
Handout #2 INTRODUCTION TO ABSTRACT Professor Moseley
LINEAR MAPPING PROBLEMS

     We consider the (abstract) equation (of the first kind)

 T( ) =       (Nonhomogeneous) (1)
x


b

where  T  is a linear operator from the vector space  V  to the vector space W ( T:V  W ).  We
view (1) as a mapping problem; that is, we wish to find those  that are mapped by T to . x's b



THEOREM #1.  For the nonhomogeneous equation (1) there are three possibilities:
1)  There are no solutions.
2)  There is exactly one solution.
3)  There are an infinite number of solutions.

THEOREM #2.  For the homogeneous equation

 T( ) =       (Homogeneous) (2)
x


0

there are only two possibilities:
1)  There is exactly one solution, namely  =   ; that is the null space of  T (i.e. the set of 

x

0

     vectors that are mapped into the zero vector) is  N(T) = { }.

0

2)  There are an infinite number of solutions.  If the null space of  T  is finite dimensional, say 
     has dimension k ε N, then the general solution of (2)  is of the form

  = c1   +   +ck   =   (3)
x x1

x k

k

i i
i 1

c  x

 

    where B = { ,, }  is a basis for  N(T)  and  ci, i=1,...,k  are arbitrary constants.
x1

x k

THEOREM #3.  The nonhomogeneous equation (1) has at least one solution if  is        

b

contained in the range space of  T, R(T), (the set of vectors W for which there exist V 
w v

such that T[ ] = ).  If this is the case, then the general solution of (1) is of the form
v w

  =   +  (4)
x x p

x h

where    is a particular (i.e. any specific) solution to (1) and  is the general (e.g. a
x p

x h

parametric formula for all) solution(s) of (2).  If N(T) is finite dimensional then 

  =   +  =  + c1   +   +ck   = + (5)
x x p
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where B = { ,, } is a basis of N(T).  For the examples, we assume some previous
x1

x k

knowledge of determinants and differential equations.  Even without this knowledge, you
should get a feel for the theory.  And if you lack the knowledge, you may wish to reread this
handout after obtaining it. 

EXAMPLE 1  OPERATORS DEFINED BY MATRIX MULTIPLICATION 
We now apply the general linear theory to operators defined by matrix multiplication.  We look
for the unknown column vector    = [x1,x2,,xn]T.  (We use the transpose notation on a row

x
vector to indicate a column vector to save space and trees.)  We consider the operator
 T[ ] = A  where A is an m×n matrix.

x x

THEOREM 4.  If   is in the column (range) space of the matrix (operator)  A, then  the general

b

solution to the nonhomogeneous system of algebraic equation(s)

     =   (6)A
mxn

x
nx1


b

mx1

can be written in the form

  =   + c1   +   +ck   =  +   (7)
x x p

x1
x k

x p c  xi i
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where  is a particular ( i.e. any) solution to (6) and
x p

              = c1   +   +ck   =   (8)
x h

x1
x k c  xi i

i 1

k 




is the general solution (i.e. a parametric formula for all solutions) to the complementary
homogeneous  equation

     =   (9)A
mxn

x
nx1 mx1

0


Here B = { ,, } is a basis for the null space N(T) ( also denoted by N(A) ) which has
x1

x k

dimension  k.  All of the vectors  , ,,  can be founded together using the computationalpx x1 kx

technique of Gauss Elimination.  If N(T) = { }, then the unique solution of   =   is  

0 A

mxn nx1
x


b

mx1

x p

(and the unique solution to   is  = ).
mx1mxnnx1
0A x 
 x h


0

nx1

THEOREM 5.  If  n = m, then we consider two cases (instead of three) for equation (6):
 1)   det A  0 so that A is nonsingular; then the matrix A has a unique inverse, A1 (which is
       almost never computed),  and for any Rm,   =   always has the unique solution 


b A

nxn

x
nx1


b

nx1
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       =A1 .  Thus the operator  is one-to-one and onto so that any vector  is x b


T(x) = Ax  
b

      always in the range space  R(A)  and only the vector =A1 . maps to it.  Again, the matrix  
x


b

      A defines an operator that is a one-to-one and onto mapping from  Rn to Rn (or Cn to Cn). 
 2)  det A = 0 so that A is singular; then either there is no solution or if there is a solution, 
      then there are an infinite number of solutions.  Whether there is no solution or an infinite
       numbers of solutions depends on , specifically, on whether εR(A) or not.  The operator


b


b

       defined by tha matrix  A  is not one-to-one or onto and the dimension of N(A) is greater than 
       or equal to one.

EXAMPLE 2  LINEAR DIFFERENTIAL EQUATIONS
To avoid using x as either the independent or dependent variable, we look for the unknown
function  u (dependent variable) as a function of  t (independent variable).  We let the domain of u
be I = (a,b) and think of the function  u  as a vector in an (infinite dimensional) vector (function)
space.

THEOREM 6.  If  g  is in the range space  R(L)  of the linear differential operator  L  (i.e. 
g ε R(L) )  then the general solution to the nonhomogeneous equation

L[ u(t) ] = g(t)  t   I (10)

can be written in the form

u(t)  =  up(t)  +  uh(t) (11)

where  up  is a particular solution to (10) and  uh  is the general solution to the homogeneous
equation

L[ u(t) ]  =  0  t   I (12)

Special cases:
1) L[ u(t) ] = u" + p(t)u + q(t)u.     Second Order Scalar Equation.

For this case, we let I = (a,b) and L:A (I,R) A (I,R).  It is known that the dimension of
the 
            null space is two so that

                            uh(t) = c1u1(t) + c2u2(t).

    2)     L[ u(t) ] =  po(t)   +   +  pn(t) u(t)            nth  Order Scalar Equation.
n

n

d u
dt

Again we let I = (a,b) and L:A (I,R) A (I,R).  For this case, the dimension of the null 
            space is  n  so that
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          uh(t)  = c1 u1(t)  +   +cn un(t)  =   .c  u (t)i i
i 1

n




   3)      L[ ] =                      First Order System  ("Vector" Equation)
u(t) du

dt


P (t)u(t)

nxn



             Again we let I = (a,b), but now  L:A (I,Rn) A (I,Rn) where  A (I,Rn) =

{ }; nu(t) : I R


            that is the set of all time varying "vectors".  Here the word "vector" means an  n-tuple of 
            functions.  We replace (10) with 

L[ ]  =    
u(t) g(t)

             and  (12)   with 
L[ ] = .  

u(t)

0

             Then
  =    +  
u(t) u (t)p

u (t)h

            where
         = c1 +   + cn    (i.e. the null space is  n  dimensional).

u (t)h
u (t)1

u (t)n
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