A SERIES OF CLASS NOTES TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS

> LINEAR CLASS NOTES: A COLLECTION OF HANDOUTS FOR REVIEW AND PREVIEW OF LINEAR THEORY INCLUDING FUNDAMENTALS OF LINEAR ALGEBRA

CHAPTER 7

Introduction to

Determinants

1. Introduction to Computation of Determinants

- 2. Computation Using Laplace Expansion
- 3. Computation Using Gauss Elimination
- 4. Introduction to Cramer's Rule

Handout #1 INTRODUCTION TO COMPUTATION OF DETERMINANTS Prof. Moseley

Rather than give a fairly complicated definition of the determinant in terms of minors and cofactors, we focus only on two methods for computing the determinant function det: $\mathbf{R}^{n \times n} \rightarrow \mathbf{R}$ (or

det: $\mathbf{C}^{n\times n} \rightarrow \mathbf{C}$). Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The we define det(A) = ad-bc. Later we will show that $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} a & -b \\ -c & d \end{bmatrix} = \frac{1}{det A} \begin{bmatrix} a & -b \\ -c & d \end{bmatrix}$. For $A \in \mathbf{R}^{n\times n}$ (or $\mathbf{C}^{n\times n}$), we develop two methods for computing

det(A): Laplace Expansion and Gauss Elimination

But first, we give (without proof) several properties of determinants that aid in their evaluation.

<u>THEOREM</u>. Let $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$). Then

- 1. (ERO's of type 1) If B is obtained from A by exchanging two rows, then det(B) = -det(A).
- 2. (ERO's of type 2) If B is obtained from A by multiplying a row of A by $a \neq 0$, then det(B) = a det(A).
- 3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then det(B) = det(A).

4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3, then det(A) = det(U)

5. If $U \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$) is upper triangular, then det(U) is equal to the product of the diagonal elements.

6. If A has a row (or column) of zeros, then det(A) = 0..

7. If A has two rows (or columns) that are equal, then det(A) = 0..

8. If A has one row (column) that is a scalar multiple of another row (column), then det(A) = 0. 9. det(AB) = det(A) det(B).

10.If det(A) \neq 0, then det(A⁻¹) = 1/det(A).

11. $det(A^{T}) = det(A)$.

EXERCISES on Introduction of Computation of Determinants

EXERCISE #1. True or False.

 $\underbrace{ 1. \text{ If } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ then } \det(A) = ad - bc$ $\underbrace{ 2. \text{ If } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ then } A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & -b \\ -c & d \end{bmatrix}.$

_____ 3.If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$), there are (at least) two methods for computing det(A).

_____ 4. If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$), Laplace Expansionis one method for computing det(A)

<u>5.</u> 3.If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$), use of Gauss Elimination is one method for computing det(A).

- ___ 6. If A∈**R**^{n×n} (or **C**^{n×n}) and B is obtained from A by exchanging two rows, then det(B) = -det(A).
- _ 7. If A∈**R**^{n×n} (or **C**^{n×n}) and B is obtained from A by multiplying a row of A by $a \neq 0$, then det(B) = a det(A).
- 8. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then det(B) = det(A).
- 9. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3, then det(A) = det(U)
- 10. If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$) and $U \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$) is upper triangular, then det(U) is equal to the product of the diagonal elements.
- 11. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and A has a row of zeros, then det(A) = 0.
- 12. If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$) and A has a column of zeros, then det(A) = 0.
- 13. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and A has two rows that are equal, then det(A) = 0.
- 14. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and A has two columns that are equal, then det(A) = 0.
- 15. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and A has one row that is a scalar multiple of another row, then det(A) = 0.
- 16. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and A has one column that is a scalar multiple of another column, then det(A) = 0.
- 17. If $A,B \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) then det(AB) = det(A) det(B).
- 18. If $A \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) and det $(A) \neq 0$, then det $(A^{-1}) = 1/det(A)$.
- _____ 19. If $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$), this $det(A^T) = det(A)$.

EXERCISE #2. Compute det A where $A = \begin{bmatrix} 0 & 5 \\ 0 & -1 \end{bmatrix}$ EXERCISE #3. Compute det A where $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ EXERCISE #4. Compute det A where $A = \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$ EXERCISE #5. Compute det A where $A = \begin{bmatrix} 1 & i \\ i & 0 \end{bmatrix}$ EXERCISE #6. Compute A^{-1} if $A = \begin{bmatrix} 2 & 5 \\ 3 & 7 \end{bmatrix}$ EXERCISE #7. Compute A^{-1} if $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ EXERCISE #8. Compute A^{-1} if $A = \begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix}$ EXERCISE #9. Compute A^{-1} if $A = \begin{bmatrix} 1 & i \\ -i & 0 \end{bmatrix}$ EXERCISE #10. Compute A^{-1} if $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ EXERCISE #11. Compute A^{-1} if $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ EXERCISE #12. Compute A^{-1} if $A = \begin{bmatrix} 1 & i \\ 1 & -1 \end{bmatrix}$ We give an example of how to compute a determinant using Laplace expansion..

EXAMPLE. Compute det(A) where A=
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
 using Laplace expansion.

Solution: Expanding in terms of the first row we have $\begin{vmatrix} 2 & -1 & 0 \\ 0 \end{vmatrix}$

$$det(A) = \begin{vmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} -1 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{vmatrix}$$
$$+ (0) \begin{vmatrix} -1 & 2 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{vmatrix} - (0) \begin{vmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{vmatrix}$$

so the last two 3x3's are zero. Hence expanding the first remaining 3x3 in terms of the first row and the second interms of the first column we have

$$\det(A) = 2\left[\begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - (-1)\begin{vmatrix} -1 & -1 \\ 0 & 2 \end{vmatrix} + (0)\begin{vmatrix} -1 & 2 \\ 0 & -1 \end{vmatrix}\right] - (-1)\left[\begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} - (0)\begin{vmatrix} -1 & 0 \\ -1 & 2 \end{vmatrix} + (0)\begin{vmatrix} -1 & 0 \\ 2 & -1 \end{vmatrix}\right]$$
$$= 2[(4-1) + (-2)] + [4-1] = 2 + 3 = 5$$

EXERCISES	on Computation Using Laplace Expansion				
<u>EXERCISE #1</u> .	Using Laplace expansion, compute det A where $A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$	3 -1 0 0	-1 2 -1 0	0 -1 2 -1	$\begin{bmatrix} 0\\0\\-1\\2\end{bmatrix}$
EXERCISE #2.	Using Laplace expansion, compute det A where A=	2 -1 0 0	-1 2 -1 0	0 -1 2 -1	$\begin{bmatrix} 0 \\ 0 \\ -1 \\ 3 \end{bmatrix}$
<u>EXERCISE #3</u> .	Using Laplace expansion, compute det A where A=	2 -1 0 0	-1 2 -1 0	0 -1 2 -1	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$
EXERCISE #4.	Using Laplace expansion, compute det A where $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	10) 10)	2 3 4		
EXERCISE #5.	Using Laplace expansion, compute det A where $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0) 1 2 1	0 3 4		
EXERCISE #6.	Using Laplace expansion, compute det A where $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1 0) 1) 1	2 0 4		

Handout #3

We give an example of how to compute a determinant using Gauss elimination.

EXAMPLE. Compute det(A) where A=
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
 using Gauss elimination.

Recall

<u>THEOREM</u>. Let $A \in \mathbf{R}^{n \times n}$ (or $\mathbf{C}^{n \times n}$). Then

3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then det(B) = det(A).

4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3, then det(A) = det(U).

$$R_{2} + (1/2)R_{1} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \xrightarrow{=} R_{3} + (2/3)R_{2} \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$
$$\Rightarrow \qquad \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 0 & 4/3 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \xrightarrow{=} \begin{bmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 0 & 4/3 & -1 \\ 0 & 0 & 0 & 5/4 \end{bmatrix}$$

Since only ERO's of Type 3 were used, we have det(A) = det(U) = 2(3/2)(4/3)(5/4) = 5.

EXERCISES on Computation Using Gauss Elimination

	Using Gauss elimination, compute det A where A=	3	-1	0	0
EXERCISE #1.		-1	2	-1	0
		0	-1	2	-1
		0	0	-1	2
<u>EXERCISE #2</u> .	Using Gauss elimination, compute det A where A=	2	-1	0	0
		-1	2	-1	0
		0	-1	2	-1
		0	0	-1	3]
EXERCISE #3.	Using Gauss elimination, compute det A where A=	2	-1	0	0
		-1	2	-1	0
		0	-1	2	0
		0	0	-1	2

Handout #1

Cramer's rule is a method of solving $A\vec{x} = \vec{b}$ when A is square and the determinant of A which we denote by $D \neq 0$. The good news is that we have a formula. The bad news is that, computationally, it is not efficient for large matrices and hence is never used when n > 3. Let A be an nxn matrix and $A = [a_{ij}]$. Let $\vec{x} = [x_1, x_2, ..., x_n]^T$ and \vec{b} be nx1 column vectors and $\vec{x} = [x_i]$ and $\vec{b} = [b_i]$. Now let A_i be the matrix obtained from A by replacing the ith column of a by the column vector \vec{b} . Denote the determinant of A_i by D_i . Then $x_i = D_i/D$ so that $\vec{x} = [x_1, x_2, ..., x_n]^T = [D_i/D]^T$.

EXERCISES on Introduction to Cramer's Rule <u>EXERCISE #1</u>. Use Cramer's rule to solve $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ and $\vec{\mathbf{b}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ <u>EXERCISE #2</u>. Use Cramer's rule to solve $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where $\mathbf{A} = \begin{bmatrix} 2i & -3 \\ 3 & 5i \end{bmatrix}$ and $\vec{\mathbf{b}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ <u>EXERCISE #3</u>. Use Cramer's rule to solve $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$ where $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -3 \\ 2 & 1 & -1 \end{bmatrix}$ and $\vec{\mathbf{b}} = \begin{bmatrix} 5 \\ -1 \\ 3 \end{bmatrix}$ <u>EXERCISE #4</u>. Use Cramer's rule to solve