LINEAR CLASS NOTES:
 A COLLECTION OF HANDOUTS FOR REVIEW AND PREVIEW
 OF LINEAR THEORY
 INCLUDING FUNDAMENTALS OF
 LINEAR ALGEBRA

CHAPTER 7

Introduction to

Determinants

1. Introduction to Computation of Determinants
2. Computation Using Laplace Expansion
3. Computation Using Gauss Elimination
4. Introduction to Cramer's Rule

Rather than give a fairly complicated definition of the determinant in terms of minors and cofactors, we focus only on two methods for computing the determinant function det: $\mathbf{R}^{\mathrm{n} \times \mathrm{n}} \rightarrow \mathbf{R}$ (or $\left.\operatorname{det}: \mathbf{C}^{\mathrm{nxn}} \rightarrow \mathbf{C}\right)$. Let $\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]$. The we $\operatorname{define} \operatorname{det}(\mathrm{A})=\mathrm{ad}-\mathrm{bc}$. Later we will show that $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}a & -b \\ -c & d\end{array}\right]=\frac{1}{\operatorname{det} \mathrm{~A}}\left[\begin{array}{cc}\mathrm{a} & -\mathrm{b} \\ -\mathrm{c} & \mathrm{d}\end{array}\right]$. For $\mathrm{A} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$), we develop two methods for computing $\operatorname{det}(\mathrm{A})$: Laplace Expansion and Gauss Elimination

But first, we give (without proof) several properties of determinants that aid in their evaluation.

THEOREM. Let $A \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{nxn}}$). Then

1. (ERO's of type 1) If B is obtained from A by exchanging two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
2. (ERO's of type 2) If B is obtained from A by multiplying a row of A by $a \neq 0$, then $\operatorname{det}(B)=a \operatorname{det}(A)$.
3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then $\operatorname{det}(B)=\operatorname{det}(A)$.
4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3, then $\operatorname{det}(\mathrm{A})=\operatorname{det}(\mathrm{U})$
5. If $\mathrm{U} \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) is upper triangular, then $\operatorname{det}(\mathrm{U})$ is equal to the product of the diagonal elements.
6. If A has a row (or column) of zeros, then $\operatorname{det}(\mathrm{A})=0$..
7. If A has two rows (or columns) that are equal, then $\operatorname{det}(A)=0$..
8. If A has one row (column) that is a scalar multiple of another row (column), then $\operatorname{det}(A)=0$..
9. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$..
10.If $\operatorname{det}(A) \neq 0$, then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
10. $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A})$.

EXERCISES on Introduction of Computation of Determinants

EXERCISE \#1. True or False.

1. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det}(A)=a d-b c$
___ 2.If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}a & -b \\ -c & d\end{array}\right]$.
___ 3.If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$), there are (at least) two methods for computing $\operatorname{det}(\mathrm{A})$.
2. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$), Laplace Expansionis one method for computing $\operatorname{det}(\mathrm{A})$
3. 3.If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$), use of Gauss Elimination is one method for computing $\operatorname{det}(\mathrm{A})$.
\qquad 6. If $A \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and B is obtained from A by exchanging two rows, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
\qquad 7. If $A \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{nxn}}$) and B is obtained from A by multiplying a row of A by $a \neq 0$, then $\operatorname{det}(\mathrm{B})=\mathrm{a} \operatorname{det}(\mathrm{A})$.
\qquad 8. If $A \in \mathbf{R}^{\mathrm{n} \mathrm{\times n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then $\operatorname{det}(B)=\operatorname{det}(A)$.
\qquad 9. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3, then $\operatorname{det}(A)=\operatorname{det}(U)$
\qquad 10. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{nxn}}$) and $U \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) is upper triangular, then $\operatorname{det}(\mathrm{U}$) is equal to the product of the diagonal elements.
\qquad 11. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and A has a row of zeros, then $\operatorname{det}(\mathrm{A})=0$.
\qquad 12. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and A has a column of zeros, then $\operatorname{det}(A)=0$. 13. If $A \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and A has two rows that are equal, then $\operatorname{det}(\mathrm{A})=0$.
4. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}\left(\right.$ or $\left.\mathbf{C}^{\mathrm{n} \times \mathrm{n}}\right)$ and A has two columns that are equal, then $\operatorname{det}(A)=0$.
\qquad 15. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\mathbf{C}^{\mathrm{n} \times \mathrm{n}}$) and A has one row that is a scalar multiple of another row, then $\operatorname{det}(A)=0$.
\qquad 16. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}$ (or $\left.\mathbf{C}^{\mathrm{n} \times \mathrm{n}}\right)$ and A has one column that is a scalar multiple of another column, then $\operatorname{det}(\mathrm{A})=0$.
\qquad 17. If $A, B \in \mathbf{R}^{\mathrm{n} \mathrm{\times n}}\left(\right.$ or $\left.\mathbf{C}^{\mathrm{n} \mathrm{\times n}}\right)$ then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$..
5. If $A \in \mathbf{R}^{\mathrm{n} \mathrm{\times n}}\left(\right.$ or $\left.\mathbf{C}^{\mathrm{n} \times \mathrm{n}}\right)$ and $\operatorname{det}(A) \neq 0$, then $\operatorname{det}\left(\mathrm{A}^{-1}\right)=1 / \operatorname{det}(\mathrm{A})$. 19. If $A \in \mathbf{R}^{\mathrm{n} \times \mathrm{n}}\left(\right.$ or $\left.\mathbf{C}^{\mathrm{n} \times \mathrm{n}}\right)$, thjen $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}}\right)=\operatorname{det}(\mathrm{A})$.

EXERCISE \#2. Compute det A where $\mathrm{A}=\left[\begin{array}{cc}0 & 5 \\ 0 & -1\end{array}\right]$
EXERCISE \#3. Compute det A where $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$
EXERCISE \#4. Compute det A where $A=\left[\begin{array}{cc}1 & \mathrm{i} \\ \mathrm{i} & -1\end{array}\right]$
EXERCISE \#5. Compute det A where $A=\left[\begin{array}{ll}1 & i \\ i & 0\end{array}\right]$
EXERCISE \#6. Compute A^{-1} if $A=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]$
EXERCISE \#7. Compute A^{-1} if $A=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$
EXERCISE \#8. Compute A^{-1} if $A=\left[\begin{array}{ll}1 & \mathrm{i} \\ \mathrm{i} & 2\end{array}\right]$
EXERCISE \#9. Compute A^{-1} if $\quad \mathrm{A}=\left[\begin{array}{cc}1 & \mathrm{i} \\ -\mathrm{i} & 0\end{array}\right]$
EXERCISE \#10. Compute A^{-1} if $\mathrm{A}=\left[\begin{array}{cc}0 & 5 \\ 0 & -1\end{array}\right]$
EXERCISE \#11. Compute A^{-1} if $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$
EXERCISE \#12. Compute A^{-1} if $A=\left[\begin{array}{cc}1 & \mathrm{i} \\ \mathrm{i} & -1\end{array}\right]$

We give an example of how to compute a determinant using Laplace expansion..
EXAMPLE. Compute $\operatorname{det}(\mathrm{A})$ where $\mathrm{A}=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$ using Laplace expansion..
Solution: Expanding in terms of the first row we have

$$
\left.\begin{aligned}
\operatorname{det}(\mathrm{A})= & \left|\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right|
\end{aligned}|=2| \begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}|-(-1)| \begin{array}{ccc}
-1 & -1 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array} \right\rvert\,
$$

so the last two 3×3 's are zero. Hence expanding the first remaining 3×3 in terms of the first row and the second interms of the first column we have

$$
\begin{aligned}
& \operatorname{det}(\mathrm{A})=2\left[\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|-(-1)\left|\begin{array}{cc}
-1 & -1 \\
0 & 2
\end{array}\right|+(0)\left|\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right|\right]-(-1)\left[\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right|-(0)\left|\begin{array}{cc}
-1 & 0 \\
-1 & 2
\end{array}\right|+(0)\left|\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right|\right] \\
& =2[(4-1)+(-2)]+[4-1]=2+3=5
\end{aligned}
$$

EXERCISES on Computation Using Laplace Expansion

EXERCISE \#1. Using Laplace expansion, compute det A where $\mathrm{A}=\left[\begin{array}{cccc}3 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
EXERCISE \#2. Using Laplace expansion, compute det A where $\mathrm{A}=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3\end{array}\right]$
EXERCISE \#3. Using Laplace expansion, compute det A where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2\end{array}\right]$
EXERCISE \#4. Using Laplace expansion, compute det A where $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 1 & 4\end{array}\right]$
EXERCISE \#5. Using Laplace expansion, compute det A where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 2 & 1 & 4\end{array}\right]$
EXERCISE \#6. Using Laplace expansion, compute det A where $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 4\end{array}\right]$

We give an example of how to compute a determinant using Gauss elimination.
EXAMPLE. Compute $\operatorname{det}(\mathrm{A})$ where $\mathrm{A}=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$ using Gauss elimination.
Recall
THEOREM. Let $A \in \mathbf{R}^{\mathrm{nxn}}$ (or $\mathbf{C}^{\mathrm{n} \mathrm{\times n}}$). Then
3. (ERO's of type 3) If B is obtained from A by replacing a row of A by itself plus a scalar multiple of another row, then $\operatorname{det}(B)=\operatorname{det}(A)$.
4. If U is the upper triangular matrix obtained from A by Gauss elimination (forward sweep) using only ERO's of type 3 , then $\operatorname{det}(A)=\operatorname{det}(U)$.

$$
\begin{aligned}
& \mathrm{R}_{2}+(1 / 2) \mathrm{R}_{1}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \Rightarrow \mathrm{R}_{3}+(2 / 3) \mathrm{R}_{2}\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \Rightarrow {\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] }
\end{aligned} \Rightarrow\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right] .
$$

Since only ERO's of Type 3 were used, we have $\operatorname{det}(A)=\operatorname{det}(U)=2(3 / 2)(4 / 3)(5 / 4)=5$.

EXERCISES on Computation Using Gauss Elimination

EXERCISE \#1. Using Gauss elimination, compute det A where $A=\left[\begin{array}{cccc}3 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$
EXERCISE \#2. Using Gauss elimination, compute det A where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 3\end{array}\right]$
EXERCISE \#3. Using Gauss elimination, compute det A where $A=\left[\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2\end{array}\right]$
Ch. 6 Pg. 6

Cramer's rule is a method of solving $A \vec{x}=\vec{b}$ when A is square and the determinant of A which we denote by $\mathrm{D} \neq 0$. The good news is that we have a formula. The bad news is that, computationally, it is not efficient for large matrices and hence is never used when $n>3$. Let A be an nxn matrix and $A=\left[a_{i j}\right]$. Let $\vec{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ and \vec{b} be $n x 1$ column vectors and $\vec{x}=\left[x_{i}\right]$ and $\vec{b}=\left[b_{i}\right]$. Now let A_{i} be the matrix obtained from A by replacing the ith column of a by the column vector \vec{b}. Denote the determinant of A_{i} by D_{i}. Then $x_{i}=D_{i} / D$ so that $\overrightarrow{\mathrm{x}}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{T}}=\left[\mathrm{D}_{\mathrm{i}} / \mathrm{D}\right]^{\mathrm{T}}$.

EXERCISES on Introduction to Cramer's Rule
EXERCISE \#1. Use Cramer's rule to solve $A \vec{x}=\overrightarrow{\mathrm{b}}$ where $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ and $\overrightarrow{\mathrm{b}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
EXERCISE \#2. Use Cramer's rule to solve $\mathrm{A} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ where $\mathrm{A}=\left[\begin{array}{cc}2 i & -3 \\ 3 & 5 i\end{array}\right]$ and $\overrightarrow{\mathrm{b}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
EXERCISE \#3. Use Cramer's rule to solve $A \overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{b}}$ where $\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -3 \\ 2 & 1 & -1\end{array}\right]$ and $\overrightarrow{\mathrm{b}}=\left[\begin{array}{c}5 \\ -1 \\ 3\end{array}\right]$
EXERCISE \#4. Use Cramer's rule to solve

$$
\begin{aligned}
& \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=1 \\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0 \\
& \mathrm{x}_{3}+\mathrm{x}_{4}=1 \\
& \mathrm{x}_{2}+2 \mathrm{x}_{3}+\mathrm{x}_{4}=1
\end{aligned}
$$

