 315 415
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0 0 O
2/13 0 0
4/5 6/5 3/5
2/5 3/5 4/5
1/5
215
3/5
415



2100¥5H 55| 10
421036452501

AAl=
042154563 001
004255345000
415 3/5 2/5 1/5
. 3/5 6/5 4/5 2/5| . - i
Hence Al = is indeed the inverse of A.

2/5 4/5 6/5 3/5
1/5 2/5 3/5 4/5

EXAMPLE#2. For a 2x2 we can do the computation in general. This means that we can obtain a
formula for a 2x2. We can do this for a 3x3, but the result is not easy to remember and we are

a b

better off just using Gauss-Jordan for the particular matic of interest. Let A= . For the
C

2x2, we will assume that a=0. We leave it to the exercises to show that the formula that we will
derive for a=0 also works for a = 0. Proceeding we first get zeros below the pivots.

a b1 0 a b 1 0 a b 1 0
R,-c/aRy[c dlo 1|7 [0 gl 1) O o EE S

1 0 3
Next we make the pivots all one. We now assume that det(A)= ad-bc #0 so that the matrix is

a

nonsingular.
var, |2 P {1 01 R _brar,|1 bra Y2 0
al(ad-boR,|0 24=¢BI ¢ 4 0 ¢ a
a ad—bc ad-bc
1 b ¢ b a ad-(bc-bc) b d b
1 0a aad-bc aad-hc 1 0| a(ad -bc) ad —bc 1 Ola(ad-bc) ad-bc
01 ¢ a 01 ¢ a 01 ¢ a
ad—bc ad —bc ad —bc ad —bc ad—bc ad-bc
d _b
aHr| 1[d-b] 1[d b
Hence A™! = e Zﬂi h@[ }
C a € a € a
aHr aH
EXERCISES on Computation Using Gauss-Jordan Elimination
. 6 1
EXERCISE #1. Using the formula A™ = - 2 "], compute A™ when A= Ll 2}
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EXERCISE #2. Using the formula A™* = =L{d _ab}’ compute A ! where A= {3 l}

detA| - 4 2
1 20
EXERCISE #3. Using Gauss-Jordan elimination, compute A ™! where A=|0 2 1
001
1 0 2
EXERCISE #4. Using Gauss-Jordan elimination, compute A ! where A=|2 -1 3
4 1 8
EXERCISE #5. Let A:E: Z}.Without using the formula A= - [ ]
use Gauss-Jordan to show that A™=- =/ *  ~"|. Thus you have proved that the formula
works even whena = 0.
EXERCISE #6. Using the formula A™* = =L{d _b] compute A ! where A= {0 1}.
detA|—c a 4 2
EXERCISE #7. Compute A if A~ |} 7|
EXERCISE #8. Compute A if A-|? |
EXERCISE #9. Compute A if A-||
EXERCISE #10. Compute A" if A—[_li (IJ
EXERCISE #11. Compute A if A—B _SJ
EXERCISE #12. Compute A *if A~} * |
EXERCISE #13. Compute A if A</
3 -1 0 O
EXERCISE #14. Using Gauss elimination, compute A™* where A= ’01 fl ’21 f’l
0o 0 -1 2
2 -1 0 O
EXERCISE 15. Using Gauss elimination, compute A * where A= 701 fl ’21 8
0 0 -1 2
(2 -1 0 0
EXERCISE #16. Using Gauss elimination, compute A * where A= g ;1 f)l
0 0 0 2
[2 0 0 O
EXERCISE #17. Using Gauss elimination, compute A™* where A=/ 2 ° °
0 0 0 2
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