We consider the (abstract) equation (of the first kind)

$$
\begin{equation*}
T(\vec{x})=\vec{b} \quad \text { (Nonhomogeneous) } \tag{1}
\end{equation*}
$$

where T is a linear operator from the vector space V to the vector space $W(T: V \rightarrow W)$. We view (1) as a mapping problem; that is, we wish to find those $\overrightarrow{\mathrm{x}}$'s that are mapped by To $\overrightarrow{\mathrm{b}}$.

THEOREM \#1. For the nonhomogeneous equation (1) there are three possibilities:

1) There are no solutions.
2) There is exactly one solution.
3) There are an infinite number of solutions.

THEOREM \#2. For the homogeneous equation

$$
\begin{equation*}
\mathrm{T}(\overrightarrow{\mathrm{x}})=\overrightarrow{0} \quad \text { (Homogeneous) } \tag{2}
\end{equation*}
$$

there are only two possibilities:

1) There is exactly one solution, namely $\vec{x}=\overrightarrow{0}$; that is the null space of T (i.e. the set of vectors that are mapped into the zero vector) is $\mathrm{N}(\mathrm{T})=\{\overrightarrow{0}\}$.
2) There are an infinite number of solutions. If the null space of T is finite dimensional, say has dimension $\mathrm{k} \varepsilon \mathbf{N}$, then the general solution of (2) is of the form

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}=\mathrm{c}_{1} \quad \overrightarrow{\mathrm{x}}_{1}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mathrm{i}} \tag{3}
\end{equation*}
$$

where $\mathrm{B}=\left\{\overrightarrow{\mathrm{x}}_{1}, \cdots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is a basis for $\mathrm{N}(\mathrm{T})$ and $\mathrm{c}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{k}$ are arbitrary constants.
THEOREM \#3. The nonhomogeneous equation (1) has at least one solution if \vec{b} is contained in the range space of $T, R(T)$, (the set of vectors $\vec{W} \in W$ for which there exist $\vec{v} \in V$ such that $T[\vec{v}]=\vec{W})$. If this is the case, then the general solution of (1) is of the form

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\overrightarrow{\mathrm{x}}_{\mathrm{h}} \tag{4}
\end{equation*}
$$

where $\overrightarrow{\mathrm{X}}_{\mathrm{p}}$ is a particular (i.e. any specific) solution to (1) and $\overrightarrow{\mathrm{x}}_{\mathrm{h}}$ is the general (e.g. a parametric formula for all) solution(s) of (2). If $\mathrm{N}(\mathrm{T})$ is finite dimensional then

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\overrightarrow{\mathrm{x}}_{\mathrm{h}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mathrm{i}} \tag{5}
\end{equation*}
$$

where $B=\left\{\overrightarrow{\mathrm{x}}_{1}, \cdots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is a basis of $\mathrm{N}(\mathrm{T})$. For the examples, we assume some previous knowledge of determinants and differential equations. Even without this knowledge, you should get a feel for the theory. And if you lack the knowledge, you may wish to reread this handout after obtaining it.

EXAMPLE 1 OPERATORS DEFINED BY MATRIX MULTIPLICATION

We now apply the general linear theory to operators defined by matrix multiplication. We look for the unknown column vector $\overrightarrow{\mathrm{x}}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{T}}$. (We use the transpose notation on a row vector to indicate a column vector to save space and trees.) We consider the operator $\mathrm{T}[\overrightarrow{\mathrm{x}}]=\mathrm{A} \overrightarrow{\mathrm{x}}$ where A is an $\mathrm{m} \times \mathrm{n}$ matrix.

THEOREM 4. If \vec{b} is in the column (range) space of the matrix (operator) A, then the general solution to the nonhomogeneous system of algebraic equation(s)

$$
\begin{equation*}
\underset{\mathrm{mxn}}{\mathrm{~A} \times 1} \underset{\mathrm{n} \times 1}{\overrightarrow{\mathrm{a}}}=\underset{\mathrm{m} \times 1}{\overrightarrow{\mathrm{~b}}} \tag{6}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{\mathrm{x}}_{\mathrm{p}}+\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mathrm{i}} \tag{7}
\end{equation*}
$$

where $\overrightarrow{\mathrm{x}}_{\mathrm{p}}$ is a particular (i.e. any) solution to (6) and

$$
\begin{equation*}
\overrightarrow{\mathrm{x}}_{\mathrm{h}}=\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\cdots+\mathrm{c}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mathrm{i}} \tag{8}
\end{equation*}
$$

is the general solution (i.e. a parametric formula for all solutions) to the complementary homogeneous equation

$$
\begin{equation*}
\underset{\mathrm{mxn}}{\mathrm{~A} \times 1} \underset{\mathrm{~m}}{\overrightarrow{\mathrm{x}}}=\underset{\mathrm{m} \times 1}{\overrightarrow{0}} \tag{9}
\end{equation*}
$$

Here $B=\left\{\vec{x}_{1}, \cdots, \vec{x}_{k}\right\}$ is a basis for the null space $N(T)$ (also denoted by $\left.N(A)\right)$ which has dimension k . All of the vectors $\overrightarrow{\mathrm{x}}_{\mathrm{p}}, \overrightarrow{\mathrm{x}}_{1}, \cdots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}$ can be founded together using the computational technique of Gauss Elimination. If $N(T)=\{\overrightarrow{0}\}$, then the unique solution of $\underset{m \times n}{A} \underset{\mathrm{nx}}{\overrightarrow{\mathrm{x}}}=\underset{\mathrm{m} \times 1}{\vec{b}}$ is $\overrightarrow{\mathrm{x}}_{\mathrm{p}}$ (and the unique solution to $\underset{\mathrm{mm}_{\mathrm{nxl}}}{\mathrm{A}} \underset{\mathrm{mxl}}{\overrightarrow{0}} \quad$ is $\quad \overrightarrow{\mathrm{x}}_{\mathrm{h}}=\underset{\mathrm{nx1}}{\overrightarrow{0}}$).

THEOREM 5. If $\mathrm{n}=\mathrm{m}$, then we consider two cases (instead of three) for equation (6):

1) $\operatorname{det} A \neq 0$ so that A is nonsingular; then the matrix A has a unique inverse, A^{-1} (which is almost never computed), and for any $\vec{b} \in \mathbf{R}^{m}, \underset{n \times n}{A} \underset{n \times 1}{\vec{x}}=\underset{\mathrm{n} \times 1}{\vec{b}}$ always has the unique solution
$\vec{x}=A^{-1} \vec{b}$. Thus the operator $T(\vec{X})=A \vec{X}$ is one-to-one and onto so that any vector \vec{b} is always in the range space $R(A)$ and only the vector $\vec{X}=A^{-1} \vec{b}$. maps to it. Again, the matrix A defines an operator that is a one-to-one and onto mapping from \mathbf{R}^{n} to \mathbf{R}^{n} (or \mathbf{C}^{n} to \mathbf{C}^{n}).
2) $\operatorname{det} \mathrm{A}=0$ so that A is singular; then either there is no solution or if there is a solution, then there are an infinite number of solutions. Whether there is no solution or an infinite numbers of solutions depends on \vec{b}, specifically, on whether $\vec{b} \varepsilon R(A)$ or not. The operator defined by tha matrix A is not one-to-one or onto and the dimension of $N(A)$ is greater than or equal to one.

EXAMPLE 2 LINEAR DIFFERENTIAL EQUATIONS

To avoid using x as either the independent or dependent variable, we look for the unknown function u (dependent variable) as a function of t (independent variable). We let the domain of u be $\mathrm{I}=(\mathrm{a}, \mathrm{b})$ and think of the function u as a vector in an (infinite dimensional) vector (function) space.

THEOREM 6. If g is in the range space $R(L)$ of the linear differential operator L (i.e. $\mathrm{g} \varepsilon \mathrm{R}(\mathrm{L})$) then the general solution to the nonhomogeneous equation

$$
\begin{equation*}
\mathrm{L}[\mathrm{u}(\mathrm{t})]=\mathrm{g}(\mathrm{t}) \quad \forall \mathrm{t} \in \mathrm{I} \tag{10}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
\mathrm{u}(\mathrm{t})=\mathrm{u}_{\mathrm{p}}(\mathrm{t})+\mathrm{u}_{\mathrm{h}}(\mathrm{t}) \tag{11}
\end{equation*}
$$

where u_{p} is a particular solution to (10) and u_{h} is the general solution to the homogeneous equation

$$
\begin{equation*}
\mathrm{L}[\mathrm{u}(\mathrm{t})]=0 \quad \forall \mathrm{t} \in \mathrm{I} \tag{12}
\end{equation*}
$$

Special cases:

1) $\quad L[u(t)]=u^{\prime \prime}+p(t) u^{\prime}+q(t) u$. Second Order Scalar Equation.

For this case, we let $I=(a, b)$ and $L: A(I, R) \rightarrow A(I, R)$. It is known that the dimension of the
null space is two so that

$$
\mathrm{u}_{\mathrm{h}}(\mathrm{t})=\mathrm{c}_{1} \mathrm{u}_{1}(\mathrm{t})+\mathrm{c}_{2} \mathrm{u}_{2}(\mathrm{t}) .
$$

2) $\mathrm{L}[\mathrm{u}(\mathrm{t})]=\mathrm{p}_{\mathrm{o}}(\mathrm{t}) \frac{\mathrm{d}^{\mathrm{n}} \mathrm{u}}{\mathrm{dt}^{\mathrm{n}}}+\cdots+\mathrm{p}_{\mathrm{n}}(\mathrm{t}) \mathrm{u}(\mathrm{t}) \quad \mathrm{n}^{\text {th }}$ Order Scalar Equation.

Again we let $\mathrm{I}=(\mathrm{a}, \mathrm{b})$ and $\mathrm{L}: \mathrm{A}(\mathrm{I}, \mathrm{R}) \rightarrow \mathrm{A}(\mathrm{I}, \mathrm{R})$. For this case, the dimension of the null space is n so that

Ch. 6 Pg. 6

$$
\mathrm{u}_{\mathrm{h}}(\mathrm{t})=\mathrm{c}_{1} \mathrm{u}_{1}(\mathrm{t})+\cdots+\mathrm{c}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}(\mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}(\mathrm{t})
$$

3) $\mathrm{L}[\overrightarrow{\mathrm{u}}(\mathrm{t})]=\frac{\mathrm{d} \overrightarrow{\mathrm{u}}}{\mathrm{dt}}-\underset{\mathrm{nxn}}{\mathrm{P}}(\mathrm{t}) \overrightarrow{\mathrm{u}}(\mathrm{t}) \quad$ First Order System ("Vector" Equation)

Again we let $\mathrm{I}=(\mathrm{a}, \mathrm{b})$, but now $\mathrm{L}: \mathrm{A}\left(\mathrm{I}, \mathbf{R}^{\mathrm{n}}\right) \rightarrow \mathrm{A}\left(\mathrm{I}, \mathbf{R}^{\mathrm{n}}\right)$ where $\mathrm{A}\left(\mathrm{I}, \mathbf{R}^{\mathrm{n}}\right)=$ $\left\{\overrightarrow{\mathrm{u}}(\mathrm{t}): \mathrm{I} \rightarrow \mathrm{R}^{\mathrm{n}}\right\}$;
that is the set of all time varying "vectors". Here the word "vector" means an n-tuple of functions. We replace (10) with

$$
\mathrm{L}[\overrightarrow{\mathrm{u}}(\mathrm{t})]=\overrightarrow{\mathrm{g}}(\mathrm{t})
$$

and (12) with

$$
\mathrm{L}[\overrightarrow{\mathrm{u}}(\mathrm{t})]=\overrightarrow{0} .
$$

Then

$$
\overrightarrow{\mathrm{u}}(\mathrm{t})=\overrightarrow{\mathrm{u}}_{\mathrm{p}}(\mathrm{t})+\overrightarrow{\mathrm{u}}_{\mathrm{h}}(\mathrm{t})
$$

where

$$
\overrightarrow{\mathrm{u}}_{\mathrm{h}}(\mathrm{t})=\mathrm{c}_{1} \overrightarrow{\mathrm{u}}_{1}(\mathrm{t})+\cdots+\mathrm{c}_{\mathrm{n}} \overrightarrow{\mathrm{u}}_{\mathrm{n}}(\mathrm{t}) \quad \text { (i.e. the null space is } \mathrm{n} \text { dimensional). }
$$

