LINEAR CLASS NOTES:
 A COLLECTION OF HANDOUTS FOR REVIEW AND PREVIEW
 OF LINEAR THEORY
 INCLUDING FUNDAMENTALS OF
 LINEAR ALGEBRA

CHAPTER 9

More on
Matrix Inverses

1. Re-introduction to Matrix Inverses
2. Computation Using Gauss Elimination
3. Formula for a 2×2 Matrix

Recall that if A and B are square, then we can compute both $A B$ and BA. Unfortunately, these may not be the same.

THEOREM \#1. If $\mathrm{n}>1$, then there exists $\mathrm{A}, \mathrm{B} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ such that $\mathrm{AB} \neq \mathrm{BA}$. Thus matrix multiplication is not commutative.

Thus $\mathrm{AB}=\mathrm{BA}$ is not an identity. Can you give a counter example for $\mathrm{n}=2$? (i.e. an example where $A B \neq B A$.)

DEFINITION \#1. For square matrices, there is a multiplicative identity element. We define the $n \times n$ matrix I by

$$
\mathrm{I}_{\mathrm{mxn}}=\left[\begin{array}{cccccc}
1 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 1 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
0 & 0 & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

One's down the diagonal. Zero's everywhere else.

THEOREM \#2. We have $\underset{\mathrm{nxn}}{\mathrm{A}} \underset{\mathrm{nxn}}{\mathrm{I}}=\underset{\mathrm{nxn}}{\mathrm{I}} \underset{\mathrm{nxn}}{\mathrm{A}}=\underset{\mathrm{nxn}}{\mathrm{A}} \quad \forall \mathrm{A} \in \mathbf{K}^{\mathrm{nxn}}$
DEFINITION \#2. If there exists B such that $\mathrm{AB}=\mathrm{I}$., then B is a right (multiplicative) inverse of A. If there exists C such that $C A=I$., then C is a left (multiplicative) inverse of A. If $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, then B is $\underline{\underline{\text { a }}}$ (multiplicative) inverse of A and we say that A is invertible. If B is the only matrix with the property that $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, then B is the inverse of A . If A has a unique inverse, then we say A is nonsingular and denote its inverse by A^{-1}.

THEOREM \#3. Th identity matrix is its own inverse.
Later we show that if A has a right and a left inverse, then it has a unique inverse. Hence we prove that A is invertible if and only if it is nonsingular. Even later, we show that if A has a right (or left) inverse, then it has a unique inverse. Thus, even though matrix multiplication is not commutative, a right inverse is always a left inverse and is indeed the inverse. Some matrices have inverses; others do not. Unfortunately, it is usually not easy to look at a matrix and determine whether or not it has a (multiplicative) inverse.

THEOREM \#4. There exist $A, B \in \mathbf{R}^{\mathrm{n} \times n}$ such that $\mathrm{A} \neq \mathrm{I}$ is invertible and B has no inverse.

INVERSE OPERATION. If B has a right and left inverse then it is a unique inverse ((i.e., $\exists \mathrm{B}^{-1}$ such that $\mathrm{B}^{-1} \mathrm{~B}=\mathrm{BB}^{-1}=\mathrm{I}$) and we can define Right Division AB^{-1} and Left Division $\mathrm{B}^{-1} \mathrm{~A}$ of A by B (provided B^{-1} exists). But since matrix multiplication is not commutative, we do not know that these are the same. Hence $\frac{A}{B}$ is not well defined since no indication of whether we mean left or right division is given.

EXERCISES on Re-introduction to Matrix Inverses

EXERCISE \#1. True or False.
_1. If A and B are square, then we can compute both AB and BA . 2. If $\mathrm{n}>1$, then there exists $\mathrm{A}, \mathrm{B} \in \mathbf{R}^{\mathrm{nxn}}$ such that $\mathrm{AB} \neq \mathrm{BA}$.
3. Matrix multiplication is not commutative.
4. $\mathrm{AB}=\mathrm{BA}$ is not an identity.
5. For square matrices, there is a multiplicative identity element, namely the $n \times n$ matrix I,

$$
\operatorname{given}^{\text {by }} \underset{\mathrm{n} \times \mathrm{n}}{\mathrm{I}}=\left[\begin{array}{cccccc}
1 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 1 & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & & & & \cdot \\
. & \cdot & & & & \cdot \\
\cdot & \cdot & & & & \cdot \\
0 & 0 & \cdot & \cdot & \cdot & 1
\end{array}\right] .
$$

\qquad 6. $\forall \mathrm{A} \in \mathbf{K}^{\mathrm{nxn}}$ we have $\underset{\mathrm{nxn}}{\mathrm{A}} \underset{\mathrm{nxn}}{\mathrm{I}}=\underset{\mathrm{nxn}}{\mathrm{I}} \underset{\mathrm{nxn}}{\mathrm{A}}=\underset{\mathrm{nxn}}{\mathrm{A}}$
\qquad 7. If there exists B such that $A B=I$., then B is a right (multiplicative) inverse of A.
\qquad 8. If there exists C such that $\mathrm{CA}=\mathrm{I}$., then C is a left (multiplicative) inverse of A .
9. If $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, then B is a multiplicative inverse of A and we say that A is invertible.
10. If B is the only matrix with the property that $A B=B A=I$, then B is the inverse of A. 11. If A has a unique inverse, then we say A is nonsingular and denote its inverse by A^{-1}. 12. The identity matrix is its own inverse.
13. If A has a right and a left inverse, then it has a unique inverse.
14. A is invertible if and only if it is nonsingular.
15. If A has a right (or left) inverse, then it has a unique inverse.
16. Even though matrix multiplication is not commutative, a right inverse is always a left inverse.
\qquad 17. The inverse of a matrix is unique.
18. Some matrices have inverses; others do not.
19. It is usually not easy to look at a matrix and determine whether or not it has a (multiplicative) inverse.
\qquad 20. There exist $A, B \in \mathbf{R}^{n \times n}$ such that $A \neq I$ is invertible and B has no inverse

EXERCISE \#2. Let $\alpha=2, \quad \mathrm{~A}=\left[\begin{array}{cc}1+\mathrm{i} & 1-\mathrm{i} \\ 1 & 0\end{array}\right]$, and $\mathrm{B}=\left[\begin{array}{cc}1 & 0 \\ \mathrm{i} & 1+\mathrm{i}\end{array}\right] . \quad$ Compute the following: $\overline{\mathrm{A}}=$ \qquad . $A^{T}=$ \qquad . $A^{*}=$ \qquad . $\alpha \mathrm{A}=$ \qquad .
$\mathrm{A}+\mathrm{B}=$ \qquad . $\mathrm{AB}=$ \qquad .

EXERCISE \#3. Let $\alpha=3, \quad A=\left[\begin{array}{cc}\mathrm{i} & 1-\mathrm{i} \\ 0 & 1+\mathrm{i}\end{array}\right]$, and $\mathrm{B}=\left[\begin{array}{cc}1 & 0 \\ \mathrm{i} & 1+\mathrm{i}\end{array}\right] . \quad$ Compute the following: $\overline{\mathrm{A}}=$ \qquad . $A^{T}=$ \qquad . $\mathrm{A}^{*}=$ \qquad . $\alpha \mathrm{A}=$ \qquad .
$\mathrm{A}+\mathrm{B}=$ \qquad . $\mathrm{AB}=$

EXERCISE \#4. Solve $\underset{2 \times 2}{A} \underset{2 \times 1}{\vec{X}}=\underset{2 \times 1}{\vec{b}}$ where $A=\left[\begin{array}{cc}1 & i \\ i & -1\end{array}\right], \vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $\vec{b}=\left[\begin{array}{l}1 \\ i\end{array}\right]$.
EXERCISE \#5. Solve $\underset{2 \times 2}{ } \underset{2 \times 1}{ } \overrightarrow{\mathrm{X}}=\underset{2 \times 1}{\vec{b}}$ where $\mathrm{A}=\left[\begin{array}{cc}1 & \mathrm{i} \\ \mathrm{i} & -1\end{array}\right], \overrightarrow{\mathrm{x}}=\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$, and $\overrightarrow{\mathrm{b}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
EXERCISE \#6 Solve $\underset{2 \times 2}{A} \underset{2 \times 1}{\vec{X}}=\underset{2 \times 1}{\vec{b}}$ where $A=\left[\begin{array}{ll}1 & i \\ i & 0\end{array}\right], \vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $\vec{b}=\left[\begin{array}{l}1 \\ i\end{array}\right]$

We give an example of how to compute the inverse of a matrix A using Gauss-Jordan elimination (or Gauss-Jordan reduction). The procedure is to augment A with the identity matrix. Then use Gauss-Jordan to convert A into I. Magically, I is turned into A^{-1}. Obviously, if A is not invertible, this does not work.

EXAMPLE\#1. Use Gauss-Jordan reduction to compute A^{-1} where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$.

$$
\begin{aligned}
& R_{2}+(1 / 2) R^{2}\left[\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \quad \Rightarrow \quad R_{3}+(2 / 3) R_{2}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow \quad \mathrm{R}_{4}+(3 / 4) \mathrm{R}_{3}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -1 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & -1 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -1 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right]
\end{aligned}
$$

We now divide by the pivots to make them all one.

$$
\begin{aligned}
& 1 / 2 \mathrm{R}_{1} \\
& 2 / 3 \mathrm{R}_{2} \\
& 3 / 4 \mathrm{R}_{3} \\
& 5 / 4 \mathrm{R}_{4}
\end{aligned}\left[\begin{array}{cccc|cccc}
2 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 & 1 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & -1 & 1 / 3 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 5 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 1
\end{array}\right] \quad \Rightarrow\left[\begin{array}{cccc|cccc}
1 & -1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 & -3 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 0 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right]
$$

We now make zeros above the pivots.

$$
\begin{aligned}
& \mathrm{R}_{3}+3 / 4 \mathrm{R}_{+}\left[\begin{array}{cccc|cccc}
1 & -1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 & -3 / 4 & 1 / 4 & 1 / 2 & 3 / 4 & 0 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right] \quad \Rightarrow 2+2 / 3 \mathrm{R}_{3}\left[\begin{array}{cccccccc}
1 & -1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & 1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 / 5 & 4 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right] \\
& \Rightarrow \quad \mathrm{R}_{1}+1 / 2 \mathrm{R}_{2}\left[\begin{array}{cccc|cccc}
1 & -1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & 3 / 5 & 6 / 5 & 4 / 5 & 2 / 5 \\
0 & 0 & 1 & 0 & 2 / 5 & 4 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|cccc}
1 & -1 / 2 & 0 & 0 & 4 / 5 & 3 / 5 & 2 / 5 & 1 / 5 \\
0 & 1 & -2 / 3 & 0 & 3 / 5 & 6 / 5 & 4 / 5 & 2 / 5 \\
0 & 0 & 1 & 0 & 2 / 5 & 4 / 5 & 6 / 5 & 3 / 5 \\
0 & 0 & 0 & 1 & 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5
\end{array}\right]
\end{aligned}
$$

Hence $\mathrm{A}^{-1}=\left[\begin{array}{llll}4 / 5 & 3 / 5 & 2 / 5 & 1 / 5 \\ 3 / 5 \\ 2 / 5 & 6 / 5 & 4 / 5 & 4 / 5 \\ 1 / 5 & 2 / 5 \\ 1 / 5 & 2 / 5 & 6 / 5 & 3 / 5 \\ 3 / 5 & 4 / 5\end{array}\right]$. We will check.

Hence $\mathrm{A}^{-1}=\left[\begin{array}{llll}4 / 5 & 3 / 5 & 2 / 5 & 1 / 5 \\ 3 / 5 & 6 / 5 & 4 / 5 & 2 / 5 \\ 2 / 5 & 4 / 5 & 6 / 5 & 3 / 5 \\ 1 / 5 & 2 / 5 & 3 / 5 & 4 / 5\end{array}\right]$ is indeed the inverse of A.
EXAMPLE\#2. For a 2×2 we can do the computation in general. This means that we can obtain a formula for a 2×2. We can do this for a 3×3, but the result is not easy to remember and we are better off just using Gauss-Jordan for the particular matic of interest. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. For the 2×2, we will assume that $\mathrm{a} \neq 0$. We leave it to the exercises to show that the formula that we will derive for $\mathrm{a} \neq 0$ also works for $\mathrm{a}=0$. Proceeding we first get zeros below the pivots.

$$
R_{2}-c / a R_{1}\left[\begin{array}{cc|c}
a & b & 1 \\
c & d & 0 \\
c
\end{array}\right] \Rightarrow\left[\begin{array}{cc|cc}
a & b & 1 & 0 \\
0 & d-\frac{c}{a} b & -\frac{c}{a} & 1
\end{array}\right] \text { or }\left[\begin{array}{cc|cc}
a & b & 1 & 0 \\
0 & \left.\frac{a d-c b}{a} \right\rvert\,-\frac{c}{a} & 1
\end{array}\right]
$$

Next we make the pivots all one. We now assume that $\operatorname{det}(A)=a d-b c \neq 0$ so that the matrix is nonsingular.

$$
\begin{aligned}
& \underset{a /(a d-b c) R_{2}}{1 / a R_{1}}\left[\begin{array}{cc|cc}
a & b & 1 & 0 \\
0 & \frac{a d-c b}{a} & -\frac{c}{a} & 1
\end{array}\right] \Rightarrow R_{1}-b / a R_{2}\left[\begin{array}{cc|cc}
1 & b / a & 1 / a & 0 \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{1}{a}-\frac{b}{a} \frac{c}{a d-b c} & -\frac{b}{a} \frac{a}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{a d-(b c-b c)}{a(a d-b c)} & -\frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & \frac{d}{a(a d-b c)} \\
0 & & -\frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} \\
\frac{a}{a d-b c}
\end{array}\right]
\end{aligned}
$$

EXERCISES on Computation Using Gauss-Jordan Elimination

EXERCISE \#2. Using the formula $A^{-1}==\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, compute A^{-1} where $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$
EXERCISE \#3. Using Gauss-Jordan elimination, compute A^{-1} where $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$ EXERCISE \#4. Using Gauss-Jordan elimination, compute A^{-1} where $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right]$ EXERCISE \#5. Let $A=\left[\begin{array}{ll}0 & b \\ c & d\end{array}\right]$. Without using the formula $A^{-1}==\frac{1}{d e t A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ use Gauss-Jordan to show that $A^{-1}==\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & 0\end{array}\right]$. Thus you have proved that the formula works even when $\mathrm{a}=0$.
EXERCISE \#6. Using the formula $A^{-1}==\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, compute A^{-1} where $A=\left[\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right]$.
EXERCISE \#7. Compute A^{-1} if $\mathrm{A}=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]$
EXERCISE \#8. Compute A^{-1} if $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$
EXERCISE \#9. Compute A^{-1} if $A=\left[\begin{array}{ll}1 & i \\ 1 & 2\end{array}\right]$
EXERCISE \#10. Compute A^{-1} if $A=\left[\begin{array}{cc}1 & \mathrm{i} \\ -\mathrm{i} & 0\end{array}\right]$
EXERCISE \#11. Compute A^{-1} if $\mathrm{A}=\left[\begin{array}{cc}0 & 5 \\ 0 & -1\end{array}\right]$
EXERCISE \#12. Compute A^{-1} if $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$
EXERCISE \#13. Compute A^{-1} if $A=\left[\begin{array}{cc}1 & i \\ i & -1\end{array}\right]$
EXERCISE \#14. Using Gauss elimination, compute A^{-1} where $A=\left[\begin{array}{cccc}3 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
EXERCISE 15. Using Gauss elimination, compute A^{-1} where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2\end{array}\right]$
EXERCISE \#16. Using Gauss elimination, compute A^{-1} where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2\end{array}\right]$
EXERCISE \#17. Using Gauss elimination, compute A^{-1} where $A=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

