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Handout #1 NORMED LINEAR SPACES Prof. Moseley

Since solving linear algebraic equations for a field K require only a finite number of exact
algebraic steps, any field will do.  However, actually carrying out the process usually involves
approximate arithmetic and hence approximate solutions.  In an infinite dimensional vector space
the solution process often requires an infinite process that converges.  Hence the vector space (or
its field) must have additional properties.  Physicists and engineers think of vectors as quantities
which have length and direction.  Although the notion of direction can be discusssed, the
definition of a vector space does not include the concept of the length of a vector.  The
abstraction of the concept of length of a vector is called a norm and vector  spaces (also called
linear spaces) which have a norm (or length) are called normed linear spaces.  Having the
notion of length in a vector space gives us the notion of a unit vector (i.e. a vector of length one). 

DEFINITION #1.  A normed linear space is a real or complex vector space V on which a norm
has been defined.  A norm (or length) is a function  such that:V { : 0}    R R

1) x 0, x V  
 

 if and only if  x 0
 x 0



2)     scalars αx x x V    
  

3)   (this is called the triangle in equality)1 2 1 2 1 2x x x x x ,x V    
 

Note that the zero vector  is the only vector with zero length.  For all other vectors 0


x

we have .  Hence for each non zero  we can define the unit vector x 0 x

. (1)1 xu u(x) x
x x

  


   
 

LEMMA #1.  If V, and , then . x V, x 0 
  1 xu u(x) x

x x
  

   
  u 1

Proof.  Let .  Then1 xu u(x) x
x x

  


   
 

Statement Reason

      Definition of           1u x
x

 
 û

= Property (2) above       1 x
x




= Algebraic Properties of Rx
x





= 1 Algebraic Properties of R.
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THEOREM #1.  If  , then  can be written as  where  is a unit vector in thex 0
 x x x u

   u

direction of  and  gives the length of .x x x

Proof  idea.  That   is the length or norm of   follows from the definition of   as a norm orx x x

length.  Since ,   and we define  as before as the unit vector wex 0


x 0
 u 1 xu u(x) x

x x
  


   

 

see that  is a positive scalar multiple of  so that it is pointed in the same “direction” as .  Tou x x

show that  is left as an exercise.   QEDx x u
  

The abstraction of the notion of distance between two points in a set (or vector space) is
called a metric.  

DEFINITION #2.    A metric space is a set S on which a metric has been defined.  A metric (or
distance between) on S is a function ρ:S×SR+={αRα0}  such that

1) ρ(x,y)0 f x,yS.
ρ(x,y) =0   if and only if x=y.

2) ρ(x,y) = ρ(y,x).
3) ρ(x,z)  ρ(x,y) + ρ(y,z) (this is also called the triangle in equality)

THEOREM #2.  Every normed vector space is a metric space with the metric .(x, y) x y  
   

However, we note that a metric space need not be a vector space.  Geometrically in R3,  ρ is the
distance between the tips of the position vectors  and .  A metric yields the notion of ax y

topology, but we need not develop this more general concept.  However, to discuss approximate
solutions, we do need  the notion of completeness.  Although it could be developed in a more
general context, we are content to discuss complete vector spaces.    

DEFINITION #3.  A Cauchy sequence of vectors is a sequence  in a normed linearn 1n{x


 }
space V such that for any ε>0, there exists N with   < ε whenever m,n>N.

xn
xm

Thus get close together when n and m are large.  m nx and x 

DEFINITION #4.  A sequence of vectors  in a vector space V is convergent if there existn 1n{x


 }
such that for any ε>0, there exists N with   < ε whenever n>N.

x xn
x

DEFINITION #5.  A vector space is complete if every Cauchy sequence of vectors converges.  A
Banach Space is a complete normed linear space.
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The concepts of metric (or topology) and completeness are essential for computing limits; for
example, in the process of computing approximate solutions and obtaining error estimates.
Completeness does for a vector space what R does for Q (which are just special cases).  It makes
sure that there are no holes in the space so that Cauchy sequences (that look like they ought to
converge) indeed have a vector to converge to.  If we wish to solve problems in a metric space S
and S is not complete, we can construct the completion of S which we usually denote by . S
Then, since   is complete, we can obtain approximate solutions. S
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Handout #2 INNER PRODUCT SPACES Prof. Moseley

Recall that to determine if two vectors in R3 are perpendicular, we compute the dot
product.  The abstraction of the notion of dot product in an abstract vector space is called an
inner product.  Vector spaces on which an inner product is defined are called inner product
spaces.  As we will see, in an inner product space we have not only the notion of two vectors
being perpendicular but also the notions of length of a vector and a new way to determine if a
set of vectors is linearly independent.

DEFINITION #1.  An inner product space is a real or complex vector space  V  on which an
inner product is defined.  A inner product is a function (,): V × VR such that 
                                    ____

1)  (x, y) (y,x) x, y V  
     

(the bar over the inner product indicates complex conjugate.  If  V  is a real vector
space, it is not necessary and we see that the inner product is commutative for real
vector spaces.)

2)   and scalars α.( x, y) (x, y) x, y V    
     

3) .1 2 11 2 1 2(x x , y) (x , y) (x , y) x ,x , y V    
         

(Properties 2 and 3) say that the inner product is linear in the first slot.)
4) (x, x) 0 x V  

  

  (x,x) 0 iff x 0 
  

If  V  is an inner product space we define a mapping,   by: V { : 0} 
    R R

. (1)x (x,x)  

THEOREM #1.   given by (1) defines a norm on any inner product space and hencex (x,x)  

makes it into a normed linear space.  (See the previous handout)

DEFINITION #2.  A Hilbert space is a complete, inner product space. 

Again, the concept of completeness in a vector space is an abstraction of what R does for Q.  R is
complete; Q is not.

EXAMPLE (THEOREM).  Let  V = Rn  and define the inner product by  
n

T
i i

i 1

(x, y) x y x y


    

where .  Note that we can define the inner product in Rn in terms of matrixT T
1 nx [x ,..., x ]



multiplication.  Note also .  We can then prove (i.e. verify) that  defines anT(x, y) y x
    T(x, y) x y

   

inner product (i.e. satisfies the properties in the definition of an inner product).  

Ch. 8 Pg. 5



Proof of 2).  Let , thenT T
1 nx [x ,..., x ]

 T T
1 ny [y ,..., y ]



Statement Reason
       = definition of inner product for Rn.  ( x, y)

   Tx y
 

= notation and definition of transpose

1

1 n

n

y

( [x ,..., x ])

y

 
  
  
 
 

  

= definition of scalar multiplication 

1

1 n

n

y

[ x ,..., x ]

y

 
  
   
 
 

  
= (αx1)y1 + (αx2)y2 ++ (αxn)yn definition matrix multiplication     
= α(x1y1 + x2y2 ++ xnyn) properties real numbers            
= definition of matrix multiplicationT(x y)

 

= definition of inner product          (x, y)
 

QED

Note that in Rn we have 

. (2)
n

T 2 2 2
1 n i

i 1

x (x,x) x x x x x


            

In R3 we know that two vectors are perpendicular if their dot product is zero.  We abstract this
idea by defining two vectors in an inner product space to be orthogonal (rather than use the word
perpendicular) if their inner product is zero.

DEFINITION #3.  The row vectors =[x1,x2,...,xn] and =[y1,y2,...,yn] in Rn  are orthogonal if
x y

(and only if) .T(x, y) x y 0 
   

Pythagoras Extended.  In R3  (or any real inner product space) we might define two vectors to be
perpendicular if they satisfy the Pythagorean theorem; that is if 

. (3)2 2 2x y x y ( (x, y))    
 

Since ,   (3) may be rewritten asx y (x y)  
   
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(x, x) (y, y) (x y,x y)   
       

  =  (4)(x,x) 2(x, y) (y, y) 
     

(since the inner product is commutative; Cn is different.)  

THEOREM #2.  and  in Rn  are perpendicular iff they are orthogonal.x y

DEFINITION #4.   is a unit vector (i.e. a vector of length one) in the direction of thexû
x






nonzero vector  (  has no direction).  Hence any nonzero vector  can be written asx 0


x

   where  is the magnitude or length and  is a unit vector in the direction ofxx x
x




 


x xû
x






 .x

DEFINITION #5.  The cosine of the acute angle θ ( 0  θ  π) between two nonzero vectors  x

and  Rn isy

 (5)
T(x, y) x ycos( )

x y x y
  

   

   

Note:  This is often used as the geometric definition of dot product in R3.
To show that (5) does yield θ in R3 we first extend the concept of projection.

DEFINITION #6.  The vector projection of a vector  in the direction of a non-zero vector b


a

is given by 
(a,b)p b cos

a
  

 


           scalar

  ap b cos
a

 
    

 




      magnitude     unit vector giving direction of  p

      of p

    2

(a,b) a (a,b) a
a a a

 
   


  

The magnitude of   is called the scalar projection of  in the direction of  p b


a
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Handout #3 ORTHOGONAL SUBSPACES Prof. Moseley

We first review the definition, a theorem, and the test for a subspace.

DEFINITION #1.  Let  W  be a nonempty subset of a vector space  V.  If for any vectors  
,   W and scalars  α,β  K (recall that normally the set of scalars  K  is either R or C), we 

x y
have that α  + β   W, then  W  is a subspace of  V.

x y

THEOREM #1.  A nonempty subset  W  of a vector space  V  is a subspace of  V  if and only if 
for ,   V  and  α  K (i.e. α  is a scalar) we have.

x y
 i) ,   W  implies   +   W, and
x y x y

ii)    W  implies  α  W.
x x

TEST FOR A SUBSPACE.  Theorem #1 gives a good test to determine if a given subset of a
vector space is a subspace since we can test the closure properties separately.  Thus if  W  V
where V is a vector space, to determine if W is a subspace,we check the following three points.

1)  Check to be sure that  W  is nonempty.  (We usually look for the zero vector since if 
     there is W, then 0  =  must be in W.  Every vector space and every subspace x x 0



     must contain the zero vector.)
2)  Let  and   be arbitrary elements of  W  and check to see if   +   is in  W.  

x y x y
                  (Closure of vector addition)
   3)   Let  be an arbitrary element in  W  and check to see if  α  is in W. 

x x
                  (Closure of scalar multiplication).

DEFINITION #2  Let  W1 and W2 be subspaces of  a vector space  V.  Then the sum of W1 and
W2 is defined as W1 +W2 ={ : }.1 2x x

 
1 1 2 2x W and x W  

THEOREM #2  Let  W1 and W2 be subspaces of  a vector space  V.  Then the sum of W1 and W2
is subspace of V.

DEFINITION #3  Let  W1 and W2 be subspaces of  a vector space  V such that
.  Then the sum of W1 and W2 defined as W1 +W2 ={ : 1 2 0W W 


 1 2x x

 

} is a direct sum which we denote by 1 1 2 2x W and x W  
1 2W W

THEOREM #3  Let W1 and W2 be subspaces of a vector space V and 
.  Then for every vector  in V there exist unique 1 2 1 2 1 1 2 2:V = W W = x + x x W and x W      x

vectors W1 and W2 such that .1x 2x
1 2x = x + x  
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DEFINITION #4  Let  W1 and W2 be subspaces of  a real inner product space  V with inner 
product (,).  W1 and W2 are said to be orthogonal to each other if  +   x  W1 and   x +  y y

 W2, we have  ( , ) = 0.  We write W1 2 W2.x y

THEOREM #4.  If A Rm×n, then its row space is orthogonal to its null space and its column 
space is orthogonal to its left null space.  We write R(AT) 2 N(A) and R(A) 2 N(AT).

DEFINITION #5  Let  W  be a subspace of a real inner product space  V  with inner product (,).
The orthogonal complement of W is the set W 2 = { V: ( , ) = 0   W}.y x y x

THEOREM #5.  Let  W  be a subspace of a real inner product space  V  with inner product (,).
Then the  orthogonal complement of W, W 2 = { V: ( , ) = 0    W}, is a subspace.y x y x

THEOREM #6.  Let  W  be a subspace of a real inner product space  V  with inner product (,).
Then the  orthogonal complement of W 2 is W.  We write (W 2) 2 = W.

THEOREM #7.  If A Rm×n, then its row space is the orthogonal complement of its null space 
and the null is the orthogonal complement to the row space.  We write R(AT) 2 = N(A) and   
 N(A) 2 = R(AT).  Similarly, R(A) 2 = N(AT) and   N(AT) 2 = R(A).

THEOREM #8.  Let  W  be a nonempty subset of a real inner product space  V with inner 
product (,).  Then V is the direct sum of W and W 2 , V = W  W 2.

THEOREM #9.  If A Rm×n, then Rn = R(AT)  N(A) and  Rm = R(A)  N(AT).  
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Handout #4 INTRODUCTION TO ERROR ANALYSIS Prof. Moseley
IN NORMED LINEAR SPACES

In vector spaces where the concept of length or norm (as well as direction) is available, 
we can talk about approximate solutions to the mapping problem 

T( ) = (1)u b


where T is a linear operator from V to W; T:VW where V and W are normed linear spaces.  
Let  V be an approximate solution of (1) and V be the exact solution which we assume au eu

to exist and be unique.  A measure of how good a solution  is is given by the norm or length of au

the error vector in V,

;v e aE u u 
  

that is,
.V v e aE E u u  

  

If T is invertible (e.g., if T:RnRn, is defined by a matrix, T( ) = A  and detA0), then x x

1 1 1
V v e a a aE E u u T (b) T (b ) T (b b )        

     

where .  (The inverse of a linear operator, if it exists, is a linear operator.)  By a well-a ab T(u )
 

known theorem in analysis, 

1 1
a aT (b b ) T b b   

   

      
where  T-1 is the norm of the operator T-1 which we assume to be finite.  If an a priori 
“estimate” (i.e., bound) of T-1, say T-1  C, can be obtained, then an “estimate of” (i.e., 
bound for) EV can be obtained by first computing .  Even without an estimate of (bound ab b

 

for) T-1, we may use 

E = EW = .   b  ba = b  T(ua)a ab b b T(u )  
   

where 

; W a aE b b b T(u )   
   

is a measure of the error for .  After all, if , then  so that EW = 0.  We call EW au a eu u 
aT(u ) b



the error vector in W.  Note that this error vector (and hence E) can always be 
computed whereas  usually can not.  (If  is known, then the exact solution  is VE


VE


e a Vu u E 
 
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known and there is no need for an approximate solution.)  In fact, E can be computed 
independent of whether (1) has a unique solution or not.  We refer to a solution that minimizes 
E = EW as a least error solution.  If (1) has one or more solutions, then these are all least error 
solutions since they all give E = 0.  On the other hand, if (1) has no solution, then choosing  tou

minimize E gives a “best possible” solution.  Under certain conditions, it is unique.
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Handout #5 ORTHOGONAL BASIS AND BASIS SETS FOR  Prof. Moseley
INFINITE DIMENSIONAL VECTOR SPACES  

DEFINITION #1.  Let S = { , ,..., }  W  V where W is a subspace of the inner product1x 2x kx

space V. Then S is said to be (pairwise) orthogonal if for all i,j we have { , )  = 0  for ij.  If Six jx

is a basis of W, it is called an orthogonal basis.  (This requires that S does not contain the zero
vector.)  An orthogonal basis is said o be othonormal if for alli, ix 0

If B = { , ,..., } V is an orthogonal basis for the inner product space V, then the1x 2x kx

coordinates for are particularly easy to compute.  Let x V


 .  (1)1 1 2 2 k kx c x c x c x V      

To find ci, take the inner product of both  sides with .jx

 .  1 1 2 2j j k k(x ,x) (x ,c x c x c x )       

 1 1 2 2j j j j k k(x ,x) (x ,c x ) (x ,c x ) (x ,c x )         

1 1 2 2j j j k j k(x ,x) c (x ,x ) c (x ,x ) c (x ,x )         

(2)j j j j(x , x) c (x ,x )
   

so that 

. (3)
j

j
j j

(x ,x)
c

(x ,x )


 

 

The concepts of a basis and orthogonal basis can be extended to infinite dimensional
spaces.  We first extend the concepts of linear independence and spanning sets.  

DEFINITION #2.  An infinite set S in a vector space V is linearly independent if every finite
subset of S is linearly independent.  Thus the countable set { , ,..., ,...} is linearly1x 2x kx

independent if Sn = { , ,..., } is linearly independent for all nN.1x 2x kx

DEFINITION #3.    Let the countable set S = { , ,..., ,...}  W  V where W is a subspace1x 2x kx

of a vector space V.  S is a Hamel spanning set for W if for all , there exists nN and c1, x W


c2, ..., cn such that  .  If V is a topological vector space (e.g. a normed linear1 1 2 2 n nx c x c x c x      
   

space), then S is a Schauder spanning set for W if for all , there exist c1,  c2, ..., cn,... suchx W


that  .1 1 2 2 n n n n
n 1

x c x c x c x c x




             
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DEFINITION #3.    Let B = { , ,..., }  W  V where W is a subspace of a vector space V. 1x 2x nx

B is a Hamel basis for W if it is linearly independent and a Hamel spanning set for W.  If V is a
topological vector space (e.g. a normed linear space), then B is a Schauder basis for W if it is
linearly independent and a Schauder spanning set for W..

EXAMPLE. 1) Let  B = {1, x, x2, x3, ...}.  Then B is a Hamel basis for the set of all polynomials
P (R,R) and a Scauder basis for the set of all analytic functions with an infinite radius of
convergence about x = 0.  Note that both of these spaces are infinite dimensional.
2) Let B = { , ,..., ,...} be an infinite linearly independent set in a real topological vector1x 2x nx

space.  Then B is a Hamel basis for the subspace W1 = { = c1 +c2 ++cn : c1, c2, ,...cnR}x 1x 2x nx

of V and   B is a Schauder basis for the subspace W2 = { = c1 +c2 ++cn +: c1, c2,x 1x 2x nx

,...cn,...R where the series converges} of V.  Again, note that both of these spaces are infinite
dimensional.

If B = { , ,..., ,...} V is an orthogonal basis for the Hilbert space H, then the coordinates1x 2x nx

for are particularly easy to compute.  Let x H


 .  (4)1 1 2 2 n nx c x c x c x H          
   

To find ci, take the inner product of both  sides with .jx

 .  j j 1 1 2 2 n n(x ,x) (x ,c x c x c x )          
     

 j j 1 1 j 2 2 j n n(x ,x) (x ,c x ) (x ,c x ) (x ,c x )          
       

j 1 j 1 2 j 2 n j n(x ,x) c (x , x ) c (x ,x ) c (x ,x )          
       

      (5)j j j j(x ,x) c (x ,x )
   

. (6)
j

j
j j

(x ,x)
c (x ,x )

 

 

Note that this is the same formula as for the finite dimensional case.
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